Skip to main content

Emerging Role of Fibrocytes in the Pathogenesis of Thyroid Eye Disease

  • Chapter
  • First Online:
Thyroid Eye Disease
  • 1469 Accesses

Abstract

CD34+ fibrocytes are monocyte lineage progenitor cells derived from bone marrow. They have been implicated in several examples of experimental tissue injury and remodeling. In this chapter, I attempt to present the current evidence that these fibrocytes might play an important pathogenic role in thyroid-associated ophthalmopathy (TAO). TAO, an autoimmune process closely related to Graves’ disease, is a process where the orbital tissues become inflamed, expand, and accumulate hyaluronan. The active phase of the disease culminates in extensive tissue remodeling and fibrosis. My colleagues and I have reported recently that circulating fibrocytes appear to infiltrate the orbit in TAO and express several proteins previously thought to be expressed only in the thyroid gland. We hypothesize that the promiscuous expression of these thyroid proteins by fibrocytes might underlie the localized immune reactivity in TAO. I suggest further that this new insight, if correct, might constitute the basis for antigen-specific therapy development for this vexing clinical condition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Werner SC, Ingbar SH, Braverman LE, Utiger RD. Werner and Ingbar’s the thyroid: a fundamental and clinical text. 7th ed. Philadelphia: Lippincott-Raven; 1996. p. 1124.

    Google Scholar 

  2. Bahn RS. Graves’ ophthalmopathy. N Engl J Med. 2010;362:726–38.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Wang Y, Smith TJ. Current concepts in the molecular pathogenesis of thyroid-associated ophthalmopathy. Invest Ophthalmol Vis Sci. 2014;55:1735–48.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Douglas RS, Gupta S. The pathophysiology of thyroid eye disease: implications for immunotherapy. Curr Opin Ophthalmol. 2011;22:385–90.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Kazim M, Goldberg RA, Smith TJ. Insights into the pathogenesis of thyroid-associated orbitopathy: evolving rationale for therapy. Arch Ophthalmol. 2002;120:380–6.

    Article  CAS  PubMed  Google Scholar 

  6. Prabhakar BS, Bahn RS, Smith TJ. Current perspective on the pathogenesis of Graves’ disease and ophthalmopathy. Endocr Rev. 2003;24:802–35.

    Article  CAS  PubMed  Google Scholar 

  7. Tao TW, Cheng PJ, Pham H, et al. Monoclonal antithyroglobulin antibodies derived from immunizations of mice with human eye muscle and thyroid membranes. J Clin Endocrinol Metab. 1986;63:577–82.

    Article  CAS  PubMed  Google Scholar 

  8. Marinò M, Lisi S, Pinchera A, et al. Identification of thyroglobulin in orbital tissues of patients with thyroid-associated ophthalmopathy. Thyroid. 2001;11:177–85.

    Article  PubMed  Google Scholar 

  9. Feliciello A, Porcellini A, Ciullo I, et al. Expression of thyrotropin-receptor mRNA in healthy and Graves’ disease retro-orbital tissue. Lancet. 1993;342:337–8.

    Article  CAS  PubMed  Google Scholar 

  10. Heufelder AE, Dutton CM, Sarkar G, et al. Detection of TSH receptor RNA in cultured fibroblasts from patients with Graves’ ophthalmopathy and pretibial dermopathy. Thyroid. 1993;3:297–300.

    Article  CAS  PubMed  Google Scholar 

  11. Szkudlinski MW, Fremont V, Ronin C, et al. Thyroid-stimulating hormone and thyroid-stimulating hormone receptor structure-function relationships. Physiol Rev. 2002;82:473–502.

    CAS  PubMed  Google Scholar 

  12. Wiersinga WM. Autoimmunity in Graves’ ophthalmopathy: the result of an unfortunate marriage between TSH receptors and IGF-1 receptors? J Clin Endocrinol Metab. 2011;96:2386–94.

    Article  CAS  PubMed  Google Scholar 

  13. Parmentier M, Libert F, Maenhaut C, et al. Molecular cloning of the thyrotropin receptor. Science. 1989;246:1620–2.

    Article  CAS  PubMed  Google Scholar 

  14. Smith TJ. Insulin-like growth factor-I regulation of immune function: a potential therapeutic target in autoimmune diseases? Pharmacol Rev. 2010;62:199–236.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Tramontano D, Cushing GW, Moses AC, et al. Insulin-like growth factor-I stimulates the growth of rat thyroid cells in culture and synergizes the stimulation of DNA synthesis induced by TSH and Graves’-IgG. Endocrinology. 1986;119:940–2.

    Article  CAS  PubMed  Google Scholar 

  16. Tsui S, Naik V, Hoa N, et al. Evidence for an association between thyroid-stimulating hormone and insulin-like growth factor 1 receptors: a tale of two antigens implicated in Graves’ disease. J Immunol. 2008;181:4397–405.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Chen H, Mester T, Raychaudhuri N, et al. Teprotumumab, an IGF-1R blocking monoclonal antibody inhibits TSH and IGF-1 action in fibrocytes. J Clin Endocrinol Metab. 2014;99:E1635–40.

    Google Scholar 

  18. Weightman DR, Perros P, Sherif IH, et al. Autoantibodies to IGF-1 binding sites in thyroid associated ophthalmopathy. Autoimmunity. 1993;16:251–7.

    Article  CAS  PubMed  Google Scholar 

  19. Pritchard J, Horst N, Cruikshank W, Smith TJ. Igs from patients with Graves’ disease induce the expression of T cell chemoattractants in their fibroblasts. J Immunol. 2002;168:942–50.

    Article  CAS  PubMed  Google Scholar 

  20. Pritchard J, Han R, Horst N, Cruikshank WW, Smith TJ. Immunoglobulin activation of T cell chemoattractant expression in fibroblasts from patients with Graves’ disease is mediated through the insulin-like growth factor I receptor pathway. J Immunol. 2003;170:6348–54.

    Article  CAS  PubMed  Google Scholar 

  21. Douglas RS, Gianoukakis AG, Kamat S, Smith TJ. Aberrant expression of the insulin-like growth factor-1 receptor by T cells from patients with Graves’ disease may carry functional consequences for disease pathogenesis. J Immunol. 2007;178:3281–7.

    Article  CAS  PubMed  Google Scholar 

  22. Douglas RS, Naik V, Hwang CJ, et al. B cells from patients with Graves’ disease aberrantly express the IGF-1 receptor: implications for disease pathogenesis. J Immunol. 2008;181:5768–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Douglas RS, Brix TH, Hwang CJ, et al. Divergent frequencies of IGF-I receptor-expressing blood lymphocytes in monozygotic twin pairs discordant for Graves’ disease: evidence for a phentotypic signature ascribable to nongenetic factors. J Clin Endocrinol Metab. 2009;95:1797–802.

    Article  Google Scholar 

  24. Minich WB, Dehina N, Welsink T, et al. Autoantibodies to the IGF1 receptor in Graves’ orbitopathy. J Clin Endocrinol Metab. 2013;98:752–60.

    Article  CAS  PubMed  Google Scholar 

  25. Varewijck AJ, Boelen A, Lamberts SW. Circulating IgGs may modulate IGF-I receptor stimulating activity in a subset of patients with Graves’ ophthalmopathy. J Clin Endocrinol Metab. 2013;98:769–76.

    Article  CAS  PubMed  Google Scholar 

  26. Smith TJ. Is IGF-I receptor a target for autoantibody generation in Graves’ disease? J Clin Endocrinol Metab. 2013;98:515–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Smith TJ, Hoa N. Immunoglobulins from patients with Graves’ disease induce hyaluronan synthesis in their orbital fibroblasts through the self-antigen, IGF-1 receptor. J Clin Endocrinol Metab. 2004;89:5076–80.

    Article  CAS  PubMed  Google Scholar 

  28. Smith TJ, Sempowski GD, Wang HS, et al. Evidence for cellular heterogeneity in primary cultures of human orbital fibroblasts. J Clin Endocrinol Metab. 1995;80:2620–5.

    CAS  PubMed  Google Scholar 

  29. Smith TJ, Koumas L, Gagnon A, et al. Orbital fibroblast heterogeneity may determine the clinical presentation of thyroid-associated ophthalmopathy. J Clin Endocrinol Metab. 2002;87:385–92.

    Article  CAS  PubMed  Google Scholar 

  30. Henrikson RC, Smith TJ. Ultrastructure of cultured human orbital fibroblasts. Cell Tissue Res. 1994;278:629–31.

    Article  CAS  PubMed  Google Scholar 

  31. Smith TJ, Wang HS, Hogg MG, et al. Prostaglandin E2 elicits a morphological change in cultured orbital fibroblasts from patients with Graves ophthalmopathy. Proc Natl Acad Sci U S A. 1994;91:5094–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Cao HJ, Wang HS, Zhang Y, et al. Activation of human orbital fibroblasts through CD40 engagement results in a dramatic induction of hyaluronan synthesis and prostaglandin endoperoxide H synthase-2 expression. Insights into potential pathogenic mechanisms of thyroid-associated ophthalmopathy. J Biol Chem. 1998;273:29615–25.

    Article  CAS  PubMed  Google Scholar 

  33. Hwang CJ, Afifiyan N, Sand D, et al. Orbital fibroblasts from patients with thyroid-associated ophthalmopathy overexpress CD40: CD154 hyperinduces IL-6, IL-8, and MCP-1. Invest Ophthalmol Vis Sci. 2009;50:2262–8.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Wang HS, Cao HJ, Winn VD, et al. Leukoregulin induction of prostaglandin-endoperoxide H synthase-2 in human orbital fibroblasts. An in vitro model for connective tissue inflammation. J Biol Chem. 1996;271:22718–28.

    Article  CAS  PubMed  Google Scholar 

  35. Han R, Tsui S, Smith TJ. Up-regulation of prostaglandin E2 synthesis by interleukin-1beta in human orbital fibroblasts involves coordinate induction of prostaglandin-endoperoxide H synthase-2 and glutathione-dependent prostaglandin E2 synthase expression. J Biol Chem. 2002;277:16355–64.

    Article  CAS  PubMed  Google Scholar 

  36. Smith TJ, Wang HS, Evans CH. Leukoregulin is a potent inducer of hyaluronan synthesis in cultured human orbital fibroblasts. Am J Physiol. 1995;268:C382–8.

    CAS  PubMed  Google Scholar 

  37. Kaback LA, Smith TJ. Expression of hyaluronan synthase messenger ribonucleic acids and their induction by interleukin-1beta in human orbital fibroblasts: potential insight into the molecular pathogenesis of thyroid-associated ophthalmopathy. J Clin Endocrinol Metab. 1999;84:4079–84.

    CAS  PubMed  Google Scholar 

  38. Spicer AP, Kaback LA, Smith TJ, et al. Molecular cloning and characterization of the human and mouse UDP-glucose dehydrogenase genes. J Biol Chem. 1998;273:25117–24.

    Article  CAS  PubMed  Google Scholar 

  39. Li B, Smith TJ. Divergent expression of IL-1 receptor antagonists in CD34+ fibrocytes and orbital fibroblasts in thyroid-associated ophthalmopathy: contribution of fibrocytes to orbital inflammation. J Clin Endocrinol Metab. 2013;98:2783–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Li B, Smith TJ. Regulation of IL-1 receptor antagonist by TSH in fibrocytes and orbital fibroblasts. J Clin Endocrinol Metab. 2014;99:E625–33.

    Article  CAS  PubMed  Google Scholar 

  41. Li B, Smith TJ. PI3K/AKT pathway mediates induction of IL-1RA by TSH in fibrocytes: modulation by PTEN. J Clin Endocrinol Metab. 2014;99:3363–72.

    Google Scholar 

  42. Bucala R, Spiegel LA, Chesney J, et al. Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol Med. 1994;1:71–81.

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Douglas RS, Afifiyan NF, Hwang CJ, et al. Increased generation of fibrocytes in thyroid-associated ophthalmopathy. J Clin Endocrinol Metab. 2010;95:430–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Gillespie EF, Papageorgiou KI, Fernando R, et al. Increased expression of TSH receptor by fibrocytes in thyroid-associated ophthalmopathy leads to chemokine production. J Clin Endocrinol Metab. 2012;97:E740–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Raychaudhuri N, Fernando R, Smith TJ. Thyrotropin regulates IL-6 expression in CD34+ fibrocytes: clear delineation of its cAMP-independent actions. PLoS One. 2013;8:e75100.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Fernando R, Atkins S, Raychaudhuri N, et al. Human fibrocytes coexpress thyroglobulin and thyrotropin receptor. Proc Natl Acad Sci. 2012;109:7427–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Fernando R, Lu Y, Atkins SJ, et al. Expression of thyrotropin receptor, thyroglobulin, sodium-iodide symporter, and thyroperoxidase by fibrocytes depends on AIRE. J Clin Endocrinol Metab. 2014;155:E1236–44.

    Article  Google Scholar 

  48. Fernando R, Vonberg A, Atkins SJ, et al. Human fibrocytes express multiple antigens associated with autoimmune endocrine disease. J Clin Endocrinol Metab. 2014;99:E796–803.

    Article  CAS  PubMed  Google Scholar 

  49. Chesney J, Bacher M, Bender A, et al. The peripheral blood fibrocyte is a potent antigen-presenting cell capable of priming naïve T cells in situ. Proc Natl Acad Sci U S A. 1997;94:6307–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The valuable assistance of Yao Wang in identifying reference material for this chapter is gratefully acknowledged as is the great help provided by Ms. Justyna Piernicka. This work was supported in part by National Institutes of Health grants EY008976, EY011708, DK063121, Core Center for Vision grant EY007003 from the National Eye Institute, an unrestricted grant from Research to Prevent Blindness, and the Bell Charitable Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terry J. Smith M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Smith, T.J. (2015). Emerging Role of Fibrocytes in the Pathogenesis of Thyroid Eye Disease. In: Douglas, R., McCoy, A., Gupta, S. (eds) Thyroid Eye Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1746-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1746-4_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1745-7

  • Online ISBN: 978-1-4939-1746-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics