Skip to main content

Nonlinear Microscopy of the Vocal Folds

  • Chapter
  • First Online:
Biomedical Optics in Otorhinolaryngology

Abstract

Nonlinear microscopy is becoming a very important tool available to life scientists. This powerful three-dimensional technique allows exploration of unstained biological tissues through a contrast provided by the nonlinear interaction of short laser pulses with certain macromolecules such as elastin and collagen. The possibility of imaging microstructures (cells, nuclei) as well as macromolecules without affecting the integrity of the organ paves the way for a better understanding of vocal folds’ normal and pathological conditions. In this chapter, we review the physical concepts behind nonlinear microscopy and provide example of its use in laryngology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The optimal 2PEF excitation wavelength is typically broader allowing for excitation wavelengths to range from 700 to 1000 nm. This effect is due to the difference in allowed transition between sublevels of the ground and excited states when excited with one or two photons.

References

  1. Huang D, Swanson E, Lin C, et al. Optical coherence tomography. Science. 1991;254(5035):1178–81. doi:10.1126/science.1957169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ridgway JM, Armstrong WB, Guo S, et al. In vivo optical coherence tomography of the human oral cavity and oropharynx. Arch Otolaryngol Head Neck Surg. 2006;132(10):1074–81. doi:10.1001/archotol.132.10.1074.

    Article  PubMed  Google Scholar 

  3. Bouma BE, Tearney GJ, Compton CC, Nishioka NS. High-resolution imaging of the human esophagus and stomach in vivo using optical coherence tomography. Gastrointest Endosc. 2000;51(4):467–74. doi:10.1016/S0016-5107(00)70449-4.

    Article  CAS  PubMed  Google Scholar 

  4. Bus MTJ, Muller BG, de Bruin DM, et al. Volumetric in vivo visualization of upper urinary tract tumors using optical coherence tomography: a pilot study. J Urol. 2013;190(6):2236–42. doi:10.1016/j.juro.2013.08.006.

    Article  PubMed  Google Scholar 

  5. Yabushita H, Bouma BE, Houser SL, et al. Characterization of human atherosclerosis by optical coherence tomography. Circulation. 2002;106(13):1640–5. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12270856. Accessed 12 Mar 2014.

    Article  PubMed  Google Scholar 

  6. Hanna N, Saltzman D, Mukai D, et al. Two-dimensional and 3-dimensional optical coherence tomographic imaging of the airway, lung, and pleura. J Thorac Cardiovasc Surg. 2005;129(3):615–22. doi:10.1016/j.jtcvs.2004.10.022.

    Article  CAS  PubMed  Google Scholar 

  7. Wong BJF, Jackson RP, Guo S, et al. In vivo optical coherence tomography of the human larynx: normative and benign pathology in 82 patients. Laryngoscope. 2005;115(11):1904–11. doi:10.1097/01.MLG.0000181465.17744.BE.

    Article  PubMed  Google Scholar 

  8. Kraft M, Glanz H, von Gerlach S, Wisweh H, Lubatschowski H, Arens C. Clinical value of optical coherence tomography in laryngology. Head Neck. 2008;30(12):1628–35. doi:10.1002/hed.20914.

    Article  PubMed  Google Scholar 

  9. Armstrong WB, Ridgway JM, Vokes DE, et al. Optical coherence tomography of laryngeal cancer. Laryngoscope. 2006;116(7):1107–13. doi:10.1097/01.mlg.0000217539.27432.5a.

    Article  PubMed  Google Scholar 

  10. Burns JA, Zeitels SM, Anderson RR, Kobler JB, Pierce MC, de Boer JF. Imaging the mucosa of the human vocal fold with optical coherence tomography. Ann Otol Rhinol Laryngol. 2005;114(9):671–6. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16240928. Accessed 12 Mar 2014.

    Article  PubMed  Google Scholar 

  11. Klein A, Pierce M. Imaging the human vocal folds in vivo with optical coherence tomography: a preliminary experience. Ann Otol Rhinol Laryngol. 2006;115(4):277–84.

    Article  PubMed  Google Scholar 

  12. Boudoux C, Leuin SC, Oh WY, et al. Preliminary evaluation of noninvasive microscopic imaging techniques for the study of vocal fold development. J Voice. 2009;23(3):269–76. Available at: http://dx.doi.org/10.1016/j.jvoice.2007.10.003.

    Article  CAS  PubMed  Google Scholar 

  13. Boudoux C, Leuin SC, Oh WY, et al. Optical microscopy of the pediatric vocal fold. Arch Otolaryngol Head Neck Surg. 2009;135(1):53–64. Available at: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=19153308&retmode=ref&cmd=prlinks.

    Article  PubMed  Google Scholar 

  14. Maturo S, Benboujja F, Boudoux C, Hartnick C. Quantitative distinction of unique vocal fold subepithelial architectures using optical coherence tomography. Ann Otol Rhinol Laryngol. 2012;121(11):754–60. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23193909. Accessed 12 Mar 2014.

    Article  PubMed  Google Scholar 

  15. Benboujja F, Rogers D, Infusino S, Strupler M, Hartnick CJ, Boudoux C. A study of vocal fold maturation using optical coherence tomography. San Francisco, CA: SPIE Photonics West; 2014.

    Google Scholar 

  16. Ridgway JM, Su J, Wright R, et al. Optical coherence tomography of the newborn airway. Ann Otol Rhinol Laryngol. 2008;117(5):327–34. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2871770&tool=pmcentrez&rendertype=abstract. Accessed 12 Mar 2014.

    PubMed  PubMed Central  Google Scholar 

  17. Wisweh H, Merkel U. Optical coherence tomography monitoring of vocal fold femtosecond laser microsurgery. European Conference on Biomedical Optics. Munich, Germany; 2007

    Google Scholar 

  18. Minsky M. Microscopy apparatus. 1961. Available at: http://www.google.ca/patents/US3013467. Accessed 4 Dec 2013.

  19. Pawley J. Handbook of biological confocal microscopy. New York: Springer; 2006.

    Book  Google Scholar 

  20. Webb RH, Hughes GW, Delori FC. Confocal scanning laser ophthalmoscope. Appl Opt. 1987;26(8):1492–9. doi:10.1364/AO.26.001492.

    Article  CAS  PubMed  Google Scholar 

  21. Gareau DS, Jeon H, Nehal KS, Rajadhyaksha M. Rapid screening of cancer margins in tissue with multimodal confocal microscopy. J Surg Res. 2012;178(2):533–8. doi:10.1016/j.jss.2012.05.059.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hsiung P-L, Hsiung P-L, Hardy J, et al. Detection of colonic dysplasia in vivo using a targeted heptapeptide and confocal microendoscopy. Nat Med. 2008;14(4):454–8. doi:10.1038/nm1692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tearney GJ, Webb RH, Bouma BE. Spectrally encoded confocal microscopy. Opt Lett. 1998;23(15):1152–4. Available at: http://links.isiglobalnet2.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=mekentosj&SrcApp=Papers&DestLinkType=FullRecord&DestApp=WOS&KeyUT=000075024400002.

    Article  CAS  PubMed  Google Scholar 

  24. Boudoux C, Yun S-H, Oh W, et al. Rapid wavelength-swept spectrally encoded confocal microscopy. Opt Express. 2005;13(20):8214–21.

    Article  CAS  PubMed  Google Scholar 

  25. Boudoux C, Benboujja F, Deterre R, Strupler M, Maturo S, Hartnick CJ. Emerging microscopy techniques for pediatric vocal fold evaluation. In: Izdebski K, Yan Y, Ward R, Wong BJF, editors. Normal & Abnormal Vocal Folds Kinematics: High-Speed Digital Phonoscopy (HSDP), Optical Coherence Tomography (OCT) & Narrow Band Imaging (NBI). San Francisco, CA: Pacific Vo.; 2014.

    Google Scholar 

  26. Iftimia N, Ferguson RD, Mujat M, et al. Combined reflectance confocal microscopy/optical coherence tomography imaging for skin burn assessment. Biomed Opt Express. 2013;4(5):680–95. doi:10.1364/BOE.4.000680.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kang D, Suter MJ, Boudoux C, et al. Co-registered spectrally encoded confocal microscopy and optical frequency domain imaging system. J Microsc. 2010;239(2):87–91. Available at: http://doi.wiley.com/10.1111/j.1365-2818.2010.03367.x.

  28. Zipfel WR, Williams RM, Webb WW. Nonlinear magic: multiphoton microscopy in the biosciences. Nat Biotechnol. 2003;21(11):1369–77. doi:10.1038/nbt899.

    Article  CAS  PubMed  Google Scholar 

  29. Rivera DR, Brown CM, Ouzounov DG, et al. Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue. Proc Natl Acad Sci U S A. 2011;108(43):17598–603. doi:10.1073/pnas.1114746108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Engelbrecht CJ, Johnston RS, Seibel EJ, Helmchen F. Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo. Opt Express. 2008;16(8):5556–64. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18542658. Accessed 18 April 2014.

    Article  CAS  PubMed  Google Scholar 

  31. Helmchen F, Fee MS, Tank DW, Denk W. A miniature head-mounted two-photon microscope. High-resolution brain imaging in freely moving animals. Neuron. 2001;31(6):903–12. Available at: http://www.ncbi.nlm.nih.gov/pubmed/11580892. Accessed 31 Mar 2014.

    Article  CAS  PubMed  Google Scholar 

  32. Miri AK, Tripathy U, Mongeau L, Wiseman PW. Nonlinear laser scanning microscopy of human vocal folds. Laryngoscope. 2012;122(2):356–63. doi:10.1002/lary.22460.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Deterre R. Microscopie non-linéaire pour l’imagerie des cordes vocales. 2012.

    Google Scholar 

  34. Hoy CL, Everett WN, Yildirim M, Kobler J, Zeitels SM, Ben-Yakar A. Towards endoscopic ultrafast laser microsurgery of vocal folds. J Biomed Opt. 2012;17(3):038002. doi:10.1117/1.JBO.17.3.038002.

    Article  PubMed  Google Scholar 

  35. Boyd RW. Nonlinear optics. San Diego, CA: Acad. Press; 2003. p. 578. Available at: http://books.google.ca/books/about/Nonlinear_Optics.html?id=30t9VmOmOGsC&pgis=1. Accessed 9 Jul 2014.

    Google Scholar 

  36. Denk W, Strickler J, Webb W. Two-photon laser scanning fluorescence microscopy. Science. 1990;248(4951):73–6. doi:10.1126/science.2321027.

    Article  CAS  PubMed  Google Scholar 

  37. French PMW, Williams JAR, Taylor JR. Femtosecond pulse generation from a titanium-doped sapphire laser using nonlinear external cavity feedback. Opt Lett. 1989;14(13):686. doi:10.1364/OL.14.000686.

    Article  CAS  PubMed  Google Scholar 

  38. Denk W. Two-photon scanning photochemical microscopy: mapping ligand-gated ion channel distributions. Proc Natl Acad Sci U S A. 1994;91(14):6629–33. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=44256&tool=pmcentrez&rendertype=abstract. Accessed 4 Dec 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Brown EB, Campbell RB, Tsuzuki Y, et al. In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy. Nat Med. 2001;7(7):864–8. doi:10.1038/89997.

    Article  CAS  PubMed  Google Scholar 

  40. Sipkins DA, Wei X, Wu JW, et al. In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature. 2005;435(7044):969–73. doi:10.1038/nature03703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Squirrell JM, Wokosin DL, White JG, Bavister BD. Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability. Nat Biotechnol. 1999;17(8):763–7. doi:10.1038/11698.

    Article  CAS  PubMed  Google Scholar 

  42. Sandberg LB, Soskel NT, Leslie JG. Elastin structure, biosynthesis, and relation to disease states. N Engl J Med. 1981;304:566–79.

    Article  CAS  PubMed  Google Scholar 

  43. Debelle L, Tamburro AM. Elastin: molecular description and function. Int J Biochem Cell Biol. 1999;31(2):261–72. doi:10.1016/S1357-2725(98)00098-3.

    Article  CAS  PubMed  Google Scholar 

  44. Gray SD, Titze IR, Alipour F, Hammond TH. Biomechanical and histologic observations of vocal fold fibrous proteins. Ann Otol Rhinol Laryngol. 2000;109(1):77–85. Available at: http://europepmc.org/abstract/MED/10651418. Accessed 9 Jul 2014.

    Article  CAS  PubMed  Google Scholar 

  45. Moore J, Thibeault S. Insights into the role of elastin in vocal fold health and disease. J Voice. 2012;26(3):269–75. doi:10.1016/j.jvoice.2011.05.003.

    Article  PubMed  Google Scholar 

  46. Breunig HG, Studier H, König K. Multiphoton excitation characteristics of cellular fluorophores of human skin in vivo. Opt Express. 2010;18(8):7857–71. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20588627. Accessed 9 Jul 2014.

    Article  CAS  PubMed  Google Scholar 

  47. Boulesteix T, Pena A-M, Pagès N, et al. Micrometer scale ex vivo multiphoton imaging of unstained arterial wall structure. Cytometry A. 2006;69(1):20–6. doi:10.1002/cyto.a.20196.

    Article  CAS  PubMed  Google Scholar 

  48. Zipfel WR, Williams RM, Christie R, Nikitin AY, Hyman BT, Webb WW. Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation. Proc Natl Acad Sci U S A. 2003;100(12):7075–80. doi:10.1073/pnas.0832308100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kierdaszuk B, Malak H, Gryczynski I, Callis P, Lakowicz JR. Fluorescence of reduced nicotinamides using one- and two-photon excitation. Biophys Chem. 1996;62(1–3):1–13. Available at: http://www.ncbi.nlm.nih.gov/pubmed/8962467. Accessed 10 Jul 2014.

    Article  CAS  PubMed  Google Scholar 

  50. Huang S, Heikal AA, Webb WW. Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein. Biophys J. 2002;82(5):2811–25. doi:10.1016/S0006-3495(02)75621-X.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Strupler M, Pena A-M, Hernest M, et al. Second harmonic imaging and scoring of collagen in fibrotic tissues. Opt Express. 2007;15(7):4054–65. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19532649. Accessed 9 Jul 2014.

    Article  CAS  PubMed  Google Scholar 

  52. Pena A-M, Boulesteix T, Dartigalongue T, Schanne-Klein M-C. Chiroptical effects in the second harmonic signal of collagens I and IV. J Am Chem Soc. 2005;127(29):10314–22. doi:10.1021/ja0520969.

    Article  CAS  PubMed  Google Scholar 

  53. Deniset-Besseau A, Duboisset J, Benichou E, Hache F, Brevet P-F, Schanne-Klein M-C. Measurement of the second-order hyperpolarizability of the collagen triple helix and determination of its physical origin. J Phys Chem B. 2009;113(40):13437–45. doi:10.1021/jp9046837.

    Article  CAS  PubMed  Google Scholar 

  54. Bancelin S, Aimé C, Coradin T, Schanne-Klein M-C. In situ three-dimensional monitoring of collagen fibrillogenesis using SHG microscopy. Biomed Opt Express. 2012;3(6):1446–54. doi:10.1364/BOE.3.001446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Strupler M, Hernest M, Fligny C, Martin J-L, Tharaux P-L, Schanne-Klein M-C. Second harmonic microscopy to quantify renal interstitial fibrosis and arterial remodeling. J Biomed Opt. 2008;13(5):054041. doi:10.1117/1.2981830.

    Article  PubMed  Google Scholar 

  56. Sun W, Chang S, Tai DCS, et al. Nonlinear optical microscopy: use of second harmonic generation and two-photon microscopy for automated quantitative liver fibrosis studies. J Biomed Opt. 2008;13(6):064010. doi:10.1117/1.3041159.

    Article  PubMed  Google Scholar 

  57. Provenzano PP, Eliceiri KW, Campbell JM, Inman DR, White JG, Keely PJ. Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Med. 2006;4(1):38. doi:10.1186/1741-7015-4-38.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Nadiarnykh O, LaComb RB, Brewer MA, Campagnola PJ. Alterations of the extracellular matrix in ovarian cancer studied by Second Harmonic Generation imaging microscopy. BMC Cancer. 2010;10:94. doi:10.1186/1471-2407-10-94.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Zhuo S, Chen J, Wu G, et al. Quantitatively linking collagen alteration and epithelial tumor progression by second harmonic generation microscopy. Appl Phys Lett. 2010;96(21):213704. doi:10.1063/1.3441337.

    Article  Google Scholar 

  60. Latour G, Kowalczuk L, Savoldelli M, et al. Hyperglycemia-induced abnormalities in rat and human corneas: the potential of second harmonic generation microscopy. Georgakoudi I, ed. PLoS One. 2012;7(11):e48388. doi:10.1371/journal.pone.0048388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tan H-Y, Sun Y, Lo W, et al. Multiphoton fluorescence and second harmonic generation microscopy for imaging infectious keratitis. J Biomed Opt. 2007;12(2):024013. doi:10.1117/1.2717133.

    Article  PubMed  Google Scholar 

  62. Matteini P, Cicchi R, Ratto F, et al. Thermal transitions of fibrillar collagen unveiled by second-harmonic generation microscopy of corneal stroma. Biophys J. 2012;103(6):1179–87. doi:10.1016/j.bpj.2012.07.055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Donnelly E, Williams RM, Downs SA, Dickinson ME, Baker SP, van der Meulen MCH. Quasistatic and dynamic nanomechanical properties of cancellous bone tissue relate to collagen content and organization. J Mater Res. 2011;21(08):2106–17. doi:10.1557/jmr.2006.0259.

    Article  Google Scholar 

  64. Lacomb R, Nadiarnykh O, Campagnola PJ. Quantitative second harmonic generation imaging of the diseased state osteogenesis imperfecta: experiment and simulation. Biophys J. 2008;94(11):4504–14. doi:10.1529/biophysj.107.114405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Le TT, Langohr IM, Locker MJ, Sturek M, Cheng J-X. Label-free molecular imaging of atherosclerotic lesions using multimodal nonlinear optical microscopy. J Biomed Opt. 2007;12(5):054007. doi:10.1117/1.2795437.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Zoumi A, Lu X, Kassab GS, Tromberg BJ. Imaging coronary artery microstructure using second-harmonic and two-photon fluorescence microscopy. Biophys J. 2004;87(4):2778–86. doi:10.1529/biophysj.104.042887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. König K. Clinical multiphoton tomography. J Biophotonics. 2008;1(1):13–23. doi:10.1002/jbio.200710022.

    Article  PubMed  Google Scholar 

  68. Koehler MJ, Hahn S, Preller A, et al. Morphological skin ageing criteria by multiphoton laser scanning tomography: non-invasive in vivo scoring of the dermal fibre network. Exp Dermatol. 2008;17(6):519–23. doi:10.1111/j.1600-0625.2007.00669.x.

    Article  PubMed  Google Scholar 

  69. Wu S, Li H, Zhang X, Chen WR, Wang Y-X. Character of skin on photo-thermal response and its regeneration process using second-harmonic generation microscopy. Lasers Med Sci. 2014;29(1):141–6. doi:10.1007/s10103-013-1296-3.

    Article  PubMed  Google Scholar 

  70. Yasui T, Takahashi Y, Fukushima S, et al. Observation of dermal collagen fiber in wrinkled skin using polarization-resolved second-harmonic-generation microscopy. Opt Express. 2009;17(2):912–23. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19158906. Accessed 9 Jul 2014.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr Amber Beckley, Mr. Étienne de Montigny, Ms. Chloé Gariépy, Mr. Scott Infusino, Pr. Steven Maturo, and Dr. Shilpa Ojha for fruitful discussions. Pr. Boudoux acknowledges funding from the National Sciences and Engineering Research Council of Canada (NSERC) and the Canadian Foundation for Innovation (CFI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline Boudoux PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Strupler, M., Deterre, R., Goulamhoussen, N., Benboujja, F., Hartnick, C.J., Boudoux, C. (2016). Nonlinear Microscopy of the Vocal Folds. In: Wong, BF., Ilgner, J. (eds) Biomedical Optics in Otorhinolaryngology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1758-7_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1758-7_31

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1757-0

  • Online ISBN: 978-1-4939-1758-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics