Skip to main content

Computational Analysis of Bone Fracture

  • Chapter
  • First Online:
Accidental Injury

Abstract

Age-related non-traumatic fractures are a major public health problem with fracture of the proximal femur resulting in significant patient mortality. Currently, the clinical gold standard for assessing an individual’s fracture risk is dual-energy x-ray absorptiometry (DEXA). Although DXA-based bone mineral density (BMD) measurements have been shown to correlate with fracture risk, BMD distributions describing normal individuals and those who have suffered a hip fracture contain significant overlap, thereby reducing the specificity of BMD based fracture risk categorization. Since bone strength results from a combination of bone mass, bone micro-architecture and material properties, and overall bone geometry, two-dimensional imaging based diagnostic approaches such as DEXA are limited in their ability to specifically predict bone strength. Engineering models of skeletal structures that combine descriptions of three dimensional bone geometry, bone mass distribution, and bone material behavior into a high fidelity simulation have been shown to predict bone strength with an improved accuracy compared to DEXA alone, albeit with some limitations. Specifically, voxel based finite element models derived from QCT image data are based on correlations between predicted structural stiffness and structural failure and therefore are generally only valid for simple uniaxial loading; it is unlikely this approach would be valid for more complex applied loads. Furthermore, these models generally use simplified bone material descriptions that do not capture the demonstrated non-linear damaging behavior of bone and do not model bone material failure. Another major limitation is that these models require three dimensional QCT image data, which can be expensive and limited in its availability, and they are not parametric – they are specific to an individual. Finally, all models used to date are deterministic and do not account for uncertainty and/or variability in bone structure and/or material properties, and cannot be used to predict the probability of bone failure. Each of these limitations can be addressed using advanced computational methods such as statistical shape and bone density modeling, non-linear continuum damage mechanics modeling, and probabilistic analysis methods with the goal of improving the identification of individuals who are at a greater risk of fracture and focusing resources on those areas where treatment can be directed to significantly improve an individual’s fracture risk. Ultimately, this approach will significantly improve the ability to clinically quantify the risk of fracture in an individual and allow treatment to be administered in a timely manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burge R, Dawson-Hughes B, Solomon D, Wong J, King A, Tosteson A (2006) Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J Bone Miner Res 22:465–475

    Article  Google Scholar 

  2. Kanis J, Johnell O, Oden A, Sembo I, Redlund-Johnell I, Dawson A, De Laet C, Jonsson B (2000) Long-term risk of osteoporotic fracture in Malmo. Osteoporos Int 11(8):669–674

    Article  CAS  PubMed  Google Scholar 

  3. UN (1999) World population prospects: the 1998 revision. Department of Economic and Social Affairs, Population Division, United Nations, New York

    Google Scholar 

  4. Gullberg B, Johnell O, Kanis J (1997) World-wide projections for hip fracture. Osteoporos Int 7(5):407–413

    Article  CAS  PubMed  Google Scholar 

  5. Melton L (2003) Adverse outcomes of osteoporotic fractures in the general population. J Bone Miner Res 18(6):1139–1141

    Article  PubMed  Google Scholar 

  6. Kanis J, Oden A, Johnell O, De Laet C, Jonsson B, Oglesby A (2003) The components of excess mortality after hip fracture. Bone 32(5):468–473

    Article  CAS  PubMed  Google Scholar 

  7. Johnell O, Kanis J, Oden A, Sernbo I, Redlund-Johnell I, Petterson C, De Laet C, Jonsson B (2004) Mortality after osteoporotic fractures. Osteoporos Int 15(1):38–42

    Article  CAS  PubMed  Google Scholar 

  8. Ebbesen E, Thomsen J, Beck-Nielsen H, Nepper-Rasmussen H, Mosekilde L (1999) Age- and gender-related differences in vertebral bone mass, density, and strength. J Bone Miner Res 14(8):1394–1403

    Article  CAS  PubMed  Google Scholar 

  9. Testi D, Viceconti M, Baruffaldi F, Cappello A (1999) Risk of fracture in elderly patients: a new predictive index based on bone mineral density and finite element analysis. Comput Methods Programs Biomed 60(1):23–33

    Article  CAS  PubMed  Google Scholar 

  10. Luo G, Kaufman J, Chiabrera A, Bianco B, Kinney J, Haupt D, Ryaby J, Siffert R (1999) Computational methods for ultrasonic bone assessment. Ultrasound Med Biol 25(5):823–830

    Article  CAS  PubMed  Google Scholar 

  11. Pietruszczak S, Inglis D, Pande G (1999) A fabric-dependent fracture criterion for bone. J Biomech 32(10):1071–1079

    Article  CAS  PubMed  Google Scholar 

  12. Magland JF, Wald MJ, Wehrli FW (2009) Spin-echo micro-MRI of trabecular bone using improved 3D fast large-angle spin-echo (FLASE). Magn Reson Med 61(5):1114–1121

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Majumdar S, Genant HK (1997) High resolution magnetic resonance imaging of trabecular structure. Eur Radiol 7(Suppl 2):S51–S55

    Article  PubMed  Google Scholar 

  14. Majumdar S, Genant HK, Grampp S, Newitt DC, Truong VH, Lin JC, Mathur A (1997) Correlation of trabecular bone structure with age, bone mineral density, and osteoporotic status: in vivo studies in the distal radius using high resolution magnetic resonance imaging. J Bone Miner Res 12(1):111–118

    Article  CAS  PubMed  Google Scholar 

  15. Wehrli FW, Ladinsky GA, Jones C, Benito M, Magland J, Vasilic B, Popescu AM, Zemel B, Cucchiara AJ, Wright AC, Song HK, Sana PK, Peachey H, Snyder PJ (2008) In vivo magnetic resonance detects rapid remodeling changes in the topology of the trabecular bone network after menopause and the protective effect of estradiol. J Bone Miner Res 23(5):730–740

    Article  PubMed Central  PubMed  Google Scholar 

  16. Gnudi S, Malavolta N, Testi D, Viceconti M (2004) Differences in proximal femur geometry distinguish vertebral from femoral neck fractures in osteoporotic women. Br J Radiol 77(915):219–223

    Article  CAS  PubMed  Google Scholar 

  17. Gnudi S, Ripamonti C, Gualtieri G, Malavolta N (1999) Geometry of proximal femur in the prediction of hip fracture in osteoporotic women. Br J Radiol 72(860):729–733

    Article  CAS  PubMed  Google Scholar 

  18. Gnudi S, Ripamonti C, Lisi L, Fini M, Giardino R, Giavaresi G (2002) Proximal femur geometry to detect and distinguish femoral neck fractures from trochanteric fractures in postmenopausal women. Osteoporos Int 13(1):69–73

    Article  CAS  PubMed  Google Scholar 

  19. Genant H, Gordon C, Jiang Y, Link T, Hans D, Majumdar S, Lang T (2000) Advanced imaging of the macrostructure and microstructure of bone. Horm Res 54(Suppl 1):24–30

    Article  CAS  PubMed  Google Scholar 

  20. Cheng XG, Lowet G, Boonen S, Nicholson PH, Brys P, Nijs J, Dequeker J (1997) Assessment of the strength of proximal femur in vitro: relationship to femoral bone mineral density and femoral geometry. Bone 20(3):213–218

    Article  CAS  PubMed  Google Scholar 

  21. Nicholson P, Muller R, Lowet G, Cheng X, Hildebrand T, Ruegsegger P, van der Perre G, Dequeker J, Boonen S (1998) Do quantitative ultrasound measurements reflect structure independently of density in human vertebral cancellous bone? Bone 23(5):425–431

    Article  CAS  PubMed  Google Scholar 

  22. Bauer D, Ewing S, Cauley J, Ensrud K, Cummings S, Orwoll E (2007) Quantitative ultrasound predicts hip and non-spine fracture in men: the MrOS study. Osteoporos Int 18:771–777

    Article  CAS  PubMed  Google Scholar 

  23. Kanis J (2002) Assessing the risk of vertebral osteoporosis. Singapore Med J 43(2):100–105

    CAS  PubMed  Google Scholar 

  24. Kanis J (2002) Diagnosis of osteoporosis and assessment of fracture risk. Lancet 359(9321):1929–1936

    Article  PubMed  Google Scholar 

  25. Kanis J, Johnell O, De Laet C, Jonsson B, Oden A, Ogelsby A (2002) International variations in hip fracture probabilities: implications for risk assessment. J Bone Miner Res 17(7):1237–1244

    Article  PubMed  Google Scholar 

  26. Cody DD, Gross GJ, Hou FJ, Spencer HJ, Goldstein SA, Fyhrie DP (1999) Femoral strength is better predicted by finite element models than QCT and DXA. J Biomech 32(10):1013–1020

    Article  CAS  PubMed  Google Scholar 

  27. Lochmuller E, Miller P, Burklein D, Wehr U, Rambeck W, Eckstein F (2000) In situ femoral dual-energy X-ray absorptiometry related to ash weight, bone size and density, and its relationship with mechanical failure loads of the proximal femur. Osteoporos Int 11(4):361–367

    Article  CAS  PubMed  Google Scholar 

  28. Black D, Cummings S, Karpf D, Cauley J, Thompson D, Nevitt M, Bauer D, Genant H, Haskell W, Marcus R, Ott S, Torner J, Quandt S, Reiss T, Ensrud K (1996) Randomised trial of effect of alendronate on risk of fracture in women with existing vertebral fractures. Fracture intervention trial research group. Lancet JID – 2985213R 348(9041):1535–1541

    Google Scholar 

  29. Roschger P, Rinnerthaler S, Yates J, Rodan G, Fratzl P, Klaushofer K (2001) Alendronate increases degree and uniformity of mineralization in cancellous bone and decreases the porosity in cortical bone of osteoporotic women. Bone JID – 8504048 29(2):185–19

    Google Scholar 

  30. Pulkkinen P, Eckstein F, Lochmüller EM, Kuhn V, Jämsä T (2006) Association of geometric factors and failure load level with the distribution of cervical vs. trochanteric hip fractures. J Bone Miner Res 21(6):895–901

    Article  PubMed  Google Scholar 

  31. Pulkkinen P, Partanen J, Jalovaara P, Jämsä T (2004) Combination of bone mineral density and upper femur geometry improves the prediction of hip fracture. Osteoporos Int 15(4):274–280

    Article  PubMed  Google Scholar 

  32. Patron MS, Duthie RA, Sutherland AG (2006) Proximal femoral geometry and hip fractures. Acta Orthop Belg 72(1):51–54

    PubMed  Google Scholar 

  33. Specker B, Binkley T (2005) High parity is associated with increased bone size and strength. Osteoporos Int 16(12):1969–1974

    Article  PubMed  Google Scholar 

  34. El Kaissi S, Pasco JA, Henry MJ, Panahi S, Nicholson JG, Nicholson GC, Kotowicz MA (2005) Femoral neck geometry and hip fracture risk: the Geelong osteoporosis study. Osteoporos Int 16(10):1299–1303

    Article  PubMed  Google Scholar 

  35. Crabtree NJ, Kroger H, Martin A, Pols HA, Lorenc R, Nijs J, Stepan JJ, Falch JA, Miazgowski T, Grazio S, Raptou P, Adams J, Collings A, Khaw KT, Rushton N, Lunt M, Dixon AK, Reeve J (2002) Improving risk assessment: hip geometry, bone mineral distribution and bone strength in hip fracture cases and controls. The EPOS study European prospective osteoporosis study. Osteoporos Int 13(1):48–54

    Article  CAS  PubMed  Google Scholar 

  36. Center JR, Nguyen TV, Pocock NA, Noakes KA, Kelly PJ, Eisman JA, Sambrook PN (1998) Femoral neck axis length, height loss and risk of hip fracture in males and females. Osteoporos Int 8(1):75–81

    Article  CAS  PubMed  Google Scholar 

  37. Faulkner K, Cummings S, Black D, Palermo L, Gluer C, Genant H (1993) Simple measurement of femoral geometry predicts hip fracture: the study of osteoporotic fractures. J Bone Miner Res 8(10):1211–1217

    Article  CAS  PubMed  Google Scholar 

  38. Gluer C, Cummings S, Pressman A, Li J, Gluer K, Faulkner K, Grampp S, Genant H (1994) Prediction of hip fractures from pelvic radiographs: the study of osteoporotic fractures. The Study of Osteoporotic Fractures Research Group. J Bone Miner Res 9(5):671–677

    Article  CAS  PubMed  Google Scholar 

  39. Gregory J, Testi D, Stewart A, Undrill P, Reid D, Aspden R (2004) A method for assessment of the shape of the proximal femur and its relationship to osteoporotic hip fracture. Osteoporos Int 15(1):5–11

    Article  CAS  PubMed  Google Scholar 

  40. Testi D, Viceconti M, Cappello A, Gnudi S (2002) Prediction of hip fracture can be significantly improved by a single biomedical indicator. Ann Biomed Eng 30(6):801–807

    Article  PubMed  Google Scholar 

  41. Hipp JA, Jansujwicz A, Simmons CA, Snyder BD (1996) Trabecular bone morphology from micro-magnetic resonance imaging. J Bone Miner Res 11(2):286–297

    Article  CAS  PubMed  Google Scholar 

  42. Müller R, Hildebrand T, Hauselmann HJ, Ruegsegger P (1996) In vivo reproducibility of three-dimensional structural properties of noninvasive bone biopsies using 3D-pQCT. J Bone Miner Res 11(11):1745–1750

    Article  PubMed  Google Scholar 

  43. Odgaard A, Andersen K, Ullerup R, Frich LH, Melsen F (1994) Three-dimensional reconstruction of entire vertebral bodies. Bone 15(3):335–342

    Article  CAS  PubMed  Google Scholar 

  44. Turner CH, Takano Y, Hirano T (1996) Reductions in bone strength after fluoride treatment are not reflected in tissue-level acoustic measurements [see comments]. Bone 19(6):603–607

    Article  CAS  PubMed  Google Scholar 

  45. Keyak JH (2001) Improved prediction of proximal femoral fracture load using nonlinear finite element models. Med Eng Phys 23(3):165–173

    Article  CAS  PubMed  Google Scholar 

  46. Keyak JH, Meagher JM, Skinner HB, Mote CD Jr (1990) Automated three-dimensional finite element modelling of bone: a new method. J Biomed Eng 12(5):389–397

    Article  CAS  PubMed  Google Scholar 

  47. Lotz JC, Cheal EJ, Hayes WC (1991) Fracture prediction for the proximal femur using finite element models: part II–nonlinear analysis. J Biomech Eng 113(4):361–365

    Article  CAS  PubMed  Google Scholar 

  48. Lotz JC, Cheal EJ, Hayes WC (1991) Fracture prediction for the proximal femur using finite element models: part I–linear analysis. J Biomech Eng 113(4):353–360

    Article  CAS  PubMed  Google Scholar 

  49. Lotz JC, Cheal EJ, Hayes WC (1995) Stress distributions within the proximal femur during gait and falls: implications for osteoporotic fracture. Osteoporos Int 5(4):252–261

    Article  CAS  PubMed  Google Scholar 

  50. Bessho M, Ohnishi I, Matsuyama J, Matsumoto T, Imai K, Nakamura K (2007) Prediction of strength and strain of the proximal femur by a CT-based finite element method. J Biomech 40(8):1745–1753

    Google Scholar 

  51. Bessho M, Ohnishi I, Okazaki H, Sato W, Kominami H, Matsunaga S, Nakamura K (2004) Prediction of the strength and fracture location of the femoral neck by CT-based finite-element method: a preliminary study on patients with hip fracture. J Orthop Sci 9(6):545–550

    Article  PubMed  Google Scholar 

  52. Cook RD (1995) Finite element modeling for stress analysis. Wiley, New York

    Google Scholar 

  53. Crisfield MA (1991) Non-linear finite element analysis of solids and structures, vol 1. Wiley, New York

    Google Scholar 

  54. Keyak JH, Rossi SA, Jones KA, Skinner HB (1998) Prediction of femoral fracture load using automated finite element modeling. J Biomech 31(2):125–133

    Article  CAS  PubMed  Google Scholar 

  55. Keyak JH (2000) Nonlinear finite element modeling to evaluate the failure load of the proximal femur. J Orthop Res 18(2):337

    Article  CAS  PubMed  Google Scholar 

  56. Keyak JH (2001) Improved prediction of proximal femoral fracture load using nonlinear finite element models. Med Eng Phys 23(3):165–173

    Google Scholar 

  57. Keyak JH, Kaneko TS, Tehranzadeh J, Skinner HB (2005) Predicting proximal femoral strength using structural engineering models. Clin Orthop Relat Res 437:219–228

    Article  PubMed  Google Scholar 

  58. Crawford RP, Cann CE, Keaveny TM (2003) Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography. Bone 33:744–750

    Article  PubMed  Google Scholar 

  59. Crawford RP, Rosenberg WS, Keaveny TM (2003) Quantitative computed tomography-based finite element models of the human lumbar vertebral body: effect of element size on stiffness, damage, and fracture strength predictions. J Biomech Eng 125(4):434–438

    Article  PubMed  Google Scholar 

  60. Liebschner MA, Kopperdahl DL, Rosenberg WS, Keaveny TM (2003) Finite element modeling of the human thoracolumbar spine. Spine 28(6):559–565

    PubMed  Google Scholar 

  61. Silva MJ, Keaveny TM, Hayes WC (1998) Computed tomography-based finite element analysis predicts failure loads and fracture patterns for vertebral sections. J Orthop Res 16(3):300–308

    Article  CAS  PubMed  Google Scholar 

  62. Bowman SM, Guo XE, Cheng DW, Keaveny TM, Gibson LJ, Hayes WC, McMahon TA (1998) Creep contributes to the fatigue behavior of bovine trabecular bone. J Biomech Eng 120:647–654

    Article  CAS  PubMed  Google Scholar 

  63. Keaveny TM, Wachtel EF, Guo XE, Hayes WC (1994) Mechanical behavior of damaged trabecular bone. J Biomech 27(11):1309–1318

    Article  CAS  PubMed  Google Scholar 

  64. Kopperdahl DL, Keaveny TM (1998) Yield strain behavior of trabecular bone. J Biomech 31(7):601–608

    Article  CAS  PubMed  Google Scholar 

  65. Kopperdahl DL, Keaveny TM (1995) Compressive and tensile elastic and failure properties of human vertebral trabecular bone. In: Hochmuth RM, Langrana NA, Hefzy MS (eds) 1995 Bioengineering Conference, 1995. BED. ASME, Beaver Creek, pp 357–358

    Google Scholar 

  66. Cootes TF, Hill A, Taylor CJ, Haslam J (1994) Use of active shape models for locating structure in medical images. Image Vis Comput 12(6):355–365

    Article  Google Scholar 

  67. Benameur S, Mignotte M, Labelle H, De Guise JA (2005) A hierarchical statistical modeling approach for the unsupervised 3-D biplanar reconstruction of the scoliotic spine. IEEE Trans Biomed Eng 52(12):2041–2057

    Article  PubMed  Google Scholar 

  68. Dornaika F, Ahlberg J (2006) Fitting 3D face models for tracking and active appearance model training. Image Vis Comput 24(9):1010–1024

    Article  Google Scholar 

  69. Ferrarini L, Palm WM, Olofsen H, van Buchem MA, Reiber JHC, Admiraal-Behloul F (2006) Shape differences of the brain ventricles in Alzheimer’s disease. Neuroimage 32(3):1060–1069

    Article  PubMed  Google Scholar 

  70. Koikkalainen J, Hirvonen J, Nyman M, Lotjonen J, Hietala J, Ruotsalainen U (2007) Shape variability of the human striatum–Effects of age and gender. Neuroimage 34(1):85–93

    Article  PubMed  Google Scholar 

  71. Babalola KO, Cootes TF, Patenaude B, Rao A, Jenkinson M (2006) Comparing the similarity of statistical shape models using the Bhattacharya metric. In: Medical image computing and computer-assisted intervention – Miccai 2006, Pt 1, vol 4190. Lecture notes in computer science. pp 142–150

    Google Scholar 

  72. Rueckert D, Frangi AF, Schnabel JA (2003) Automatic construction of 3-D statistical deformation models of the brain using nonrigid registration. Ieee Trans Med Imaging 22(8):1014–1025

    Article  PubMed  Google Scholar 

  73. Shan ZY, Parra C, Ji Q, Jain J, Reddick WE (2006) A knowledge-guided active model method of cortical structure segmentation on pediatric MR images. J Magn Reson Imaging 24(4):779–789

    Article  PubMed  Google Scholar 

  74. Lorenz C, Krahnstover N (2000) Generation of point-based 3D statistical shape models for anatomical objects. Comput Vis Image Underst 77(2):175–191

    Article  Google Scholar 

  75. Cootes TF, Taylor CJ, Cooper DH, Graham J (1995) Active shape models – their training and application. Comput Vis Image Underst 61(1):38–59

    Article  Google Scholar 

  76. Davies RH, Twining CJ, Cootes TF, Waterton JC, Taylor CJ (2002) A minimum description length approach to statistical shape modeling. IEEE Trans Med Imaging 21(5):525–537

    Article  PubMed  Google Scholar 

  77. Davies RH, Twining CJ, Cootes TF, Waterton JC, Taylor CJ (2002) 3D statistical shape models using direct optimisation of description length. In: Computer vision – ECCV 2002 Pt III, vol 2352, pp 3–20

    Google Scholar 

  78. Styner MA, Rajamani KT, Nolte L-P, Zsemlye G, Székely G, Taylor CJ, Davies RH (2003) Evaluation of 3D correspondence methods for model building. Inf Process Med Imaging 18:63–75

    Google Scholar 

  79. Walker KN, Cootes TF, Taylor CJ (2003) Determining Correspondences for Statistical Models of Appearance. Computer Vision-ECCV 2000. Berlin, Heidelberg: Springer, Berlin, Heidelberg,pp 829–843

    Google Scholar 

  80. Viceconti M, Zannoni C, Testi D, Cappello A (1999) A new method for the automatic mesh generation of bone segments from CT data. J Med Eng Technol 23(2):77–81

    Article  CAS  PubMed  Google Scholar 

  81. Pepin JE, Thacker BH, Rodriguez EA, Riha DS (2002) A probabilistic analysis of a nonlinear structure using random fields to quantify geometric shape uncertainties. In: Proceedings of the AIAA/ASME/ASCE/AHS/ASC 43rd structures, structural dynamics and materials conference. AIAA, Denver, 22 Apr 2002

    Google Scholar 

  82. Mauch S, Breen D (2000) A fast algorithm for computing the closest point and distance function. Unpublished technical report. California Institute of Technology, September. http://www.acm.caltech.edu/seanm/projects/cpt/cpt.pdf

  83. Brechbuhler C, Gerig G, Kubler O (1995) Parametrization of closed surfaces for 3-D shape-description. Comput Vis Image Underst 61(2):154–170

    Article  Google Scholar 

  84. Taddei F, Pancanti A, Viceconti M (2004) An improved method for the automatic mapping of computed tomography numbers onto finite element models. Med Eng Phys 26(1):61–69

    Article  PubMed  Google Scholar 

  85. Les CM, Keyak JH, Stover SM, Taylor KT, Kaneps AJ (1994) Estimation of material properties in the equine metacarpus with use of quantitative computed tomography. J Orthop Res 12(6):822–833

    Article  CAS  PubMed  Google Scholar 

  86. Rajamani K, Nolte L, Styner M (2004) A novel approach to anatomical structure morphing for intraoperative visualization. In: Medical image computing and computer-assisted intervention – MICCAI 2004, Pt 2, Proceedings, vol 3217, pp 478–485

    Google Scholar 

  87. Bredbenner TL, Bartels KA, Havill LM, Nicolella DP (2007) Probabilistic shape-based finite element modeling of baboon femurs. In: ASME, Amelia Island

    Google Scholar 

  88. Keller TS (1994) Predicting the compressive mechanical behavior of bone. J Biomech 27(9):1159–1168

    Article  CAS  PubMed  Google Scholar 

  89. Courtney AC, Wachtel EF, Myers ER, Hayes WC (1994) Effects of loading rate on strength of the proximal femur. Calcif Tissue Int 55(1):53–58

    Article  CAS  PubMed  Google Scholar 

  90. Courtney AC, Wachtel EF, Myers ER, Hayes WC (1995) Age-related reductions in the strength of the femur tested in a fall-loading configuration. J Bone Joint Surg Am 77(3):387–395

    CAS  PubMed  Google Scholar 

  91. Wu Y, Millwater H, Cruse T (1990) An advanced probabilistic structural analysis method for implicit performance functions. AIAA J 28(9):1663–1669

    Article  Google Scholar 

  92. Haldar A, Mahadevan S (2000) Probability, reliability, and statistical methods in engineering design. Wiley, New York

    Google Scholar 

  93. Ang AHS, Tang WH (1975) Probability concepts in engineering planning and design: Vol. 1. John Wiley & Sons, New York

    Google Scholar 

  94. Nicolella DP, Francis WL, Bonivtch AR, Thacker BH, Paskoff GR, Shender BS Development, verification, and validation of a parametric cervical spine injury prediction model. In: Collection of technical papers – AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference, 2006. pp 3977–3985

    Google Scholar 

  95. Nicolella DP, Thacker BH, Katoozian H, Davy DT (2001) Probabilistic risk analysis of a cemented hip implant. J Math Model Sci Comput 13(1–2):98–108

    Google Scholar 

  96. Nicolella D, Francis W, Bonivtch A, Thacker B, Paskoff G, Shender B (2006) Development, verification, and validation of a parametric cervical spine injury prediction model. In: Collection of technical papers – AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference, vol 6, pp 3977–3985

    Google Scholar 

  97. Nicolella DP, Thacker BH, Katoozian H, Davy DT (2006) The effect of three-dimensional shape optimization on the probabilistic response of a cemented femoral hip prosthesis. J Biomech 39(7):1265–1278

    Article  PubMed  Google Scholar 

  98. Burr D, Turner C, Naick P, Forwood M, Ambrosius W, Hasan M, Pidaparti R (1998) Does microdamage accumulation affect the mechanical properties of bone? J Biomech 31(4):337–345

    Article  CAS  PubMed  Google Scholar 

  99. Norman TL, Wang Z (1997) Microdamage of human cortical bone: incidence and morphology in long bones. Bone 20(4):375–379

    Article  CAS  PubMed  Google Scholar 

  100. Norman TL, Yeni YN, Brown CU, Wang Z (1998) Influence of microdamage on fracture toughness of the human femur and tibia. Bone 23(3):303–306

    Article  CAS  PubMed  Google Scholar 

  101. Burr DB, Martin RB, Schaffler MB, Radin EL (1985) Bone remodeling in response to in vivo fatigue microdamage. J Biomech 18:189–200

    Article  CAS  PubMed  Google Scholar 

  102. Schaffler M, Radin E, Burr D (1989) Mechanical and morphological effects of strain rate on fatigue of compact bone. Bone 10(3):207–214

    Article  CAS  PubMed  Google Scholar 

  103. Chan KS, Nicolella DP (2012) Micromechanical modeling of R-curve behaviors in human cortical bone. J Mech Behav Biomed Mater 16:136–152. doi:10.1016/j.jmbbm.2012.09.009

    Article  PubMed Central  PubMed  Google Scholar 

  104. Reilly GC, Currey JD (2000) The effects of damage and microcracking on the impact strength of bone. J Biomech 33(3):337–343

    Article  CAS  PubMed  Google Scholar 

  105. Jepsen K, Bensusan J, Davy DT (2001) Intermodal effects of damage on mechanical properties of human cortical bone. Trans Orthop Res Soc, San Francisco, California, Feb 25–28

    Google Scholar 

  106. Fondrk MT (1989) An experimental and analytical investigation into the nonlinear constitutive equations of cortical bone (Doctoral dissertation, Case Western Reserve University)

    Google Scholar 

  107. Fondrk M, Bahniuk E, Davy D (1999) Inelastic strain accumulation in cortical bone during rapid transient tensile loading. J Biomech Eng 121(6):616–621

    Article  CAS  PubMed  Google Scholar 

  108. Fondrk M, Bahniuk E, Davy D (1999) A damage model for nonlinear tensile behavior of cortical bone. J Biomech Eng 121(5):533–541

    Article  CAS  PubMed  Google Scholar 

  109. Fondrk M, Bahniuk E, Davy DT, Michaels C (1988) Some viscoplastic characteristics of bovine and human cortical bone. J Biomech 21(8):623–630

    Article  CAS  PubMed  Google Scholar 

  110. Carter DR, Caler WE (1985) A cumulative damage model for bone fracture. J Orthop Res 3(1):84–90

    Article  CAS  PubMed  Google Scholar 

  111. Fyhrie DP, Lang SM, Hoshaw SJ, Schaffler MB, Kuo RF (1995) Human vertebral cancellous bone surface distribution. Bone 17(3):287–291

    Article  CAS  PubMed  Google Scholar 

  112. Wachtel EF, Keaveny TM (1997) Dependence of trabecular damage on mechanical strain. J Orthop Res 15(5):781–787

    Article  CAS  PubMed  Google Scholar 

  113. Burr DB, Forwood MR, Fyhrie DP, Martin RB, Schaffler MB, Turner CH (1997) Bone microdamage and skeletal fragility in osteoporotic and stress fractures. J Bone Miner Res 12(1):6–15

    Article  CAS  PubMed  Google Scholar 

  114. Courtney AC, Keaveny TM (1994) Post-yield behavior and damage in bovine cortical bone. In: Proceedings of the 29th annual meeting. Society for Biomaterials, Boston

    Google Scholar 

  115. Zysset PK, Curnier A (1996) A 3D damage model for trabecular bone based on fabric tensors. J Biomech 29(12):1549–1558

    Article  CAS  PubMed  Google Scholar 

  116. Bredbenner T (2003) Damage modeling of vertebral trabecular bone

    Google Scholar 

  117. Deligianni D, Maris A, Missirlis Y (1994) Stress relaxation behaviour of trabecular bone specimens. J Biomech 27(12):1469–1476

    Article  CAS  PubMed  Google Scholar 

  118. Zhu Y, Cescotto S, Habraken A (1992) A fully coupled elastoplastic damage modeling and fracture criteria in metalforming processes. J Mater Process Technol 32(1–2):197–204

    Article  Google Scholar 

  119. Wilson J, Jepsen K, Bensusan J, Davy D (1998) Simple mechanical measures as predictors of tensile failure in human cortical bone. Trans Orthop Res Soc 23:963

    Google Scholar 

  120. Bredbenner TL, Nicolella DP, Davy DT (2006) Modeling damage in human vertebral trabecular bone under experimental loading. In: Annual conference and exposition. Society for Experimental Mechanics, St. Louis, 4–7 June 2006

    Google Scholar 

  121. Bredbenner TL, Nicolella DP, Davy DT (2006) Modeling damage in human vertebral trabecular bone under experimental loading. Experimental Mechanics: (submitted)

    Google Scholar 

  122. Francis WL, Eliason TD, Thacker BH, Paskoff GR, Shender BS, Nicolella DP (2012) Implementation and validation of probabilistic models of the anterior longitudinal ligament and posterior longitudinal ligament of the cervical spine. Comput Methods Biomech Biomed Engin. doi:10.1080/10255842.2012.726353

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel P. Nicolella Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nicolella, D.P., Bredbenner, T.L. (2015). Computational Analysis of Bone Fracture. In: Yoganandan, N., Nahum, A., Melvin, J. (eds) Accidental Injury. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1732-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1732-7_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1731-0

  • Online ISBN: 978-1-4939-1732-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics