Skip to main content

Role of Muscles in Accidental Injury

  • Chapter
  • First Online:
Accidental Injury

Abstract

Skeletal muscle is the most abundant tissue in the human body and can play various roles in the context of accidental injuries. First, muscles make up 38 ± 5 % of male total body mass and 31 ± 6 % of female total body mass (Janssen et al., J Appl Physiol 89(1):81–88, 2000), and thus represent a considerable proportion of the body’s inertia. Second, muscles provide padding to many bones and other tissues, and thus can attenuate impacts to the body. Third, muscles generate forces within the body that alter the load state of other tissues during an impact. And finally, muscles themselves can be injured by impacts to the body. Despite these varied roles, muscles are often ignored in the study of accidental injury. For some types of accidental injury, muscles indeed contribute little or nothing to the injury mechanism. For other types of injury, however, muscle forces can exacerbate, mitigate and sometimes even cause specific injuries.

The goal of this chapter is to review our current understanding of how skeletal muscles affect accidental injury. Our focus is on traumatic injuries, but we address chronic or overuse injuries where they contribute to the understanding of traumatic injuries. We begin with a brief overview of muscle mechanics and then examine the role of muscles on injuries to various anatomic regions, including the head, spine, upper extremity and lower extremity. We close with a consideration of how muscle activation affects whole body motion and traumatic injury patterns in general.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burkholder TJ, Lieber RL (2001) Sarcomere length operating range of vertebrate muscles during movement. J Exp Biol 204(Pt 9):1529–1536

    CAS  PubMed  Google Scholar 

  2. Hegarty PV, Hooper AC (1971) Sarcomere length and fibre diameter distributions in four different mouse skeletal muscles. J Anat 110(Pt 2):249–257

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Lexell J (1995) Human aging, muscle mass, and fiber type composition. J Gerontol A: Biol Med Sci 50(Spec No):11–16

    Google Scholar 

  4. Feinstein B, Lindegard B, Nyman E, Wohlfart G (1955) Morphologic studies of motor units in normal human muscles. Acta Anat 23(2):127–142

    CAS  PubMed  Google Scholar 

  5. Torre M (1953) [Number and dimensions of the motor units of the extrinsic eye muscles and, in general, of skeletal muscles connected with the sensory organs]. Schweizer Archiv fur Neurologie und Psychiatrie Archives suisses de neurologie et de psychiatrie Archivio svizzero di neurologia e psichiatria 72(1–2):362–376

    CAS  Google Scholar 

  6. Jenny AB, Inukai J (1983) Principles of motor organization of the monkey cervical spinal cord. J Neurosci 3(3):567–575

    CAS  PubMed  Google Scholar 

  7. Denny-Brown D, Pennybacker JB (1938) Fibrillation and fasciculation in voluntary muscle. Brain 61:311–341

    Google Scholar 

  8. Bawa P, Binder MD, Ruenzel P, Henneman E (1984) Recruitment order of motoneurons in stretch reflexes is highly correlated with their axonal conduction velocity. J Neurophysiol 52(3):410–420

    CAS  PubMed  Google Scholar 

  9. Lieber RL, Jacobson MD, Fazeli BM, Abrams RA, Botte MJ (1992) Architecture of selected muscles of the arm and forearm: anatomy and implications for tendon transfer. J Hand Surg 17(5):787–798

    CAS  Google Scholar 

  10. Lieber RL, Fazeli BM, Botte MJ (1990) Architecture of selected wrist flexor and extensor muscles. J Hand Surg 15(2):244–250

    CAS  Google Scholar 

  11. Wickiewicz TL, Roy RR, Powell PL, Edgerton VR (1983) Muscle architecture of the human lower limb. Clin Orthop Relat Res 179:275–283

    PubMed  Google Scholar 

  12. Winters JM, Stark L (1988) Estimated mechanical properties of synergistic muscles involved in movements of a variety of human joints. J Biomech 21(12):1027–1041

    CAS  PubMed  Google Scholar 

  13. Kamibayashi LK, Richmond FJ (1998) Morphometry of human neck muscles. Spine 23(12):1314–1323

    CAS  PubMed  Google Scholar 

  14. Mendez J, Keys A (1960) Density and composition of mammalian muscle. Metab Clin Exp 9:184–188

    CAS  Google Scholar 

  15. Myers BS, Woolley CT, Slotter TL, Garrett WE, Best TM (1998) The influence of strain rate on the passive and stimulated engineering stress – large strain behavior of the rabbit tibialis anterior muscle. J Biomech Eng 120(1):126–132

    CAS  PubMed  Google Scholar 

  16. O’Brien TD, Reeves ND, Baltzopoulos V, Jones DA, Maganaris CN (2010) In vivo measurements of muscle specific tension in adults and children. Exp Physiol 95(1):202–210. doi:10.1113/expphysiol.2009.048967

    PubMed  Google Scholar 

  17. Zajac FE (1989) Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit Rev Biomed Eng 17(4):359–411

    CAS  PubMed  Google Scholar 

  18. Srinivasan RC, Lungren MP, Langenderfer JE, Hughes RE (2007) Fiber type composition and maximum shortening velocity of muscles crossing the human shoulder. Clin Anat 20(2):144–149. doi:10.1002/ca.20349

    CAS  PubMed  Google Scholar 

  19. Chow JW, Darling WG (1999) The maximum shortening velocity of muscle should be scaled with activation. J Appl Physiol 86(3):1025–1031

    CAS  PubMed  Google Scholar 

  20. Ehret AE, Bol M, Itskov M (2011) A continuum constitutive model for the active behavior of skeletal muscle. J Mech Phys Solids 59:625–636

    Google Scholar 

  21. Herzog W, Leonard TR (2005) The role of passive structures in force enhancement of skeletal muscles following active stretch. J Biomech 38(3):409–415. doi:10.1016/j.jbiomech.2004.05.001

    CAS  PubMed  Google Scholar 

  22. Bisdorff AR, Bronstein AM, Gresty MA (1994) Responses in neck and facial muscles to sudden free fall and a startling auditory stimulus. Electroencephalogr Clin Neurophysiol 93(6):409–416

    CAS  PubMed  Google Scholar 

  23. Brault JR, Siegmund GP, Wheeler JB (2000) Cervical muscle response during whiplash: evidence of a lengthening muscle contraction. Clin Biomech 15(6):426–435

    CAS  Google Scholar 

  24. Brown P, Rothwell JC, Thompson PD, Britton TC, Day BL, Marsden CD (1991) New observations on the normal auditory startle reflex in man. Brain 114(Pt 4):1891–1902

    PubMed  Google Scholar 

  25. Siegmund GP, Sanderson DJ, Myers BS, Inglis JT (2003) Awareness affects the response of human subjects exposed to a single whiplash-like perturbation. Spine 28(7):671–679. doi:10.1097/01.BRS.0000051911.45505.D3

    PubMed  Google Scholar 

  26. Mazzini L, Schieppati M (1992) Preferential activation of the sternocleidomastoid muscles by the ipsilateral motor cortex during voluntary rapid head rotations in humans. In: Berthoz A, Vidal P, Graf W (eds) The head-neck sensory motor system. Oxford University Press, Oxford, UK

    Google Scholar 

  27. Siegmund GP, Inglis JT, Sanderson DJ (2001) Startle response of human neck muscles sculpted by readiness to perform ballistic head movements. J Physiol 535(Pt 1):289–300

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Geertsen SS, Zuur AT, Nielsen JB (2010) Voluntary activation of ankle muscles is accompanied by subcortical facilitation of their antagonists. J Physiol 588(Pt 13):2391–2402. doi:10.1113/jphysiol.2010.190678

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Blouin JS, Siegmund GP, Timothy Inglis J (2007) Interaction between acoustic startle and habituated neck postural responses in seated subjects. J Appl Physiol 102(4):1574–1586. doi:10.1152/japplphysiol.00703.2006

    PubMed  Google Scholar 

  30. Corcos DM, Gottlieb GL, Latash ML, Almeida GL, Agarwal GC (1992) Electromechanical delay: an experimental artifact. J Electromyogr Kinesiol 2(2):59–68. doi:10.1016/1050-6411(92)90017-D

    CAS  PubMed  Google Scholar 

  31. Nilsson J, Tesch P, Thorstensson A (1977) Fatigue and EMG of repeated fast voluntary contractions in man. Acta Physiol Scand 101(2):194–198

    CAS  PubMed  Google Scholar 

  32. Winter EM, Brookes FB (1991) Electromechanical response times and muscle elasticity in men and women. Eur J Appl Physiol Occup Physiol 63(2):124–128

    CAS  PubMed  Google Scholar 

  33. Crisco JJ, Panjabi MM, Yamamoto I, Oxland TR (1992) Euler stability of the human liga-mentous lumbar spine. Part II: experiment. Clin Biomech 7:27–32

    CAS  Google Scholar 

  34. Magnusson ML, Pope MH, Hasselquist L, Bolte KM, Ross M, Goel VK, Lee JS, Spratt K, Clark CR, Wilder DG (1999) Cervical electromyographic activity during low-speed rear impact. Eur Spine J 8(2):118–125

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Bosboom EM, Hesselink MK, Oomens CW, Bouten CV, Drost MR, Baaijens FP (2001) Passive transverse mechanical properties of skeletal muscle under in vivo compression. J Biomech 34(10):1365–1368

    CAS  PubMed  Google Scholar 

  36. Van Loocke M, Lyons CG, Simms CK (2006) A validated model of passive muscle in compression. J Biomech 39(16):2999–3009. doi:10.1016/j.jbiomech.2005.10.016

    PubMed  Google Scholar 

  37. Van Loocke M, Lyons CG, Simms CK (2008) Viscoelastic properties of passive skeletal muscle in compression: stress-relaxation behaviour and constitutive modelling. J Biomech 41(7):1555–1566. doi:10.1016/j.jbiomech.2008.02.007

    PubMed  Google Scholar 

  38. McElhaney JH (1966) Dynamic response of bone and muscle tissue. J Appl Physiol 21(4):1231–1236

    CAS  PubMed  Google Scholar 

  39. Song B, Chen W, Ge Y, Weerasooriya T (2007) Dynamic and quasi-static compressive response of porcine muscle. J Biomech 40(13):2999–3005. doi:10.1016/j.jbiomech.2007.02.001

    PubMed  Google Scholar 

  40. Van Sligtenhorst C, Cronin DS, Wayne Brodland G (2006) High strain rate compressive properties of bovine muscle tissue determined using a split Hopkinson bar apparatus. J Biomech 39(10):1852–1858. doi:10.1016/j.jbiomech.2005.05.015

    PubMed  Google Scholar 

  41. Rosen E, Sander U (2009) Pedestrian fatality risk as a function of car impact speed. Accid Anal Prev 41(3):536–542. doi:10.1016/j.aap.2009.02.002

    PubMed  Google Scholar 

  42. Tefft BC (2013) Impact speed and a pedestrian’s risk of severe injury or death. Accid Anal Prev 50:871–878. doi:10.1016/j.aap.2012.07.022

    PubMed  Google Scholar 

  43. Dhaliwal TS, Beillas P, Chou CC, Prasad P, Yang KH, King AI (2002) Structural response of lower leg muscles in compression: a low impact energy study employing volunteers, cadavers and the hybrid III. Stapp Car Crash J 46:229–243

    PubMed  Google Scholar 

  44. Balaraman K, Mukherjee S, Chawla A, Malhotra R (2006) Inverse finite element characterization of soft tissues using impact experiments and Taguchi methods (2006-01-0252). SAE International, Warrendale

    Google Scholar 

  45. Morrow DA, Haut Donahue TL, Odegard GM, Kaufman KR (2010) Transversely isotropic tensile material properties of skeletal muscle tissue. J Mech Behav Biomed Mater 3(1):124–129. doi:10.1016/j.jmbbm.2009.03.004

    PubMed Central  PubMed  Google Scholar 

  46. Best TM, McElhaney J, Garrett WE Jr, Myers BS (1994) Characterization of the passive responses of live skeletal muscle using the quasi-linear theory of viscoelasticity. J Biomech 27(4):413–419

    CAS  PubMed  Google Scholar 

  47. Van Ee CA, Chasse AL, Myers BS (2000) Quantifying skeletal muscle properties in cadaveric test specimens: effects of mechanical loading, postmortem time, and freezer storage. J Biomech Eng 122(1):9–14

    PubMed  Google Scholar 

  48. Macpherson PC, Schork MA, Faulkner JA (1996) Contraction-induced injury to single fiber segments from fast and slow muscles of rats by single stretches. Am J Physiol 271(5 Pt 1):C1438–C1446

    CAS  PubMed  Google Scholar 

  49. McCully KK, Faulkner JA (1985) Injury to skeletal muscle fibers of mice following lengthening contractions. J Appl Physiol 59(1):119–126

    CAS  PubMed  Google Scholar 

  50. Noonan TJ, Best TM, Seaber AV, Garrett WE Jr (1994) Identification of a threshold for skeletal muscle injury. Am J Sports Med 22(2):257–261

    CAS  PubMed  Google Scholar 

  51. Garrett WE Jr, Nikolaou PK, Ribbeck BM, Glisson RR, Seaber AV (1988) The effect of muscle architecture on the biomechanical failure properties of skeletal muscle under passive extension. Am J Sports Med 16(1):7–12

    PubMed  Google Scholar 

  52. Garrett WE Jr, Safran MR, Seaber AV, Glisson RR, Ribbeck BM (1987) Biomechanical comparison of stimulated and nonstimulated skeletal muscle pulled to failure. Am J Sports Med 15(5):448–454

    PubMed  Google Scholar 

  53. Hang YS, Tsuang YH, Sun JS, Cheng CK, Liu TK (1996) Failure of stimulated skeletal muscle mainly contributed by passive force: an in vivo rabbit model. Clin Biomech 11:343–347

    Google Scholar 

  54. Lin R, Chang G, Chang L (1999) Biomechanical properties of muscle-tendon unit under high-speed passive stretch. Clin Biomech 14(6):412–417

    CAS  Google Scholar 

  55. Crisco JJ, Hentel KD, Jackson WO, Goehner K, Jokl P (1996) Maximal contraction lessens impact response in a muscle contusion model. J Biomech 29(10):1291–1296

    CAS  PubMed  Google Scholar 

  56. Covassin T, Swanik CB, Sachs ML (2003) Sex differences and the incidence of concussions among collegiate athletes. J Athl Train 38(3):238–244

    PubMed Central  PubMed  Google Scholar 

  57. Dick RW (2009) Is there a gender difference in concussion incidence and outcomes? Br J Sports Med 43(Suppl 1):i46–i50. doi:10.1136/bjsm.2009.058172

    PubMed  Google Scholar 

  58. Tierney RT, Sitler MR, Swanik CB, Swanik KA, Higgins M, Torg J (2005) Gender differences in head-neck segment dynamic stabilization during head acceleration. Med Sci Sports Exerc 37(2):272–279

    PubMed  Google Scholar 

  59. Viano DC, Casson IR, Pellman EJ (2007) Concussion in professional football: biomechanics of the struck player – part 14. Neurosurgery 61(2):313–327. doi:10.1227/01.NEU.0000279969.02685.D0, discussion 327–318

    PubMed  Google Scholar 

  60. Mihalik JP, Guskiewicz KM, Marshall SW, Greenwald RM, Blackburn JT, Cantu RC (2011) Does cervical muscle strength in youth ice hockey players affect head impact biomechanics? Clin J Sport Med 21(5):416–421. doi:10.1097/JSM.0B013E31822C8A5C

    PubMed  Google Scholar 

  61. Mihalik JP, Blackburn JT, Greenwald RM, Cantu RC, Marshall SW, Guskiewicz KM (2010) Collision type and player anticipation affect head impact severity among youth ice hockey players. Pediatrics 125(6):e1394–e1401. doi:10.1542/peds.2009-2849

    PubMed  Google Scholar 

  62. Mansell J, Tierney RT, Sitler MR, Swanik KA, Stearne D (2005) Resistance training and head-neck segment dynamic stabilization in male and female collegiate soccer players. J Athl Train 40(4):310–319

    PubMed Central  PubMed  Google Scholar 

  63. Lisman P, Signorile JF, Del Rossi G, Asfour S, Eltoukhy M, Stambolian D, Jacobs KA (2012) Investigation of the effects of cervical strength training on neck strength, EMG, and head kinematics during a football tackle. Int J Sports Sci Eng 6:131–140

    Google Scholar 

  64. Bergmark A (1989) Stability of the lumbar spine. A study in mechanical engineering. Acta Orthop Scand Suppl 230:1–54

    CAS  PubMed  Google Scholar 

  65. Kettler A, Hartwig E, Schultheiss M, Claes L, Wilke HJ (2002) Mechanically simulated muscle forces strongly stabilize intact and injured upper cervical spine specimens. J Biomech 35(3):339–346

    CAS  PubMed  Google Scholar 

  66. Pedersen KK, Christiansen C, Ahlgren P, Lund M (1976) Incidence of fractures of the vertebral spine in epileptic patients. Acta Neurol Scand 54(2):200–203

    CAS  PubMed  Google Scholar 

  67. Mehlhorn AT, Strohm PC, Hausschildt O, Schmal H, Sudkamp NP (2007) Seizure-induced muscle force can caused lumbar spine fracture. Acta Chir Orthop Traumatol Cech 74(3):202–205

    CAS  PubMed  Google Scholar 

  68. Anderson JS, Hsu AW, Vasavada AN (2005) Morphology, architecture, and biomechanics of human cervical multifidus. Spine 30(4):E86–E91

    PubMed  Google Scholar 

  69. Winkelstein BA, McLendon RE, Barbir A, Myers BS (2001) An anatomical investigation of the human cervical facet capsule, quantifying muscle insertion area. J Anat 198(Pt 4):455–461

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Boyd-Clark LC, Briggs CA, Galea MP (2002) Muscle spindle distribution, morphology, and density in longus colli and multifidus muscles of the cervical spine. Spine 27(7):694–701

    CAS  PubMed  Google Scholar 

  71. Siegmund GP, Blouin JS, Carpenter MG, Brault JR, Inglis JT (2008) Are cervical multifidus muscles active during whiplash and startle? An initial experimental study. BMC Musculoskelet Disord 9:80. doi:10.1186/1471-2474-9-80

    PubMed Central  PubMed  Google Scholar 

  72. Siegmund GP, Sanderson DJ, Myers BS, Inglis JT (2003) Rapid neck muscle adaptation alters the head kinematics of aware and unaware subjects undergoing multiple whiplash-like perturbations. J Biomech 36(4):473–482

    PubMed  Google Scholar 

  73. Van der Horst MJ, Thunnissen JGM, Happee R, Van Haaster RMHP, Wismans JSHM (1997) The influence of muscle activity on head-neck response during impact (973346). SAE International, Warrendale

    Google Scholar 

  74. Brolin K, Halldin P, Leijonhufvud I (2005) The effect of muscle activation on neck response. Traffic Inj Prev 6(1):67–76. doi:10.1080/15389580590903203

    PubMed  Google Scholar 

  75. Chancey VC, Nightingale RW, Van Ee CA, Knaub KE, Myers BS (2003) Improved estimation of human neck tensile tolerance: reducing the range of reported tolerance using anthropometrically correct muscles and optimized physiologic initial conditions. Stapp Car Crash J 47:135–153

    PubMed  Google Scholar 

  76. Myers BS, Winkelstein BA (1995) Epidemiology, classification, mechanism, and tolerance of human cervical spine injuries. Crit Rev Biomed Eng 23(5–6):307–409

    CAS  PubMed  Google Scholar 

  77. Nightingale RW, McElhaney JH, Richardson WJ, Myers BS (1996) Dynamic responses of the head and cervical spine to axial impact loading. J Biomech 29(3):307–318

    CAS  PubMed  Google Scholar 

  78. Yamaguchi GT, Carhart MR, Larson R, Richards D, Pierce J, Raasch CC, Scher I, Corrigan CF (2005) Electromyographic activity and posturing of the human neck during rollover tests (2005-01-0302). SAE International, Warrendale

    Google Scholar 

  79. Yoganandan N, Sances A Jr, Maiman DJ, Myklebust JB, Pech P, Larson SJ (1986) Experimental spinal injuries with vertical impact. Spine 11(9):855–860

    CAS  PubMed  Google Scholar 

  80. Nightingale RW, Richardson WJ, Myers BS (1997) The effects of padded surfaces on the risk for cervical spine injury. Spine 22(20):2380–2387

    CAS  PubMed  Google Scholar 

  81. Hu J, Yang KH, Chou CC, King AI (2008) A numerical investigation of factors affecting cervical spine injuries during rollover crashes. Spine 33(23):2529–2535. doi:10.1097/BRS.0b013e318184aca0

    PubMed  Google Scholar 

  82. Brolin K, Hedenstierna S, Halldin P, Bass C, Alem N (2008) The importance of muscle tension on the outcome of impacts with a major vertical component. Int J Crashworthiness 13:487–498

    Google Scholar 

  83. Cholewicki J, McGill SM (1996) Mechanical stability of the in vivo lumbar spine: implications for injury and chronic low back pain. Clin Biomech 11(1):1–15

    Google Scholar 

  84. Dolan P, Adams MA (1993) The relationship between EMG activity and extensor moment generation in the erector spinae muscles during bending and lifting activities. J Biomech 26(4–5):513–522

    CAS  PubMed  Google Scholar 

  85. Nachemson AL (1981) Disc pressure measurements. Spine 6(1):93–97

    CAS  PubMed  Google Scholar 

  86. Schultz A, Andersson G, Ortengren R, Haderspeck K, Nachemson A (1982) Loads on the lumbar spine. Validation of a biomechanical analysis by measurements of intradiscal pressures and myoelectric signals. J Bone Joint Surg (Am Vol) 64(5):713–720

    CAS  Google Scholar 

  87. Patwardhan AG, Havey RM, Meade KP, Lee B, Dunlap B (1999) A follower load increases the load-carrying capacity of the lumbar spine in compression. Spine 24(10):1003–1009

    CAS  PubMed  Google Scholar 

  88. Patwardhan AG, Meade KP, Lee B (2001) A frontal plane model of the lumbar spine subjected to a follower load: implications for the role of muscles. J Biomech Eng 123(3):212–217

    CAS  PubMed  Google Scholar 

  89. Wilke HJ, Wolf S, Claes LE, Arand M, Wiesend A (1995) Stability increase of the lumbar spine with different muscle groups. A biomechanical in vitro study. Spine 20(2):192–198

    CAS  PubMed  Google Scholar 

  90. Mannion AF, Adams MA, Dolan P (2000) Sudden and unexpected loading generates high forces on the lumbar spine. Spine 25(7):842–852

    CAS  PubMed  Google Scholar 

  91. Solomonow M, Zhou BH, Baratta RV, Lu Y, Harris M (1999) Biomechanics of increased exposure to lumbar injury caused by cyclic loading: part 1. Loss of reflexive muscular stabilization. Spine 24(23):2426–2434

    CAS  PubMed  Google Scholar 

  92. Adams MA, Hutton WC (1982) Prolapsed intervertebral disc. A hyperflexion injury 1981 Volvo Award in Basic Science. Spine 7(3):184–191

    CAS  PubMed  Google Scholar 

  93. Adams MA, Hutton WC (1985) Gradual disc prolapse. Spine 10(6):524–531

    CAS  PubMed  Google Scholar 

  94. McNally DS, Adams MA (1992) Internal intervertebral disc mechanics as revealed by stress profilometry. Spine 17(1):66–73

    CAS  PubMed  Google Scholar 

  95. Sato K, Kikuchi S, Yonezawa T (1999) In vivo intradiscal pressure measurement in healthy individuals and in patients with ongoing back problems. Spine 24(23):2468–2474

    CAS  PubMed  Google Scholar 

  96. Wilke HJ, Neef P, Caimi M, Hoogland T, Claes LE (1999) New in vivo measurements of pressures in the intervertebral disc in daily life. Spine 24(8):755–762

    CAS  PubMed  Google Scholar 

  97. Takahashi I, Kikuchi S, Sato K, Sato N (2006) Mechanical load of the lumbar spine during forward bending motion of the trunk-a biomechanical study. Spine 31(1):18–23

    PubMed  Google Scholar 

  98. Kelsey JL (1975) An epidemiological study of acute herniated lumbar intervertebral discs. Rheumatol Rehabil 14(3):144–159

    CAS  PubMed  Google Scholar 

  99. Banks R, Martini J, Smith H, Bowles A, McNish T, Howard R (2000) Alignment of the lumbar vertebrae in a driving posture. J Crash Prev Inj Control 2:123–130

    Google Scholar 

  100. Zenk R, Franz M, Bubb H, Vink P (2012) Technical note: spine loading in automotive seating. Appl Ergon 43(2):290–295. doi:10.1016/j.apergo.2011.06.004

    CAS  PubMed  Google Scholar 

  101. Gates D, Bridges A, Welch TDJ, Lam TM, Scher I, Yamaguchi G (2010) Lumbar loads in low to moderate speed rear impacts (2010-01-0141). SAE International, Warrendale

    Google Scholar 

  102. Szabo TJ, Welcher JB (1996) Human subject kinematics and electromyographic activity during low speed rear impacts (962432). SAE International, Warrendale

    Google Scholar 

  103. Delp SL, Suryanarayanan S, Murray WM, Uhlir J, Triolo RJ (2001) Architecture of the rectus abdominis, quadratus lumborum, and erector spinae. J Biomech 34(3):371–375

    CAS  PubMed  Google Scholar 

  104. Miller CD, Blyth P, Civil ID (2000) Lumbar transverse process fractures – a sentinel marker of abdominal organ injuries. Injury 31(10):773–776

    CAS  PubMed  Google Scholar 

  105. Latimer JA, Tibone JE, Pink MM, Mohr KJ, Perry J (1998) Shoulder reaction time and muscle-firing patterns in response to an anterior translation force. J Shoulder Elb Surg 7:610–615

    CAS  Google Scholar 

  106. Lippitt S, Matsen F (1993) Mechanisms of glenohumeral joint stability. Clin Orthop Relat Res 291:20–28

    PubMed  Google Scholar 

  107. Blasier RB, Soslowsky LJ, Malicky DM, Palmer ML (1997) Posterior glenohumeral subluxation: active and passive stabilization in a biomechanical model. J Bone Joint Surg (Am Vol) 79(3):433–440

    CAS  Google Scholar 

  108. Hindle P, Davidson EK, Biant LC, Court-Brown CM (2013) Appendicular joint dislocations. Injury. doi:10.1016/j.injury.2013.01.043

  109. Ackland DC, Pandy MG (2009) Lines of action and stabilizing potential of the shoulder musculature. J Anat 215(2):184–197. doi:10.1111/j.1469-7580.2009.01090.x

    PubMed Central  PubMed  Google Scholar 

  110. Abboud JA, Soslowsky LJ (2002) Interplay of the static and dynamic restraints in glenohumeral instability. Clin Orthop Relat Res 400:48–57

    PubMed  Google Scholar 

  111. Labriola JE, Lee TQ, Debski RE, McMahon PJ (2005) Stability and instability of the glenohumeral joint: the role of shoulder muscles. J Shoulder Elbow Surg 14(1 Suppl S):32S–38S. doi:10.1016/j.jse.2004.09.014

  112. Rockwood CA Jr, Wirth MA (1996) Subluxations and dislocations about the glenohumeral joint. In: Rockwood and Green’s fractures in adults, 4th edn. Lippincott-Raven, Philadelphia

    Google Scholar 

  113. Bolte JH, Hines MH, McFadden JD, Saul RA (2000) Shoulder response characteristics and injury due to lateral glenohumeral joint impacts. Stapp Car Crash J 44:261–280

    PubMed  Google Scholar 

  114. McMahon PJ, Lee TQ (2002) Muscles may contribute to shoulder dislocation and stability. Clin Orthop Relat Res (403 Suppl):S18–S25

    Google Scholar 

  115. Blasier RB, Guldberg RE, Rothman ED (1992) Anterior shoulder stability: contributions of rotator cuff forces and the capsular ligaments in a cadaver model. J Shoulder Elb Surg 1(3):140–150. doi:10.1016/1058-2746(92)90091-G

    CAS  Google Scholar 

  116. Apreleva M, Parsons IM, Warner JJ, Fu FH, Woo SL (2000) Experimental investigation of reaction forces at the glenohumeral joint during active abduction. J Shoulder Elb Surg 9(5):409–417. doi:10.1067/mse.2000.106321

    CAS  Google Scholar 

  117. van der Helm FC (1994) Analysis of the kinematic and dynamic behavior of the shoulder mechanism. J Biomech 27(5):527–550

    PubMed  Google Scholar 

  118. Parsons IM, Apreleva M, Fu FH, Woo SL (2002) The effect of rotator cuff tears on reaction forces at the glenohumeral joint. J Orthop Res 20(3):439–446. doi:10.1016/S0736-0266(01)00137-1

    CAS  PubMed  Google Scholar 

  119. Sporrong H, Palmerud G, Herberts P (1996) Hand grip increases shoulder muscle activity, An EMG analysis with static hand contractions in 9 subjects. Acta Orthop Scand 67(5):485–490

    CAS  PubMed  Google Scholar 

  120. McMahon PJ, Chow S, Sciaroni L, Yang BY, Lee TQ (2003) A novel cadaveric model for anterior-inferior shoulder dislocation using forcible apprehension positioning. J Rehabil Res Dev 40(4):349–359

    PubMed  Google Scholar 

  121. Myers JB, Riemann BL, Ju YY, Hwang JH, McMahon PJ, Lephart SM (2003) Shoulder muscle reflex latencies under various levels of muscle contraction. Clin Orthop Relat Res 407:92–101

    PubMed  Google Scholar 

  122. Mall NA, Lee AS, Chahal J, Sherman SL, Romeo AA, Verma NN, Cole BJ (2013) An evidenced-based examination of the epidemiology and outcomes of traumatic rotator cuff tears. Arthroscopy 29(2):366–376. doi:10.1016/j.arthro.2012.06.024

    PubMed  Google Scholar 

  123. Ko JY, Huang CC, Chen WJ, Chen CE, Chen SH, Wang CJ (2006) Pathogenesis of partial tear of the rotator cuff: a clinical and pathologic study. J Shoulder Elb Surg 15(3):271–278. doi:10.1016/j.jse.2005.10.013

    Google Scholar 

  124. Lewis JS (2009) Rotator cuff tendinopathy. Br J Sports Med 43(4):236–241. doi:10.1136/bjsm.2008.052175

    CAS  PubMed  Google Scholar 

  125. Blevins FT, Hayes WM, Warren RF (1996) Rotator cuff injury in contact athletes. Am J Sports Med 24(3):263–267

    CAS  PubMed  Google Scholar 

  126. Chiu J, Robinovitch SN (1998) Prediction of upper extremity impact forces during falls on the outstretched hand. J Biomech 31(12):1169–1176

    CAS  PubMed  Google Scholar 

  127. Snyder SJ, Banas MP, Karzel RP (1995) An analysis of 140 injuries to the superior glenoid labrum. J Shoulder Elb Surg 4(4):243–248

    CAS  Google Scholar 

  128. Andrews JR, Carson WG Jr, McLeod WD (1985) Glenoid labrum tears related to the long head of the biceps. Am J Sports Med 13(5):337–341

    CAS  PubMed  Google Scholar 

  129. Jobe FW, Moynes DR, Tibone JE, Perry J (1984) An EMG analysis of the shoulder in pitching. A second report. Am J Sports Med 12(3):218–220

    CAS  PubMed  Google Scholar 

  130. Bey MJ, Elders GJ, Huston LJ, Kuhn JE, Blasier RB, Soslowsky LJ (1998) The mechanism of creation of superior labrum, anterior, and posterior lesions in a dynamic biomechanical model of the shoulder: the role of inferior subluxation. J Shoulder Elb Surg 7(4):397–401

    CAS  Google Scholar 

  131. Clavert P, Bonnomet F, Kempf JF, Boutemy P, Braun M, Kahn JL (2004) Contribution to the study of the pathogenesis of type II superior labrum anterior-posterior lesions: a cadaveric model of a fall on the outstretched hand. J Shoulder Elb Surg 13(1):45–50. doi:10.1016/S1058274603002519

    Google Scholar 

  132. Stueland DT, Stamas P Jr, Welter TM, Cleveland DA (1989) Bilateral humeral fractures from electrically induced muscular spasm. J Emerg Med 7(5):457–459

    CAS  PubMed  Google Scholar 

  133. Tehranzadeh J (1987) The spectrum of avulsion and avulsion-like injuries of the musculoskeletal system. Radiographics 7(5):945–974

    CAS  PubMed  Google Scholar 

  134. Vochteloo AJ, Henket M, Vincken PW, Nagels J (2012) Bony avulsion of the supraspinatus origin from the scapular spine. J Orthop Traumatol 13(1):51–53. doi:10.1007/s10195-011-0173-8

    PubMed Central  PubMed  Google Scholar 

  135. Heyse-Moore GH, Stoker DJ (1982) Avulsion fractures of the scapula. Skelet Radiol 9(1):27–32

    CAS  Google Scholar 

  136. Kelly JP (1954) Fractures complicating electro-convulsive therapy and chronic epilepsy. J Bone Joint Surg Br Vol 36-B(1):70–79

    CAS  Google Scholar 

  137. Salmons S (1995) Muscle. In: Williams PL (ed) Gray’s anatomy, 38th edn. Churchill Livingstone, New York

    Google Scholar 

  138. Alcid JG, Ahmad CS, Lee TQ (2004) Elbow anatomy and structural biomechanics. Clin Sports Med 23(4):503–517. doi:10.1016/j.csm.2004.06.008, vii

    PubMed  Google Scholar 

  139. de Haan J, Schep NW, Eygendaal D, Kleinrensink GJ, Tuinebreijer WE, den Hartog D (2011) Stability of the elbow joint: relevant anatomy and clinical implications of in vitro biomechanical studies. Open Orthop J 5:168–176. doi:10.2174/1874325001105010168

    PubMed Central  PubMed  Google Scholar 

  140. Fornalski S, Gupta R, Lee TQ (2003) Anatomy and biomechanics of the elbow joint. Tech Hand Up Extrem Surg 7(4):168–178

    PubMed  Google Scholar 

  141. Zimmerman NB (2002) Clinical application of advances in elbow and forearm anatomy and biomechanics. Hand Clin 18(1):1–19

    PubMed  Google Scholar 

  142. Bryce CD, Armstrong AD (2008) Anatomy and biomechanics of the elbow. Orthop Clin N Am 39(2):141–154. doi:10.1016/j.ocl.2007.12.001, v

    Google Scholar 

  143. Morrey BF, An KN (1983) Articular and ligamentous contributions to the stability of the elbow joint. Am J Sports Med 11(5):315–319

    CAS  PubMed  Google Scholar 

  144. Safran MR, Baillargeon D (2005) Soft-tissue stabilizers of the elbow. J Shoulder Elbow Surg 14(1 Suppl S):179S–185S. doi:10.1016/j.jse.2004.09.032

  145. Hotchkiss RN (1996) Fractures and dislocations of the elbow. In: Rockwood and Green’s fractures in adults, 4th edn. Lippincott-Raven, Philadelphia

    Google Scholar 

  146. Linscheid RL, Wheeler DK (1965) Elbow dislocations. JAMA 194(11):1171–1176

    CAS  PubMed  Google Scholar 

  147. Chou PH, Chou YL, Lin CJ, Su FC, Lou SZ, Lin CF, Huang GF (2001) Effect of elbow flexion on upper extremity impact forces during a fall. Clin Biomech 16(10):888–894

    CAS  Google Scholar 

  148. Hanson CT, Joslow B, Danoff JV, Alon G (1981) Electromyographic response of the elbow flexors to a changing, dislocating force. Arch Phys Med Rehabil 62(12):631–634

    CAS  PubMed  Google Scholar 

  149. Holmes MW, Keir PJ (2012) Posture and hand load alter muscular response to sudden elbow perturbations. J Electromyogr Kinesiol 22(2):191–198. doi:10.1016/j.jelekin.2011.11.006

    PubMed  Google Scholar 

  150. DeGoede KM, Ashton-Miller JA (2002) Fall arrest strategy affects peak hand impact force in a forward fall. J Biomech 35(6):843–848

    CAS  PubMed  Google Scholar 

  151. Lo J, Ashton-Miller JA (2008) Effect of upper and lower extremity control strategies on predicted injury risk during simulated forward falls: a study in healthy young adults. J Biomech Eng 130(4):041015. doi:10.1115/1.2947275

    PubMed  Google Scholar 

  152. Levy M, Goldberg I, Meir I (1982) Fracture of the head of the radius with a tear or avulsion of the triceps tendon. A new syndrome? J Bone Joint Surg (Br) 64(1):70–72

    CAS  Google Scholar 

  153. Yazdi HR, Qomashi I, Ghorban Hoseini M (2012) Neglected triceps tendon avulsion: case report, literature review, and a new repair method. Am J Orthop 41(7):E96–E99

    PubMed  Google Scholar 

  154. Dietz V, Noth J, Schmidtbleicher D (1981) Interaction between pre-activity and stretch reflex in human triceps brachii during landing from forward falls. J Physiol 311:113–125

    CAS  PubMed Central  PubMed  Google Scholar 

  155. Holmes AM, Andrews DM (2006) The effect of leg muscle activation state and localized muscle fatigue on tibial response during impact. J Appl Biomech 22(4):275–284

    PubMed  Google Scholar 

  156. Milner CE, Ferber R, Pollard CD, Hamill J, Davis IS (2006) Biomechanical factors associated with tibial stress fracture in female runners. Med Sci Sports Exerc 38(2):323–328. doi:10.1249/01.mss.0000183477.75808.92

    PubMed  Google Scholar 

  157. Burkhart TA, Andrews DM (2010) Activation level of extensor carpi ulnaris affects wrist and elbow acceleration responses following simulated forward falls. J Electromyogr Kinesiol 20(6):1203–1210. doi:10.1016/j.jelekin.2010.07.008

    PubMed  Google Scholar 

  158. Hansen U, Zioupos P, Simpson R, Currey JD, Hynd D (2008) The effect of strain rate on the mechanical properties of human cortical bone. J Biomech Eng 130(1):011011. doi:10.1115/1.2838032

    PubMed  Google Scholar 

  159. Conroy C, Schwartz A, Hoyt DB, Brent Eastman A, Pacyna S, Holbrook TL, Vaughan T, Sise M, Kennedy F, Velky T, Erwin S (2007) Upper extremity fracture patterns following motor vehicle crashes differ for drivers and passengers. Injury 38(3):350–357. doi:10.1016/j.injury.2006.03.017

    PubMed  Google Scholar 

  160. McKendrew C, Hines MH, Litsky A, Saul RA (1998) Assessment of forearm injury due to a deploying driver-side airbag (98-S5-O-09). In: Proceedings of the 16th ESV conference, Windsor

    Google Scholar 

  161. Chong M, Broome G, Mahadeva D, Wang S (2011) Upper extremity injuries in restrained front-seat occupants after motor vehicle crashes. J Trauma 70(4):838–844. doi:10.1097/TA.0b013e3181df6848

    PubMed  Google Scholar 

  162. Fleisig GS, Andrews JR, Dillman CJ, Escamilla RF (1995) Kinetics of baseball pitching with implications about injury mechanisms. Am J Sports Med 23(2):233–239

    CAS  PubMed  Google Scholar 

  163. Park MC, Ahmad CS (2004) Dynamic contributions of the flexor-pronator mass to elbow valgus stability. J Bone Joint Surg (Am Vol) 86-A(10):2268–2274

    Google Scholar 

  164. Lin F, Kohli N, Perlmutter S, Lim D, Nuber GW, Makhsous M (2007) Muscle contribution to elbow joint valgus stability. J Shoulder Elb Surg 16(6):795–802. doi:10.1016/j.jse.2007.03.024

    Google Scholar 

  165. Udall JH, Fitzpatrick MJ, McGarry MH, Leba TB, Lee TQ (2009) Effects of flexor-pronator muscle loading on valgus stability of the elbow with an intact, stretched, and resected medial ulnar collateral ligament. J Shoulder Elb Surg 18(5):773–778. doi:10.1016/j.jse.2009.03.008

    Google Scholar 

  166. Stevens MA, El-Khoury GY, Kathol MH, Brandser EA, Chow S (1999) Imaging features of avulsion injuries. Radiographics 19(3):655–672

    CAS  PubMed  Google Scholar 

  167. Ogawa K, Ui M (1996) Fracture-separation of the medial humeral epicondyle caused by arm wrestling. J Trauma 41(3):494–497

    CAS  PubMed  Google Scholar 

  168. Doss WS, Karpovich PV (1965) A comparison of concentric, eccentric, and isometric strength of elbow flexors. J Appl Physiol 20:351–353

    Google Scholar 

  169. Cooney WP, Linscheid RL, Dobyns JH (1996) Fractures and dislocations of the wrist. In: Rockwood and Green’s fractures in adults, 4th edn. Lippincott-Ravel, Philadelphia

    Google Scholar 

  170. Ruby LK (1992) Wrist Biomechanics. Instr Course Lect 41:25–32

    CAS  PubMed  Google Scholar 

  171. Petrie S, Collins J, Solomonow M, Wink C, Chuinard R (1997) Mechanoreceptors in the palmar wrist ligaments. J Bone Joint Surg Br Vol 79(3):494–496

    CAS  Google Scholar 

  172. Salva-Coll G, Garcia-Elias M, Leon-Lopez MT, Llusa-Perez M, Rodriguez-Baeza A (2011) Effects of forearm muscles on carpal stability. J Hand Surg Eur Vol 36(7):553–559. doi:10.1177/1753193411407671

    CAS  PubMed  Google Scholar 

  173. Boggess BM, Sieveka EM, Crandall JR, Pilkey WD, Duma SM (2001) Interaction of the hand and wrist with a door handgrip during static side air bag deployment: simulation study using the CVS/ATB multi-body program (2001-01-0170). SAE International, Warrendale

    Google Scholar 

  174. Sokol JA, Potier P, Robin S, Le Coz JY, Lassau JP (1998) Upper extremity interaction with side impact airbag. IRCOBI, Göteborg

    Google Scholar 

  175. Nikolic V, Hancevic J, Hudec M, Banovie B (1975) Absorption of the impact energy in the palmar soft tissues. Anat Embryol 148(2):215–221

    CAS  PubMed  Google Scholar 

  176. Choi WJ, Robinovitch SN (2011) Pressure distribution over the palm region during forward falls on the outstretched hands. J Biomech 44(3):532–539. doi:10.1016/j.jbiomech.2010.09.011

    CAS  PubMed Central  PubMed  Google Scholar 

  177. McNair PJ, Prapavessis H (1999) Normative data of vertical ground reaction forces during landing from a jump. J Sci Med Sport 2(1):86–88

    CAS  PubMed  Google Scholar 

  178. Ortega DR, Bies ECR, de la Rosa FJB (2010) Analysis of the vertical ground reaction forces and temporal factors in the landing phase of a countermovement jump. J Sports Sci and Med 9:282–287

    Google Scholar 

  179. Armstrong RW, Waters HP, Stapp JP (1968) Human muscular restraint during sled deceleration (680793). SAE International, Warrendale

    Google Scholar 

  180. Schreiber P, Crandall JR, Hurwitz S, Nusholtz GS (1998) Static and dynamic bending strength of the leg. Int J Crashworthiness 3:295–308

    Google Scholar 

  181. Nordsletten L, Ekeland A (1993) Muscle contraction increases the structural capacity of the lower leg: an in vivo study in the rat. J Orthop Res 11(2):299–304. doi:10.1002/jor.1100110218

    CAS  PubMed  Google Scholar 

  182. Morris R, Cross G (2005) Improved understanding of passenger behaviour during pre-impact events to aid smart restraint development (05-0320). In: Proceedings of the 19th ESV conference, Washington, DC

    Google Scholar 

  183. Kitagawa Y, Ichikawa H, Pal C, King AI, Levine RS (1998) Lower leg injuries caused by dynamic axial loading and muscle testing (98-S7-O-09). In: Proceedings of the 16th ESV conference, Windsor

    Google Scholar 

  184. Klopp GS, Crandall JR, Sieveka EM, Pilkey WD (1995) Simulation of muscle tensing in pre-impact bracing. IRCOBI, Brunnen

    Google Scholar 

  185. Tencer AF, Kaufman R, Ryan K, Grossman DC, Henley BM, Mann F, Mock C, Rivara F, Wang S, Augenstein J, Hoyt D, Eastman B, Crash Injury Research and Engineering Network (CIREN) (2002) Femur fractures in relatively low speed frontal crashes: the possible role of muscle forces. Accid Anal Prev 34(1):1–11

    Google Scholar 

  186. Maffulli N, Grewal R (1997) Avulsion of the tibial tuberosity: muscles too strong for a growth plate. Clin J Sport Med 7(2):129–132, discussion 132–133

    CAS  PubMed  Google Scholar 

  187. Nyland JA, Shapiro R, Stine RL, Horn TS, Ireland ML (1994) Relationship of fatigued run and rapid stop to ground reaction forces, lower extremity kinematics, and muscle activation. J Orthop Sports Phys Ther 20(3):132–137

    CAS  PubMed  Google Scholar 

  188. Myer GD, Ford KR, Barber Foss KD, Liu C, Nick TG, Hewett TE (2009) The relationship of hamstrings and quadriceps strength to anterior cruciate ligament injury in female athletes. Clin J Sport Med 19(1):3–8. doi:10.1097/JSM.0b013e318190bddb

    PubMed  Google Scholar 

  189. Anderson K, Strickland SM, Warren R (2001) Hip and groin injuries in athletes. Am J Sports Med 29(4):521–533

    CAS  PubMed  Google Scholar 

  190. Monma H, Sugita T (2001) Is the mechanism of traumatic posterior dislocation of the hip a brake pedal injury rather than a dashboard injury? Injury 32(3):221–222

    CAS  PubMed  Google Scholar 

  191. Pearson JR, Hargadon EJ (1962) Fractures of the pelvis involving the floor of the acetabulum. J Bone Joint Surg Br Vol 44-B:550–561

    CAS  Google Scholar 

  192. Mader TJ, Booth J, Gaudet C, Hynds-Decoteau R (2006) Seizure-induced acetabular fractures: 5-year experience and literature review. Am J Emerg Med 24(2):230–232. doi:10.1016/j.ajem.2005.10.011

    PubMed  Google Scholar 

  193. Hsiao ET, Robinovitch SN (1998) Common protective movements govern unexpected falls from standing height. J Biomech 31(1):1–9

    CAS  PubMed  Google Scholar 

  194. Robinovitch SN, Normandin SC, Stotz P, Maurer JD (2005) Time requirement for young and elderly women to move into a position for breaking a fall with outstretched hands. J Gerontol A: Biol Med Sci 60(12):1553–1557

    Google Scholar 

  195. Robinovitch SN, Brumer R, Maurer J (2004) Effect of the “squat protective response” on impact velocity during backward falls. J Biomech 37(9):1329–1337. doi:10.1016/j.jbiomech.2003.12.015

    PubMed  Google Scholar 

  196. Robinovitch SN, Hayes WC, McMahon TA (1991) Prediction of femoral impact forces in falls on the hip. J Biomech Eng 113(4):366–374

    CAS  PubMed  Google Scholar 

  197. Robinovitch SN, Hayes WC, McMahon TA (1997) Distribution of contact force during impact to the hip. Ann Biomed Eng 25(3):499–508

    CAS  PubMed  Google Scholar 

  198. Robinovitch SN, McMahon TA, Hayes WC (1995) Force attenuation in trochanteric soft tissues during impact from a fall. J Orthop Res 13(6):956–962. doi:10.1002/jor.1100130621

    CAS  PubMed  Google Scholar 

  199. Etheridge BS, Beason DP, Lopez RR, Alonso JE, McGwin G, Eberhardt AW (2005) Effects of trochanteric soft tissues and bone density on fracture of the female pelvis in experimental side impacts. Ann Biomed Eng 33(2):248–254

    PubMed  Google Scholar 

  200. Song E, Fontaine L, Troseille X, Guillemot H (2005) Pelvis bone fracture modeling in lateral impact. In: Proceedings of the 19th ESV conference, Washington, DC

    Google Scholar 

  201. Chang CY, Rupp JD, Reed MP, Hughes RE, Schneider LW (2009) Predicting the effects of muscle activation on knee, thigh, and hip injuries in frontal crashes using a finite-element model with muscle forces from subject testing and musculoskeletal modeling. Stapp Car Crash J 53:291–328

    PubMed  Google Scholar 

  202. Beeman SM, Kemper AR, Madigan ML, Duma SM (2011) Effects of bracing on human kinematics in low-speed frontal sled tests. Ann Biomed Eng 39(12):2998–3010. doi:10.1007/s10439-011-0379-1

    PubMed  Google Scholar 

  203. Pope MH, Johnson RJ, Brown DW, Tighe C (1979) The role of the musculature in injuries to the medial collateral ligament. J Bone Joint Surg (Am Vol) 61(3):398–402

    CAS  Google Scholar 

  204. Alentorn-Geli E, Myer GD, Silvers HJ, Samitier G, Romero D, Lazaro-Haro C, Cugat R (2009) Prevention of non-contact anterior cruciate ligament injuries in soccer players. Part 1: mechanisms of injury and underlying risk factors. Knee Surg Sports Traumatol Arthrosc 17(7):705–729. doi:10.1007/s00167-009-0813-1

    PubMed  Google Scholar 

  205. Lephart SM, Abt JP, Ferris CM (2002) Neuromuscular contributions to anterior cruciate ligament injuries in females. Curr Opin Rheumatol 14(2):168–173

    PubMed  Google Scholar 

  206. Shimokochi Y, Shultz SJ (2008) Mechanisms of noncontact anterior cruciate ligament injury. J Athl Train 43(4):396–408. doi:10.4085/1062-6050-43.4.396

    PubMed Central  PubMed  Google Scholar 

  207. Colby S, Francisco A, Yu B, Kirkendall D, Finch M, Garrett W Jr (2000) Electromyographic and kinematic analysis of cutting maneuvers. Implications for anterior cruciate ligament injury. Am J Sports Med 28(2):234–240

    CAS  PubMed  Google Scholar 

  208. Li G, Rudy TW, Sakane M, Kanamori A, Ma CB, Woo SL (1999) The importance of quadriceps and hamstring muscle loading on knee kinematics and in-situ forces in the ACL. J Biomech 32(4):395–400

    CAS  PubMed  Google Scholar 

  209. DeMorat G, Weinhold P, Blackburn T, Chudik S, Garrett W (2004) Aggressive quadriceps loading can induce noncontact anterior cruciate ligament injury. Am J Sports Med 32(2):477–483

    PubMed  Google Scholar 

  210. Fujiya H, Kousa P, Fleming BC, Churchill DL, Beynnon BD (2011) Effect of muscle loads and torque applied to the tibia on the strain behavior of the anterior cruciate ligament: an in vitro investigation. Clin Biomech 26:1005–1011

    Google Scholar 

  211. Ahmad CS, Clark AM, Heilmann N, Schoeb JS, Gardner TR, Levine WN (2006) Effect of gender and maturity on quadriceps-to-hamstring strength ratio and anterior cruciate ligament laxity. Am J Sports Med 34(3):370–374. doi:10.1177/0363546505280426

    PubMed  Google Scholar 

  212. Chappell JD, Creighton RA, Giuliani C, Yu B, Garrett WE (2007) Kinematics and electromyography of landing preparation in vertical stop-jump: risks for noncontact anterior cruciate ligament injury. Am J Sports Med 35(2):235–241. doi:10.1177/0363546506294077

    PubMed  Google Scholar 

  213. Myer GD, Ford KR, Hewett TE (2005) The effects of gender on quadriceps muscle activation strategies during a maneuver that mimics a high ACL injury risk position. J Electromyogr Kinesiol 15(2):181–189. doi:10.1016/j.jelekin.2004.08.006

    PubMed  Google Scholar 

  214. Arendt EA, Agel J, Dick R (1999) Anterior cruciate ligament injury patterns among collegiate men and women. J Athl Train 34(2):86–92

    CAS  PubMed Central  PubMed  Google Scholar 

  215. Rozzi SL, Lephart SM, Fu FH (1999) Effects of muscular fatigue on knee joint laxity and neuromuscular characteristics of male and female athletes. J Athl Train 34(2):106–114

    CAS  PubMed Central  PubMed  Google Scholar 

  216. Thomas AC, McLean SG, Palmieri-Smith RM (2010) Quadriceps and hamstrings fatigue alters hip and knee mechanics. J Appl Biomech 26(2):159–170

    PubMed  Google Scholar 

  217. Cowling EJ, Steele JR, McNair PJ (2003) Effect of verbal instructions on muscle activity and risk of injury to the anterior cruciate ligament during landing. Br J Sports Med 37(2):126–130

    CAS  PubMed Central  PubMed  Google Scholar 

  218. Gilchrist J, Mandelbaum BR, Melancon H, Ryan GW, Silvers HJ, Griffin LY, Watanabe DS, Dick RW, Dvorak J (2008) A randomized controlled trial to prevent noncontact anterior cruciate ligament injury in female collegiate soccer players. Am J Sports Med 36(8):1476–1483. doi:10.1177/0363546508318188

    PubMed  Google Scholar 

  219. Holcomb WR, Rubley MD, Lee HJ, Guadagnoli MA (2007) Effect of hamstring-emphasized resistance training on hamstring:quadriceps strength ratios. J Strength Cond Res 21(1):41–47. doi:10.1519/R-18795.1

    PubMed  Google Scholar 

  220. Ruan JS, El-Jawahri R, Barbat S, Rouhana SW, Prasad P (2008) Impact response and biomechanical analysis of the knee-thigh-hip complex in frontal impacts with a full human body finite element model. Stapp Car Crash J 52:505–526

    PubMed  Google Scholar 

  221. Mukherjee S, Chawla A, Karthikeyan B, Soni A (2007) Finite element crash simulations of the human body: passive and active muscle modelling. Sadhana 32:409–426

    Google Scholar 

  222. Soni A, Chawla A, Mukherjee S (2006) Effect of active muscle forces on the response of knee joint at low-speed lateral impacts (2006-01-0460). SAE International, Warrendale

    Google Scholar 

  223. Soni A, Chawla A, Mukherjee S, Malhotra R (2009) Sensitivity analysis of muscle parameters and identification of effective muscles in low speed lateral impact at just below the knee (2009-01-1211). SAE International, Warrendale

    Google Scholar 

  224. Chawla A, Mukherjee S, Soni A, Malhotra R (2008) Effect of active muscle forces on knee injury risks for pedestrian standing posture at low-speed impacts. Traffic Inj Prev 9(6):544–551. doi:10.1080/15389580802338228

    PubMed  Google Scholar 

  225. Hand WL, Hand CR, Dunn AW (1971) Avulsion fractures of the tibial tubercle. J Bone Joint Surg (Am Vol) 53(8):1579–1583

    CAS  Google Scholar 

  226. Shields CL, Ashby ME (1975) Diagnosis in patellar tendon avulsion. J Natl Med Assoc 67(3):231–232

    CAS  PubMed Central  PubMed  Google Scholar 

  227. Zernicke RF, Garhammer J, Jobe FW (1977) Human patellar-tendon rupture. J Bone Joint Surg (Am Vol) 59(2):179–183

    CAS  Google Scholar 

  228. Abboud J (2002) Relevant foot biomechanics. Curr Orthop 16:165–179

    Google Scholar 

  229. Andersen TE, Floerenes TW, Arnason A, Bahr R (2004) Video analysis of the mechanisms for ankle injuries in football. Am J Sports Med 32(1 Suppl):69S–79S

    PubMed  Google Scholar 

  230. Bahr R, Krosshaug T (2005) Understanding injury mechanisms: a key component of preventing injuries in sport. Br J Sports Med 39(6):324–329. doi:10.1136/bjsm.2005.018341

    CAS  PubMed Central  PubMed  Google Scholar 

  231. de Asla RJ, Kozanek M, Wan L, Rubash HE, Li G (2009) Function of anterior talofibular and calcaneofibular ligaments during in-vivo motion of the ankle joint complex. J Orthop Surg Res 4:7. doi:10.1186/1749-799X-4-7

    PubMed Central  PubMed  Google Scholar 

  232. Fong DT, Ha SC, Mok KM, Chan CW, Chan KM (2012) Kinematics analysis of ankle inversion ligamentous sprain injuries in sports: five cases from televised tennis competitions. Am J Sports Med 40(11):2627–2632. doi:10.1177/0363546512458259

    PubMed  Google Scholar 

  233. Kristianslund E, Bahr R, Krosshaug T (2011) Kinematics and kinetics of an accidental lateral ankle sprain. J Biomech 44(14):2576–2578. doi:10.1016/j.jbiomech.2011.07.014

    PubMed  Google Scholar 

  234. Gehring D, Wissler S, Mornieux G, Gollhofer A (2013) How to sprain your ankle – a biomechanical case report of an inversion trauma. J Biomech 46(1):175–178. doi:10.1016/j.jbiomech.2012.09.016

    CAS  PubMed  Google Scholar 

  235. Mitchell A, Dyson R, Hale T, Abraham C (2008) Biomechanics of ankle instability. Part 1: reaction time to simulated ankle sprain. Med Sci Sports Exerc 40(8):1515–1521

    PubMed  Google Scholar 

  236. Baumhauer JF, Alosa DM, Renstrom AF, Trevino S, Beynnon B (1995) A prospective study of ankle injury risk factors. Am J Sports Med 23(5):564–570

    CAS  PubMed  Google Scholar 

  237. Willems TM, Witvrouw E, Delbaere K, Mahieu N, De Bourdeaudhuij I, De Clercq D (2005) Intrinsic risk factors for inversion ankle sprains in male subjects: a prospective study. Am J Sports Med 33(3):415–423

    PubMed  Google Scholar 

  238. Gefen A (2002) Biomechanical analysis of fatigue-related foot injury mechanisms in athletes and recruits during intensive marching. Med Biol Eng Comput 40:302–310

    CAS  PubMed  Google Scholar 

  239. Leppilahti J, Orava S (1998) Total Achilles tendon rupture. A review. Sports Med 25(2):79–100

    CAS  PubMed  Google Scholar 

  240. Arndt AN, Komi PV, Bruggemann GP, Lukkariniemi J (1998) Individual muscle contributions to the in vivo Achilles tendon force. Clin Biomech 13(7):532–541

    Google Scholar 

  241. Manning PW (1998) Dynamic response and injury mechanism in the human foot and ankle and an analysis of dummy biofidelity. In: Proceedings of the 16th ESV conference, Windsor

    Google Scholar 

  242. McMaster J, Parry M, Wallace WA, Wheeler L, Owen C, Lowne R, Oakley C, Roberts AK (2000) Biomechanics of ankle and hindfoot injuries in dynamic axial loading. Stapp Car Crash J 44:357–377

    CAS  PubMed  Google Scholar 

  243. Funk JR, Crandall JR, Tourret LJ, MacMahon CB, Bass CR, Khaewpong N, Eppinger RH (2001) The effect of active muscle tension on the axial injury tolerance of the human foot/ankle complex (237). In: Proceedings of the 17th ESV conference, Amsterdam

    Google Scholar 

  244. Chandler RF, Christian RA (1970) Crash testing of humans in automotive seats (700361). SAE International, Warrendale

    Google Scholar 

  245. Shaw G, Lessley D, Crandall J, Kent R, Kitis L (2005) Elimination of thoracic muscle tensing effects for frontal crash dummies. SAE, Warrendale

    Google Scholar 

  246. Kent R, Bass C, Woods W, Salzar R, Melvin J (2004) The role of muscle tensing on the force deflection response of the thorax and a reassessment of frontal impact biofidelity corridors. In: IRCOBI conference on the biomechanics, Graz, Austria

    Google Scholar 

  247. Choi HY, Sah SJ, Lee B, Cho HS, Kang SJ, Mun MS, Lee I, Lee J (2005) Experimental and numerical studies of muscular activations of bracing occupants (05-0139). In: Proceedings of the 19th ESV conference, Washington, DC

    Google Scholar 

  248. Hault-Dubrulle A, Robache F, Drazetic P, Morvan H (2009) Pre-crash phase analysis using a driving simulator. Influence of atypical position on injuries and airbag adaptation (09-0534). In: Proceedings of the 21st ESV conference, Stuttgart

    Google Scholar 

  249. Iwamoto M, Nakahira Y, Sugiyama T (2011) Investigation of pre-impact bracing effects for injury outcome using an active human FE model with 3D geometry of muscles (11-0150). In: Proceedings of the 22nd ESV conference, Washington, DC

    Google Scholar 

  250. Bose D, Crandall JR (2008) Influence of active muscle contribution on the injury response of restrained car occupants. Ann Adv Automot Med 52:61–72

    PubMed Central  PubMed  Google Scholar 

  251. Bose D, Crandall JR, Untaroiu CD, Maslen EH (2010) Influence of pre-collision occupant parameters on injury outcome in a frontal collision. Accid Anal Prev 42(4):1398–1407. doi:10.1016/j.aap.2010.03.004

    CAS  PubMed  Google Scholar 

  252. Ejima S, Zama Y, Ono K, Kaneoka K, Shiina I, Asada H (2009) Prediction of pre-impact occupant kinematic behavior based on the muscle activity during frontal collision (09-0913). In: Proceedings of the 21st ESV conference, Stuttgart

    Google Scholar 

  253. Osth J, Brolin K, Carlsson S, Wismans J, Davidsson J (2012) The occupant response to autonomous braking: a modeling approach that accounts for active musculature. Traffic Inj Prev 13(3):265–277. doi:10.1080/15389588.2011.649437

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunter P. Siegmund Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Siegmund, G.P., Chimich, D.D., Elkin, B.S. (2015). Role of Muscles in Accidental Injury. In: Yoganandan, N., Nahum, A., Melvin, J. (eds) Accidental Injury. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1732-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1732-7_21

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1731-0

  • Online ISBN: 978-1-4939-1732-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics