Skip to main content

Light Sources, Drugs, and Dosimetry

  • Chapter
  • First Online:
Biomedical Optics in Otorhinolaryngology

Abstract

This chapter will address the technical and physical aspects of the light sources, delivery devices, and photosensitizers used in ENT photodynamic therapy (PDT). Effective delivery of treatment light to the target tissue requires appropriate matching of the light source to the tissue, the sensitizer, and the delivery device. Lasers, light-emitting diodes (LEDs), and lamps are three main conventional categories of light sources used for PDT applications. Tumor location, photosensitizer, and optical dose are determining factors for the choice of the light source for PDT. Head and neck cases present a particular challenge, as the geometry is often minimally accessible to external optical fibers. The delivery device, typically an optical fiber with a directional or diffusing termination, must be chosen to match the target area and the surrounding geometry. Tissue optics also plays a critical role in the distribution of treatment light in tissue. Scattering is the dominant mechanism of light attenuation in tissue, except in highly pigmented tissues and short wavelengths, where absorption is the dominant attenuation process. In this chapter, we summarize the basic physics of drugs, and light sources, and describe the methods available to assess the dose delivered to the patient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Detty M, Gibson S, Wagner S. Current clinical and preclinical photosensitizers for use in photodynamic therapy. J Med Chem. 2004;47:3897–915.

    Article  CAS  PubMed  Google Scholar 

  2. Dougherty TJ, Marcus SL. Photodynamic therapy. Eur J Cancer. 1992;28A:1734–42.

    Article  CAS  PubMed  Google Scholar 

  3. Sharman W, Allen C, van Lier JE. Photodynamic therapeutics: basic principles and clinical applications. Drug Discov Today. 1999;4:507–17.

    Article  CAS  PubMed  Google Scholar 

  4. Oleinick NL, Kessel D, Principles of photodynamic therapy-induced killing of tumor cells. In: Biel MA (ed) Photodynamic Therapy of Diseases of the Head and Neck, Plural Publishing Inc., Abingdon, 2008. p. 19–31.

    Google Scholar 

  5. Zhu TC, Finlay JC. The role of photodynamic therapy (PDT) physics. Med Phys. 2008;35:3127–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Finlay JC, Foster TH. Effect of pigment packaging on diffuse reflectance spectroscopy of samples containing red blood cells. Opt Lett. 2004;29:965–7.

    Article  CAS  PubMed  Google Scholar 

  7. Kou L, Labrie D, Chylek P. Refractive indices of water and ice in the 0.65- to 2.5-μm spectral range. Appl Optics. 1993;32:3531–40.

    Article  CAS  Google Scholar 

  8. Allison RR, Downie GH, Cuenca R, Hu X-H, Childs CJ, Sibata CH. Photosensitizers in clinical PDT. Photodiagnosis Photodyn Ther. 2004;1:27–42.

    Article  CAS  PubMed  Google Scholar 

  9. Wilson BC, Patterson MS. The physics, biophysics and technology of photodynamic therapy. Phys Med Biol. 2008;53:R61–109.

    Article  CAS  PubMed  Google Scholar 

  10. Dougherty TJ, Gomer CJ, Henderson BW, et al. Photodynamic therapy. J Natl Cancer Inst. 1998;90:889–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hopper C. Photodynamic therapy: a clinical reality in the treatment of cancer. Lancet Oncol. 2000;1:212–9.

    Article  CAS  PubMed  Google Scholar 

  12. Tanaka H, Hashimoto K, Yamada I, et al. Interstitial photodynamic therapy with rotating and reciprocating optical fibers. Cancer. 2001;91:1791–6.

    Article  CAS  PubMed  Google Scholar 

  13. Rigual NRN, Thankappan K, Cooper M, et al. Photodynamic therapy for head and neck dysplasia and cancer. Arch Otolaryngol Head Neck Surg. 2009;135:784–8.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Schweitzer VG, Somers ML. PHOTOFRIN-mediated photodynamic therapy for treatment of early stage (Tis-T2N0M0) SqCCa of oral cavity and oropharynx. Lasers Surg Med. 2010;42:1–8.

    Article  PubMed  Google Scholar 

  15. Quon H, Finlay JC, Cengel K, Zhu TC, O’Malley B, Weinstein G. Transoral robotic photodynamic therapy for the oropharynx. Photodiagnosis Photodyn Ther. 2011;8:64–7.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ikeda H, Tobita T, Ohba S, Uehara M, Asahina I. Treatment outcome of Photofrin-based photodynamic therapy for T1 and T2 oral squamous cell carcinoma and dysplasia. Photodiagnosis Photodyn Ther. 2013;10:229–35.

    Article  CAS  PubMed  Google Scholar 

  17. Fan KFM, Hopper C, Speight PM, Buonaccorsi G, MacRobert AJ, Bown SG. Photodynamic therapy using 5-aminolevulinic acid for premalignant and malignant lesions of the oral cavity. Cancer. 1996;78:1374–83.

    Article  CAS  PubMed  Google Scholar 

  18. Sieroń A, Adamek M, Kawczyk-Krupka A, Mazur S, Ilewicz L. Photodynamic therapy (PDT) using topically applied delta-aminolevulinic acid (ALA) for the treatment of oral leukoplakia. J Oral Pathol Med. 2003;32:330–6.

    Article  PubMed  Google Scholar 

  19. Chen H-M, Chen C-T, Yang H, et al. Successful treatment of oral verrucous hyperplasia with topical 5-aminolevulinic acid-mediated photodynamic therapy. Oral Oncol. 2004;40:630–7.

    Article  CAS  PubMed  Google Scholar 

  20. Grossman C, Zhu T, Finlay J, et al. Targeted laryngeal photodynamic therapy with a balloon diffusing light source. Photodiagnosis Photodyn Ther. 2010;7:158–61.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Dilkes MG, DeJode ML, Rowntree-Taylor A, McGilligan JA, Kenyon GS, McKelvie P. m-THPC photodynamic therapy for head and neck cancer. Lasers Surg Med. 1996;11:23–9.

    Article  Google Scholar 

  22. Fan KF, Hopper C, Speight PM, Buonaccorsi GA, Bown SG. Photodynamic therapy using mTHPC for malignant disease in the oral cavity. Int J Cancer. 1997;73(1):25–32.

    Article  CAS  PubMed  Google Scholar 

  23. Copper MP, Triesscheijn M, Tan IB, Ruevekamp MC, Stewart FA. Photodynamic therapy in the treatment of multiple primary tumours in the head and neck, located to the oral cavity and oropharynx. Clin Otolaryngol. 2007;32:185–9.

    Article  CAS  PubMed  Google Scholar 

  24. Jerjes W, Upile T, Hamdoon Z, et al. Photodynamic therapy: the minimally invasive surgical intervention for advanced and/or recurrent tongue base carcinoma. Lasers Surg Med. 2011;43:283–92.

    Article  PubMed  Google Scholar 

  25. Nyst HJ, Wildeman MA, Indrasari SR, et al. Temoporfin mediated photodynamic therapy in patients with local persistent and recurrent nasopharyngeal carcinoma after curative radiotherapy: a feasibility study. Photodiagnosis Photodyn Ther. 2012;9:274–81.

    Article  CAS  PubMed  Google Scholar 

  26. Karakullukcu B, Nyst HJ, van Veen RLP, et al. mTHPC mediated interstitial photodynamic therapy of recurrent nonmetastatic base of tongue cancers: development of a new method. Head Neck. 2012;34:1597–606.

    Article  PubMed  Google Scholar 

  27. Karakullukcu B, van Veen RLP, Aans JB, et al. MR and CT based treatment planning for mTHPC mediated interstitial photodynamic therapy of head and neck cancer: description of the method. Lasers Surg Med. 2013;45:517–23.

    PubMed  Google Scholar 

  28. Story W, Sultan AA, Bottini G, Vaz F, Lee G, Hopper C. Strategies of airway management for head and neck photo-dynamic therapy. Lasers Surg Med. 2013;45:370–6.

    Article  PubMed  Google Scholar 

  29. de Visscher SAHJ, Melchers LJ, Dijkstra PU, et al. mTHPC-mediated photodynamic therapy of early stage oral squamous cell carcinoma: a comparison to surgical treatment. Ann Surg Oncol. 2013;20:3076–82.

    Article  PubMed  Google Scholar 

  30. de Visscher SAHJ, Dijkstra PU, Tan IB, Roodenburg JLN, Witjes MJH. mTHPC mediated photodynamic therapy (PDT) of squamous cell carcinoma in the head and neck: a systematic review. Oral Oncol. 2013;49:192–210.

    Article  PubMed  CAS  Google Scholar 

  31. Rigual NR, Shafirstein G, Frustino J, et al. Adjuvant intraoperative photodynamic therapy in head and neck cancer. JAMA Otolaryngol Head Neck Surg. 2013;139:706–11.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Schweitzer VG. Photodynamic therapy for treatment of head and neck cancer. Otolaryngol Head Neck Surg. 1990;102:225–32.

    CAS  PubMed  Google Scholar 

  33. Biel MA. Photodynamic therapy in head and neck cancer. Curr Oncol Rep. 2002;4(1):87–96.

    Article  PubMed  Google Scholar 

  34. Dolmans DEGJ, Fukumura D, Jain RK. Photodynamic therapy for cancer. Nat Rev Cancer. 2003;3:380–7.

    Article  CAS  PubMed  Google Scholar 

  35. Brown SB, Brown EA, Walker I. The present and future role of photodynamic therapy in cancer treatment. Lancet Oncol. 2004;5:497–508.

    Article  CAS  PubMed  Google Scholar 

  36. Huang Z. A review of progress in clinical photodynamic therapy. Technol Cancer Res Treat. 2005;4:283–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Biel MA (ed), Photodynamic Therapy of Diseases of the Head and Neck, Plural Publishing Inc., Abingdon, 2008.

    Google Scholar 

  38. Biel MA, Photodynamic therapy of head and neck cancers. In: Gomer CJ (Ed) Photodynamic Therapy, Vol. 635 of the series Methods in Molecular Biology, Springer, New York, 2010. p. 281–93.

    Google Scholar 

  39. Quon H, Grossman CE, Finlay JC, et al. Photodynamic therapy in the management of pre-malignant head and neck mucosal dysplasia and microinvasive carcinoma. Photodiagnosis Photodyn Ther. 2011;8:75–85.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Jerjes W, Hamdoon Z, Hopper C. Photodynamic therapy in the management of potentially malignant and malignant oral disorders. Head Neck Oncol. 2012;4:1–7.

    Article  Google Scholar 

  41. Green B, Cobb ARM, Hopper C. Photodynamic therapy in the management of lesions of the head and neck. Br J Oral Maxillofac Surg. 2013;51:283–7.

    Article  PubMed  Google Scholar 

  42. Brancaleon L, Moseley H. Laser and non-laser light sources for photodynamic therapy. Lasers Med Sci. 2002;17:173–86.

    Article  CAS  PubMed  Google Scholar 

  43. Mang TS. Lasers and light sources for PDT: past, present and future. Photodiagnosis Photodyn Ther. 2004;1:43–8.

    Article  PubMed  Google Scholar 

  44. Schäfer FP. Dye lasers. Berlin: Springer; 1990.

    Google Scholar 

  45. Wilson BC. Photodynamic therapy: light delivery and dosage for second-generation photosensitizers. Ciba Found Symp. 1989;146:60–73.

    CAS  PubMed  Google Scholar 

  46. Wilson B, Patterson M. The physics, biophysics and technology of photodynamic therapy. Phys Med Biol. 2008;53:61–109.

    Article  CAS  Google Scholar 

  47. Yu C-H, Lin H-P, Chen H-M, Yang H, Wang Y-P, Chiang C-P. Comparison of clinical outcomes of oral erythroleukoplakia treated with photodynamic therapy using either light-emitting diode or laser light. Lasers Surg Med. 2009;41:628–33.

    Article  PubMed  Google Scholar 

  48. Tsai J-C, Chiang C-P, Chen H-M, et al. Photodynamic therapy of oral dysplasia with topical 5-aminolevulinic acid and light-emitting diode array. Lasers Surg Med. 2004;34:18–24.

    Article  PubMed  Google Scholar 

  49. Schmidt MH, Bajic DM, Reichert KW, Martin TS, Meyer GA, Whelan HT. Light-emitting diodes as a light source for intraoperative photodynamic therapy. Neurosurgery. 1996;38:552–6.

    CAS  PubMed  Google Scholar 

  50. Chen J, Keltner L, Christophersen J, et al. New technology for deep light distribution in tissue for phototherapy. Cancer J. 2002;8:154–63.

    Article  PubMed  Google Scholar 

  51. Lustig RA, Vogl TJ, Fromm D, et al. A multicenter phase I safety study of intratumoral photoactivation of talaporfin sodium in patients with refractory solid tumors. Cancer. 2003;98:1767–71.

    Article  CAS  PubMed  Google Scholar 

  52. Diamond I, McDonagh AF, Wilson CB, Granelli SG, Nielsen S, Jaenicke R. Photodynamic therapy of malignant tumors. Lancet. 1972;2:1175–7.

    Article  CAS  PubMed  Google Scholar 

  53. Wilson BC, Patterson MS. The physics of photodynamic therapy. Phys Med Biol. 1986;31:327–60.

    Article  CAS  PubMed  Google Scholar 

  54. Morton CA, McKenna KE, Rhodes LE. Guidelines for topical photodynamic therapy: update. Br J Dermatol. 2008;159:1245–66.

    Article  CAS  PubMed  Google Scholar 

  55. Darafsheh A. Optical super-resolution and periodical focusing effects by dielectric microspheres. PhD dissertation, University of North Carolina at Charlotte; 2013.

    Google Scholar 

  56. Rendon A, Weersink R, Lilge L. Towards conformal light delivery using tailored cylindrical diffusers: attainable light dose distributions. Phys Med Biol. 2006;51:5967–75.

    Article  PubMed  Google Scholar 

  57. Panjehpour M, Overholt BF, Photodynamic therapy for Barrett’s esophagus. In: Mönkemüller K, Wilcox CM, Muñoz-Navas M (eds) Interventional and Therapeutic Gastrointestinal Endoscopy. Front Gastrointest Res. vol 27, Karger, Basel, 2010, p. 128–39.

    Google Scholar 

  58. Dwyer PJ, White WM, Fabian RL, Anderson RR. Optical integrating balloon device for photodynamic therapy. Lasers Surg Med. 2000;26:58–66.

    Article  CAS  PubMed  Google Scholar 

  59. Nyst HJ, van Veen RLP, Tan IB, et al. Performance of a dedicated light delivery and dosimetry device for photodynamic therapy of nasopharyngeal carcinoma: phantom and volunteer experiments. Lasers Surg Med. 2007;39:647–53.

    Article  CAS  PubMed  Google Scholar 

  60. Zhu TC, Bonnerup C, Colussi VC, et al. Absolute calibration of optical power for PDT: report of AAPM TG140. Med Phys. 2013;40:081501.

    Article  PubMed  Google Scholar 

  61. Vulcan TG, Zhu TC, Rodriguez C, et al. Comparison between isotropic and nonisotropic dosimetry systems during intraperitoneal photodynamic therapy. Lasers Surg Med. 2000;26:292–301.

    Article  CAS  PubMed  Google Scholar 

  62. Marijnissen JPA, Star WM. Calibration of isotropic light dosimetry probes based on scattering bulbs in clear media. Phys Med Biol. 1996;41:1191–208.

    Article  CAS  PubMed  Google Scholar 

  63. Dimofte A, Finlay JC, Zhu TC. A method determination of the absorption and scattering properties interstitially in turbid media. Phys Med Biol. 2005;50:2291–311.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Wilson B, Patterson M, Lilge L. Implicit and explicit dosimetry in photodynamic therapy: a new paradigm. Lasers Med Sci. 1997;12:182–99.

    Article  CAS  PubMed  Google Scholar 

  65. Sharikova AV, Finlay JC, Liang X, Zhu TC, PDT dose dosimetry for pleural photodynamic therapy, Proc. SPIE, Vol. 8568, 856817, 2013.

    Google Scholar 

  66. Finlay JC, Zhu TC, Dimofte A, et al. Interstitial fluorescence spectroscopy in the human prostate during motexafin lutetium-mediated photodynamic therapy. Photochem Photobiol. 2006;82:1270–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Soto-Thompson M, Johansson A, Johansson T, et al. Clinical system for interstitial photodynamic therapy with combined on-line dosimetry measurements. Appl Optics. 2005;44:4023–31.

    Article  Google Scholar 

  68. Wang KK-H, Finlay JC, Busch TM, Hahn S, Zhu TC. Explicit dosimetry for photodynamic therapy: macroscopic singlet oxygen modeling. J Biophotonics. 2010;3:304–18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Hu XH, Feng Y, Lu JQ, et al. Modeling of a type II photofrin-mediated photodynamic therapy process in a heterogeneous tissue phantom. Photochem Photobiol. 2005;81(6):1460–8.

    Article  CAS  PubMed  Google Scholar 

  70. Georgakoudi I, Foster TH. Singlet oxygen- versus nonsinglet oxygen-mediated mechanisms of sensitizer photobleaching and their effects on photodynamic dosimetry. Photochem Photobiol. 1998;67:612–25.

    CAS  PubMed  Google Scholar 

  71. Georgakoudi I, Nichols MG, Foster TH. The mechanism of photofrin photobleaching and its consequences for photodynamic dosimetry. Photochem Photobiol. 1997;65:135–44.

    Article  CAS  PubMed  Google Scholar 

  72. Robinson DJ, de Bruijn HS, de Wolf WJ, Sterenborg HJ, Star WM. Topical 5-aminolevulinic acid-photodynamic therapy of hairless mouse skin using two-fold illumination schemes: PpIX fluorescence kinetics, photobleaching and biological effect. Photochem Photobiol. 2000;72(6):794–802.

    Article  CAS  PubMed  Google Scholar 

  73. Robinson DJ, de Bruijn HS, van der Veen N, Stringer MR, Brown SB, Star WM. Fluorescence photobleaching of ALA-induced protoporphyrin IX during photodynamic therapy of normal hairless mouse skin: the effect of light dose and irradiance and the resulting biological effect. Photochem Photobiol. 1998;67(1):140–9.

    Article  CAS  PubMed  Google Scholar 

  74. Cottrell WJ, Paquette AD, Keymel KR, Foster TH, Oseroff AR. Irradiance-dependent photobleaching and pain in δ-aminolevulinic acid-photodynamic therapy of superficial basal cell carcinomas. Clin Cancer Res. 2008;14(14):4475–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Finlay JC, Mitra S, Patterson MS, Foster TH. Photobleaching kinetics of Photofrin in vivo and in multicell tumour spheroids indicate two simultaneous bleaching mechanisms. Phys Med Biol. 2004;49:4837–60.

    Article  CAS  PubMed  Google Scholar 

  76. Baran TM, Foster TH. Fluence rate-dependent photobleaching of intratumorally administered Pc 4 does not predict tumor growth delay. Photochem Photobiol. 2012;88:1273–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Finlay JC, Mitra S, Foster TH. In vivo mTHPC photobleaching in normal rat skin exhibits unique irradiance-dependent features. Photochem Photobiol. 2002;75:282–8.

    Article  CAS  PubMed  Google Scholar 

  78. Derosa MC, Crutchley RJ. Photosensitized singlet oxygen and its applications. Coord Chem Rev. 2002;233–234:351–71.

    Article  Google Scholar 

  79. Castano AP, Demidova TN, Hamblin MR. Mechanisms in photodynamic therapy: part one—photosensitizers, photochemistry and cellular localization. Photodiagnosis Photodyn Ther. 2004;1:279–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sterenborg H, de Wolf J, Koning M, Kruijt B, van den Heuvel A, Robinson D. Phosphorescence-fluorescence ratio imaging for monitoring the oxygen status during photodynamic therapy. Opt Express. 2004;12:1873–8.

    Article  CAS  PubMed  Google Scholar 

  81. Mitra S, Foster TH. Photochemical oxygen consumption sensitized by a porphyrin phosphorescent probe in two model systems. Biophys J. 2000;78:2597–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Arnold SJ, Kubo M, Ogryzlo EA. Relaxation and reactivity of singlet oxygen. Adv Chem Ser. 1968;77(77):133–42.

    Article  Google Scholar 

  83. Merkel PB, Kearns DR. Remarkable solvent effects on the lifetime of 1Δ g oxygen. J Am Chem Soc. 1972;94:1029–30.

    Google Scholar 

  84. Moan J, BERG K. The photodegradation of porphyrins in cells can be used to estimate the lifetime of singlet oxygen. Photochem Photobiol. 1991;53:549–53.

    Article  CAS  PubMed  Google Scholar 

  85. Skovsen E, Snyder JW, Lambert JDC, Ogilby PR. Lifetime and diffusion of singlet oxygen in a cell. J Phys Chem B. 2005;109:8570–3.

    Article  CAS  PubMed  Google Scholar 

  86. Georgakoudi I, Foster TH. Effects of the subcellular redistribution of two nile blue derivatives on photodynamic oxygen consumption. Photochem Photobiol. 1998;68(1):115–22.

    Article  CAS  PubMed  Google Scholar 

  87. Berg K, Selbo PK, Prasmickaite L, et al. Photochemical internalization: a novel technology for delivery of macromolecules into cytosol. Cancer Res. 1999;59(6):1180–3.

    CAS  PubMed  Google Scholar 

  88. Weersink RA, Bogaards A, Gertner M, et al. Techniques for delivery and monitoring of TOOKAD (WST09)-mediated photodynamic therapy of the prostate: clinical experience and practicalities. J Photochem Photobiol B. 2005;79:211–22.

    Article  CAS  PubMed  Google Scholar 

  89. Schmidt-Erfurth U, Hasan T. Mechanisms of action of photodynamic therapy with verteporfin for the treatment of age-related macular degeneration. Surv Ophthalmol. 2000;45(3):195–214.

    Article  CAS  PubMed  Google Scholar 

  90. Chen B, Pogue BW, Hoopes PJ, Hasan T. Combining vascular and cellular targeting regimens enhances the efficacy of photodynamic therapy. Int J Radiat Oncol Biol Phys. 2005;61(4):1216–26.

    Article  CAS  PubMed  Google Scholar 

  91. Yu G, Durduran T, Zhou C, et al. Real-time in situ monitoring of human prostate photodynamic therapy with diffuse light. Photochem Photobiol. 2006;82:1279–84.

    Article  CAS  PubMed  Google Scholar 

  92. Mesquita RC, Han SW, Miller J, et al. Tumor blood flow differs between mouse strains: consequences for vasoresponse to photodynamic therapy. PLoS One. 2012;7:e37322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Henderson BW, Busch TM, Snyder JW. Fluence rate as a modulator of PDT mechanisms. Lasers Surg Med. 2006;38:489–93.

    Article  PubMed  Google Scholar 

  94. Ferrari M. Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer. 2005;5:161–71.

    Article  CAS  PubMed  Google Scholar 

  95. Ryu JH, Koo H, Sun I-C, et al. Tumor-targeting multi-functional nanoparticles for theragnosis : new paradigm for cancer therapy. Adv Drug Deliv Rev. 2012;64:1447–58.

    Article  CAS  PubMed  Google Scholar 

  96. Roy I, Ohulchanskyy TY, Pudavar HE, et al. Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: a novel drug-carrier system for photodynamic therapy. J Am Chem Soc. 2003;125:7860–5.

    Article  CAS  PubMed  Google Scholar 

  97. Yan F, Kopelman R. The embedding of meta-tetra(hydroxyphenyl)-chlorin into silica nanoparticle platforms for photodynamic therapy and their singlet oxygen production and pH-dependent optical properties. Photochem Photobiol. 2003;78:587–91.

    Article  CAS  PubMed  Google Scholar 

  98. Bakalova R, Ohba H, Zhelev Z, Ishikawa M, Baba Y. Quantum dots as photosensitizers? Nat Biotechnol. 2004;22:1360–1.

    Article  CAS  PubMed  Google Scholar 

  99. Weng J, Ren J. Luminescent quantum dots: a very attractive and promising tool in biomedicine. Curr Med Chem. 2006;13:897–909.

    Article  CAS  PubMed  Google Scholar 

  100. Samia ACS, Dayal S, Burda C. Quantum dot-based energy transfer: perspectives and potential for applications in photodynamic therapy. Photochem Photobiol. 2006;82:617–25.

    Article  CAS  PubMed  Google Scholar 

  101. Schnitzhofer GM, Krammer B. Photodynamic treatment and radiotherapy: combined effect on the colony-forming ability of V79 Chinese hamster fibroblasts. Cancer Lett. 1996;108:93–9.

    Article  CAS  PubMed  Google Scholar 

  102. Luksiene Z, Kalvelyte A, Supino R. On the combination of photodynamic therapy with ionizing radiation. J Photochem Photobiol B. 1999;52:35–42.

    Article  CAS  PubMed  Google Scholar 

  103. Allman R, Cowburn P, Mason M. Effect of photodynamic therapy in combination with ionizing radiation on human squamous cell carcinoma cell lines of the head and neck. Br J Cancer. 2000;83:655–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Madsen SJ, Sun C-H, Tromberg BJ, Yeh AT, Sanchez R, Hirschberg H. Effects of combined photodynamic therapy and ionizing radiation on human glioma spheroids. Photochem Photobiol. 2002;76:411–6.

    Article  CAS  PubMed  Google Scholar 

  105. Pogue BW, O’Hara JA, Demidenko E, et al. Photodynamic therapy with verteporfin in the radiation-induced fibrosarcoma-1 tumor causes enhanced radiation sensitivity. Cancer Res. 2003;63:1025–33.

    CAS  PubMed  Google Scholar 

  106. Chen W, Zhang J. Using nanoparticles to enable simultaneous radiation and photodynamic therapies for cancer treatment. J Nanosci Nanotechnol. 2006;6:1159–66.

    Article  CAS  PubMed  Google Scholar 

  107. Liu Y, Chen W, Wang S, Joly AG. Investigation of water-soluble x-ray luminescence nanoparticles for photodynamic activation. Appl Phys Lett. 2008;92:043901.

    Article  CAS  Google Scholar 

  108. Morgan NY, Kramer-Marek G, Smith PD, Camphausen K, Capala J. Nanoscintillator conjugates as photodynamic therapy-based radiosensitizers : calculation of required physical parameters. Radiat Res. 2009;171:236–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Čerenkov PA. Visible emission of clean liquids by action of γ radiation. Comptes Rendus (Dokl) Acad Sci URSS. 1934;2:451–4.

    Google Scholar 

  110. Čerenkov P. Visible radiation produced by electrons moving in a medium with velocities exceeding that of light. Phys Rev. 1937;52(4):378–9.

    Article  Google Scholar 

  111. Frank I, Tamm I. Coherent visible radiation of fast electrons passing through matter. Comptes Rendus (Dokl) Acad Sci URSS. 1937;14:109–14.

    CAS  Google Scholar 

  112. Jelley JV. Čerenkov radiation and its applications. New York: Pergamon; 1958.

    Google Scholar 

  113. Axelsson J, Davis SC, Gladstone DJ, Pogue BW. Cerenkov emission induced by external beam radiation stimulates molecular fluorescence. Med Phys. 2011;38:4127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Mathews MS, Angell-Petersen E, Sanchez R, et al. The effects of ultra low fluence rate single and repetitive photodynamic therapy on glioma spheroids. Lasers Surg Med. 2009;41:578–84.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Theodossiou T, Hothersall JS, Woods EA, Okkenhaug K, Jacobson J, Macrobert AJ. Firefly luciferin-activated rose bengal: in vitro photodynamic therapy by intracellular chemiluminescence in Transgenic NIH 3T3 Cells. Cancer Lett. 2003;63:1818–21.

    CAS  Google Scholar 

  116. Bown SG. Photodynamic therapy for photochemists. Philos Trans R Soc A. 2013;371(1995):Article No. UNSP20120371.

    Article  CAS  Google Scholar 

  117. Zelickson B, Counters J, Coles C, Selim M. Light patch: preliminary report of a novel form of blue light delivery for the treatment of actinic keratosis. Dermatol Surg. 2005;31:375–8.

    Article  CAS  PubMed  Google Scholar 

  118. Smits T, Moor ACE. New aspects in photodynamic therapy of actinic keratoses. J Photochem Photobiol B. 2009;96:159–69.

    Article  CAS  PubMed  Google Scholar 

  119. Selm B, Rothmaier M, Camenzind M, Khan T, Walt H. Novel flexible light diffuser and irradiation properties for photodynamic therapy. J Biomed Opt. 2007;12:034024.

    Article  PubMed  Google Scholar 

  120. Rothmaier M, Selm B, Spichtig S, Haensse D, Wolf M. Photonic textiles for pulse oximetry. Opt Express. 2008;16:12973–86.

    Article  CAS  PubMed  Google Scholar 

  121. Cochrane C, Mordon SR, Lesage JC, Koncar V. New design of textile light diffusers for photodynamic therapy. Mater Sci Eng C Mater Biol Appl. 2013;33:1170–5.

    Article  CAS  PubMed  Google Scholar 

  122. Hu Y, Wang K, Zhu TC. A light blanket for intraoperative photodynamic therapy. Proc SPIE. 2009;7380:73801W.

    Article  Google Scholar 

  123. Liang X, Kundu P, Finlay J, Goodwin M, Zhu TC, Maximizing fluence rate and field uniformity of light blanket for intraoperative PDT, Proc. SPIE, Vol. 8210, 82100X, 2012.

    Google Scholar 

  124. Ghogare AA, Rizvi I, Hasan T, Greer A. “Pointsource” delivery of a photosensitizer drug and singlet oxygen: eradication of glioma cells in vitro. Photochem Photobiol. 2014;90(5):1119–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Bhawalkar JD, Kumar ND, Zhao CF, Prasad PN. Two-photon photodynamic therapy. J Clin Laser Med Surg. 1997;15(5):201–4.

    CAS  PubMed  Google Scholar 

  126. Denk W, Strickler JH, Webb WW. Two-photon laser scanning fluorescence microscopy. Science. 1990;248(4951):73–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jarod C. Finlay Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Finlay, J.C., Darafsheh, A. (2016). Light Sources, Drugs, and Dosimetry. In: Wong, BF., Ilgner, J. (eds) Biomedical Optics in Otorhinolaryngology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1758-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1758-7_19

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1757-0

  • Online ISBN: 978-1-4939-1758-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics