Skip to main content

Thoracolumbar Pain: Neural Mechanisms and Biomechanics

  • Chapter
  • First Online:
  • 3285 Accesses

Abstract

Based on extensive research the anatomic components that have been considered to cause back pain include the intervertebral disks, paraspinal muscles, spinal ligaments, facet joint capsules, dorsal roots and dorsal root ganglia. While mechanical strain is an important causative factor in the initiation of spinal pain, biochemical irritation plays an important role in sensitizing nerve endings in the injured tissue. In addition, central sensitization at the spinal cord level can be an important contributor to persistent spinal pain. The mechanical input that results in back pain includes both acute mechanical loading and repetitive cyclic loading. The latter is particularly important in disc injury and degeneration and in muscle fatigue to the lumbar spine. In this chapter the biomechanics and neural mechanisms of thoracolumbar pain are described in the following order: (1) mechanisms of pain initiation and maintenance (nociceptive pain vs. neuropathic pain, acute vs. chronic pain, peripheral sensitization, central sensitization), (2) biomechanics of noxious loading of the thoraco-lumbar spine, (3) joint, ligament and skeletal pain (involving intervertebral disc, anterior and posterior longitudinal ligaments, ligamentum flavum, dura, facet joints, bone and periosteum), (4) neuropathic pain (involving nerve roots and dorsal root ganglia) and (5) muscle pain. Further research is required to better characterize the relationship between measured mechanical input to tissues of the spine and the molecular, histological and neurophysiologic outcomes that result in spinal pain. This understanding can help in the development of preventive strategies to reduce the risk of spinal injury and pain.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Relieving pain in America: a blueprint for transforming prevention, care, education and research. Committee on Advancing Pain Research, Care and Eduation; Insititute of Medicine, The National Academies; The National Academies Press; Washington, DC, 2011

    Google Scholar 

  2. Hoy D, Bain C, Williams G, et al. A systematic review of the global prevalence of low back pain. Arthritis Rheum 2012; 64:2028–2037

    Google Scholar 

  3. Merskey H, Lindblom U, Mumford JM, et al (1994) Part III: Pain terms, a current list with definitions and notes on usage. In: Merskey H, Bogduk N (eds) Classification of chronic pain, 2nd edn. IASP Task Force on Taxonomy, Seattle, pp 209–214

    Google Scholar 

  4. Kandel E, Schwartz J, Jessel T, Siegelbaum S, Hudspeth A (2013) Principles of neural science, 5th edn. McGraw-Hill, New York

    Google Scholar 

  5. Ringkamp MRS, Campbell JN, Meyer RA (2013) Peripheral mechanisms of cutaneous nociception. Wall and Melzack’s textbook of pain, 6th edn. Elsevier/Saunders, Philadelphia

    Google Scholar 

  6. Golan DE, Tashjian AH, Armstrong EF (2007) Principles of pharmacology: the pharmacologic basis of drug therapy. 2nd edn. Wolters Kluwer Health, Baltimore

    Google Scholar 

  7. Cavanaugh JM (1995) Neural mechanisms of lumbar pain. Spine 20(16):1804–1809

    CAS  PubMed  Google Scholar 

  8. Eiband AM (1959) Human tolerance to rapidly applied accelerations: a summary of the literature. National Aeronautics and Space Administration, Washington (Memorandum 5-19-59E)

    Google Scholar 

  9. EwingCL, King AI, Prasad P (1972) Structural considerations of the human vertebral column under +gz impact acceleration. J Aircraft 9:84–90

    Google Scholar 

  10. Vulcan AP, King AI, Nakamura GS (1970) Effects of bending on the vertebral column during +gz acceleration. Aerosp Med 41(3):294–300

    Google Scholar 

  11. Prasad P, King AI, Ewing CL (1974) The role of articular facets during +Gz acceleration. J Appl Mech 41(2):321–326. doi:10.1115/1.3423284

    Google Scholar 

  12. Yang KH, King AI (1984) Mechanism of facet load transmission as a hypothesis for low back pain. Spine 9(6):557–565

    CAS  PubMed  Google Scholar 

  13. Prasad P, King AI (1974) An experimentally validated dynamic model of the spine. J Appl Mech 41:546–550

    Google Scholar 

  14. Begeman P, King AI, and Prasad P (1973) Spinal loads resulting from -gx acceleration. SAE Technical Paper 730977, Society of Automotive Engineers, Warrendale, PA

    Google Scholar 

  15. Miniaci A, McLaren AC (1989) Anterolateral compression fracture of the thoracolumbar spine. A seat belt injury. Clin Orthop Relat Res 240:153–156

    PubMed  Google Scholar 

  16. Freemont AJ (2009) The cellular pathobiology of the degenerate intervertebral disc and discogenic back pain. Rheumatology 48(1):5–10. doi:10.1093/rheumatology/ken396

    CAS  PubMed  Google Scholar 

  17. Henzel JH, Mohr GC, von Gierke HE (1968) Reappraisal of biodynamic implications of human ejections. Aerosp Med 39(3):231–240

    CAS  PubMed  Google Scholar 

  18. Yoganandan N, Pintar F, Sances A, Maiman D, Myklebust J, Harris G, Ray G (1988) Biomechanical investigations of the human thoracolumbar spine. SAE technical paper (881331)

    Google Scholar 

  19. Brinckmann P (1986) Injury of the annulus fibrosus and disc protrusions. An in vitro investigation on human lumbar discs. Spine (Phila Pa 1976) 11(2):149–153

    CAS  Google Scholar 

  20. Adams MA, Hutton WC (1982) Prolapsed intervertebral disc: a hyperflexion injury. Spine 7(3):184–191

    CAS  PubMed  Google Scholar 

  21. Gordon SJ, Yang KH, Mayer PJ, Mace AH Jr, Kish VL, Radin EL (1991) Mechanism of disc rupture. A preliminary report. Spine (Phila Pa 1976) 16(4):450–456

    CAS  Google Scholar 

  22. Callaghan JP, McGill SM (2001) Intervertebral disc herniation: studies on a porcine model exposed to highly repetitive flexion/extension motion with compressive force. Clin Biomech (Bristol, Avon) 16(1):28–37

    CAS  Google Scholar 

  23. Bogduk N, Aprill C, Derby R (2013) Lumbar discogenic pain: state-of-the-art review. Pain Med. doi:10.1111/pme.12082

    Google Scholar 

  24. Wiberg G (1949) Back pain in relation to the nerve supply of the intervertebral disc. Acta Orthop Scand 19(2):211–221, illust

    CAS  PubMed  Google Scholar 

  25. Roofe PG (1940) Innervation of annulus fibrosus and posterior longitudinal ligament. Arch Neurol Psychiat 44:100

    Google Scholar 

  26. Ehrenhaft JL (1943) Development of the vertebral column as related to certain congenital and pathological changes. Surg Gynecol Obst 76:282–292

    Google Scholar 

  27. Jung A, Brunschwig A (1932) Recherches histologiques sur l’innervation des articulations des corps vertebraux. Presse medicale 1:316–317

    Google Scholar 

  28. Kumar S, Davis PR (1973) Lumbar vertebral innervation and intra-abdominal pressure. J Anat 114(Pt 1):47–53

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Mulligan JH (1957) The innervation of the ligaments attached to the bodies of the vertebrae. J Anat 91(4):455–465

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Stilwell DL (1956) The nerve supply of the vertebral column and its associated structures in the monkey. Anat Rec 125(139–169)

    Google Scholar 

  31. Yoshizawa H, O’Brien JP, Smith WT, Trumper M (1980) The neuropathology of intervertebral discs removed for low-back pain. J Pathol 132(2):95–104. doi:10.1002/path.1711320202

    CAS  PubMed  Google Scholar 

  32. Bogduk N, Tynan W, Wilson AS (1981) The nerve supply to the human lumbar intervertebral discs. J Anat 132(Pt 1):39–56

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Bogduk N (1983) The innervation of the lumbar spine. Spine 8(3):286–293

    CAS  PubMed  Google Scholar 

  34. Kojima Y, Maeda T, Arai R, Shichikawa K (1990) Nerve supply to the posterior longitudinal ligament and the intervertebral disc of the rat vertebral column as studied by acetylcholinesterase histochemistry. I. Distribution in the lumbar region. J Anat 169:237–246

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Morinaga T, Takahashi K, Yamagata M, Chiba T, Tanaka K, Takahashi Y, Nakamura S, Suseki K, Moriya H (1996) Sensory innervation to the anterior portion of lumbar intervertebral disc. Spine 21(16):1848–1851

    CAS  PubMed  Google Scholar 

  36. Ohtori S, Takahashi Y, Takahashi K, Yamagata M, Chiba T, Tanaka K, Hirayama J, Moriya H (1999) Sensory innervation of the dorsal portion of the lumbar intervertebral disc in rats. Spine 24(22):2295–2299

    CAS  PubMed  Google Scholar 

  37. Ohtori S, Takahashi K, Chiba T, Yamagata M, Sameda H, Moriya H (2001) Sensory innervation of the dorsal portion of the lumbar intervertebral discs in rats. Spine 26(8):946–950

    CAS  PubMed  Google Scholar 

  38. Ashton IK, Roberts S, Jaffray DC, Polak JM, Eisenstein SM (1994) Neuropeptides in the human intervertebral disc. Journal Orthop Res 12(2):186–192. doi:10.1002/jor.1100120206

    CAS  Google Scholar 

  39. Willenegger S, Friess AE, Lang J, Stoffel MH (2005) Immunohistochemical demonstration of lumbar intervertebral disc innervation in the dog. Anat Histol Embryol 34(2):123–128. doi:10.1111/j.1439-0264.2004.00593.x

    CAS  PubMed  Google Scholar 

  40. Palmgren T, Gronblad M, Virri J, Kaapa E, Karaharju E (1999) An immunohistochemical study of nerve structures in the anulus fibrosus of human normal lumbar intervertebral discs. Spine 24(20):2075–2079

    CAS  PubMed  Google Scholar 

  41. Cavanaugh JM, Kallakuri S, Ozaktay AC (1995) Innervation of the rabbit lumbar intervertebral disc and posterior longitudinal ligament. Spine 20(19):2080–2085

    CAS  PubMed  Google Scholar 

  42. Dimitroulias A, Tsonidis C, Natsis K, Venizelos I, Djau SN, Tsitsopoulos P (2010) An immunohistochemical study of mechanoreceptors in lumbar spine intervertebral discs. J Clin Neurosci 17(6):742–745. doi:10.1016/j.jocn.2009.09.032

    CAS  PubMed  Google Scholar 

  43. Hirsch C, Ingelmark BE, Miller M (1963) The anatomical basis for low back pain. Studies on the presence of sensory nerve endings in ligamentous, capsular and intervertebral disc structures in the human lumbar spine. Acta Orthop Scand 33:1–17

    CAS  PubMed  Google Scholar 

  44. Jackson HC 2nd, Winkelmann RK, Bickel WH (1966) Nerve endings in the human lumbar spinal column and related structures. J Bone Joint Surg Am 48(7):1272–1281

    PubMed  Google Scholar 

  45. Malinsky J (1959) The ontogenetic development of nerve terminations in the intervertebral discs of man. (Histology of intervertebral discs, 11th communication). Acta Anat (Basel) 38:96–113

    CAS  Google Scholar 

  46. Roberts S, Eisenstein SM, Menage J, Evans EH, Ashton IK (1995) Mechanoreceptors in intervertebral discs. Morphology, distribution, and neuropeptides. Spine 20(24):2645–2651

    CAS  PubMed  Google Scholar 

  47. Mooney V (1987) Presidential address. International Society for the Study of the Lumbar Spine. Dallas, 1986. Where is the pain coming from? Spine 12(8):754–759

    CAS  PubMed  Google Scholar 

  48. Kuslich SD, Ulstrom CL, Michael CJ (1991) The tissue origin of low back pain and sciatica: a report of pain response to tissue stimulation during operations on the lumbar spine using local anesthesia. Orthop Clin North Am 22(2):181–187

    CAS  PubMed  Google Scholar 

  49. DePalma MJ, Lee JE, Peterson L, Wolfer L, Ketchum JM, Derby R (2009) Are outer annular fissures stimulated during diskography the source of diskogenic low-back pain? An analysis of analgesic diskography data. Pain Med 10(3):488–494. doi:10.1111/j.1526-4637.2009.00602.x

    PubMed  Google Scholar 

  50. Peng BG (2013) Pathophysiology, diagnosis, and treatment of discogenic low back pain. World J Orthop 4(2):42–52. doi:10.5312/wjo.v4.i2.42

    PubMed Central  PubMed  Google Scholar 

  51. Hadjipavlou AG, Tzermiadianos MN, Bogduk N, Zindrick MR (2008) The pathophysiology of disc degeneration: a critical review. J Bone Joint Surg 90(10):1261–1270. doi:10.1302/0301-620X.90B10.20910

    CAS  Google Scholar 

  52. Matrisian LM (1990) Metalloproteinases and their inhibitors in matrix remodeling. Trends Genet 6(4):121–125

    CAS  PubMed  Google Scholar 

  53. Goupille P, Jayson MI, Valat JP, Freemont AJ (1998) Matrix metalloproteinases: the clue to intervertebral disc degeneration? Spine 23(14):1612–1626

    CAS  PubMed  Google Scholar 

  54. Kang JD, Stefanovic-Racic M, McIntyre LA, Georgescu HI, Evans CH (1997) Toward a biochemical understanding of human intervertebral disc degeneration and herniation. Contributions of nitric oxide, interleukins, prostaglandin E2, and matrix metalloproteinases. Spine 22(10):1065–1073

    CAS  PubMed  Google Scholar 

  55. Kang JD, Georgescu HI, McIntyre-Larkin L, Stefanovic-Racic M, Donaldson WF 3rd, Evans CH (1996) Herniated lumbar intervertebral discs spontaneously produce matrix metalloproteinases, nitric oxide, interleukin-6, and prostaglandin E2. Spine 21(3):271–277

    CAS  PubMed  Google Scholar 

  56. Kanemoto M, Hukuda S, Komiya Y, Katsuura A, Nishioka J (1996) Immunohistochemical study of matrix metalloproteinase-3 and tissue inhibitor of metalloproteinase-1 human intervertebral discs. Spine 21(1):1–8

    CAS  PubMed  Google Scholar 

  57. Doita M, Kanatani T, Harada T, Mizuno K (1996) Immunohistologic study of the ruptured intervertebral disc of the lumbar spine. Spine 21(2):235–241

    CAS  PubMed  Google Scholar 

  58. Podichetty VK (2007) The aging spine: the role of inflammatory mediators in intervertebral disc degeneration. Cell Mol Biol 53(5):4–18

    CAS  PubMed  Google Scholar 

  59. Garcia-Cosamalon J, del Valle ME, Calavia MG, Garcia-Suarez O, Lopez-Muniz A, Otero J, Vega JA (2010) Intervertebral disc, sensory nerves and neurotrophins: who is who in discogenic pain? J Anat 217(1):1–15. doi:10.1111/j.1469-7580.2010.01227.x

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Schroeder M, Viezens L, Schaefer C, Friedrichs B, Algenstaedt P, Ruther W, Wiesner L, Hansen-Algenstaedt N (2013) Chemokine profile of disc degeneration with acute or chronic pain. J Neurosurg Spine 18(5):496–503. doi:10.3171/2013.1.SPINE12483

    PubMed  Google Scholar 

  61. Richardson SM, Doyle P, Minogue BM, Gnanalingham K, Hoyland JA (2009) Increased expression of matrix metalloproteinase-10, nerve growth factor and substance P in the painful degenerate intervertebral disc. Arthritis Res Ther 11(4):R126. doi:10.1186/ar2793

    PubMed Central  PubMed  Google Scholar 

  62. Nilsson E, Nakamae T, Olmarker K (2011) Pain behavior changes following disc puncture relate to nucleus pulposus rather than to the disc injury per se: an experimental study in rats. Open Orthop J 5:72–77. doi:10.2174/1874325001105010072

    PubMed Central  PubMed  Google Scholar 

  63. Olmarker K (2008) Puncture of a lumbar intervertebral disc induces changes in spontaneous pain behavior: an experimental study in rats. Spine 33(8):850–855. doi:10.1097/BRS.0b013e31816b46ca

    PubMed  Google Scholar 

  64. Nakamae T, Ochi M, Olmarker K (2011) Pharmacological inhibition of tumor necrosis factor may reduce pain behavior changes induced by experimental disc puncture in the rat: an experimental study in rats. Spine 36(4):E232–E236. doi:10.1097/BRS.0b013e3181d8bef3

    PubMed  Google Scholar 

  65. Murata Y, Onda A, Rydevik B, Takahashi K, Olmarker K (2004) Selective inhibition of tumor necrosis factor-alpha prevents nucleus pulposus-induced histologic changes in the dorsal root ganglion. Spine 29(22):2477–2484

    PubMed  Google Scholar 

  66. Olmarker K, Nutu M, Storkson R (2003) Changes in spontaneous behavior in rats exposed to experimental disc herniation are blocked by selective TNF-alpha inhibition. Spine 28(15):1635–1641; discussion 1642. doi:10.1097/01.BRS.0000083162.35476.FF

    PubMed  Google Scholar 

  67. Kayama S, Konno S, Olmarker K, Yabuki S, Kikuchi S (1996) Incision of the anulus fibrosus induces nerve root morphologic, vascular, and functional changes. An experimental study. Spine 21(22):2539–2543

    CAS  PubMed  Google Scholar 

  68. Olmarker K, Brisby H, Yabuki S, Nordborg C, Rydevik B (1997) The effects of normal, frozen, and hyaluronidase-digested nucleus pulposus on nerve root structure and function. Spine 22(5):471–475; discussion 476

    CAS  PubMed  Google Scholar 

  69. Konttinen YT, Gronblad M, Antti-Poika I, Seitsalo S, Santavirta S, Hukkanen M, Polak JM (1990) Neuroimmunohistochemical analysis of peridiscal nociceptive neural elements. Spine 15(5):383–386

    CAS  PubMed  Google Scholar 

  70. Lee JM, Song JY, Baek M, Jung HY, Kang H, Han IB, Kwon YD, Shin DE (2011) Interleukin-1beta induces angiogenesis and innervation in human intervertebral disc degeneration. J Orthop Res 29(2):265–269. doi:10.1002/jor.21210

    CAS  PubMed  Google Scholar 

  71. Wallach D, Arumugam TU, Boldin MP, Cantarella G, Ganesh KA, Goltsev Y, Goncharov TM, Kovalenko AV, Rajput A, Varfolomeev EE, Zhang SQ (2002) How are the regulators regulated? The search for mechanisms that impose specificity on induction of cell death and NF-kappaB activation by members of the TNF/NGF receptor family. Arthritis Res 4(Suppl 3):S189–S196

    PubMed Central  PubMed  Google Scholar 

  72. Higuchi K, Sato T (2002) Anatomical study of lumbar spine innervation. Folia Morphol 61(2):71–79

    Google Scholar 

  73. Kallakuri S, Cavanaugh JM, Blagoev DC (1998) An immunohistochemical study of innervation of lumbar spinal dura and longitudinal ligaments. Spine 23(4):403–411

    CAS  PubMed  Google Scholar 

  74. Czyrny JJ, Glasauer FE (1995) An unusual location for heterotopic ossification: lumbar anterior longitudinal ligament. J Spinal Cord Med 18(3):194–199

    CAS  PubMed  Google Scholar 

  75. Groen GJ, Baljet B, Drukker J (1990) Nerves and nerve plexuses of the human vertebral column. Am J Anat 188(3):282–296. doi:10.1002/aja.1001880307

    CAS  PubMed  Google Scholar 

  76. Herlihy WF (1949) The sinu-vertebral nerve. N Z Med J 48(264):214–216

    CAS  PubMed  Google Scholar 

  77. Pedersen HE, Blunck CF, Gardner E (1956) The anatomy of lumbosacral posterior rami and meningeal branches of spinal nerve (sinu-vertebral nerves); with an experimental study of their functions. J Bone Joint Surg Am 38-A(2):377–391

    CAS  PubMed  Google Scholar 

  78. Korkala O, Gronblad M, Liesi P, Karaharju E (1985) Immunohistochemical demonstration of nociceptors in the ligamentous structures of the lumbar spine. Spine 10(2):156–157

    CAS  PubMed  Google Scholar 

  79. Ahmed M, Bjurholm A, Kreicbergs A, Schultzberg M (1993) Neuropeptide Y, tyrosine hydroxylase and vasoactive intestinal polypeptide-immunoreactive nerve fibers in the vertebral bodies, discs, dura mater, and spinal ligaments of the rat lumbar spine. Spine 18(2):268–273

    CAS  PubMed  Google Scholar 

  80. Imai S, Hukuda S, Maeda T (1995) Dually innervating nociceptive networks in the rat lumbar posterior longitudinal ligaments. Spine 20(19):2086–2092

    CAS  PubMed  Google Scholar 

  81. von During M, Fricke B, Dahlmann A (1995) Topography and distribution of nerve fibers in the posterior longitudinal ligament of the rat: an immunocytochemical and electron-microscopical study. Cell Tissue Res 281(2):325–338

    Google Scholar 

  82. Yahia L, Newman N (1993) A scanning electron microscopic and immunohistochemical study of spinal ligaments innervation. Ann Anat 175(2):111–114

    CAS  PubMed  Google Scholar 

  83. Sekine M, Yamashita T, Takebayashi T, Sakamoto N, Minaki Y, Ishii S (2001) Mechanosensitive afferent units in the lumbar posterior longitudinal ligament. Spine 26(14):1516–1521

    CAS  PubMed  Google Scholar 

  84. Ahmed M, Bjurholm A, Kreicbergs A, Schultzberg M (1991) SP- and CGRP-immunoreactive nerve fibers in the rat lumbar spine. Neuroorthopedics 12:19–28

    Google Scholar 

  85. Kumar R, Berger RJ, Dunsker SB, Keller JT (1996) Innervation of the spinal dura. Myth or reality? Spine 21(1):18–26

    CAS  PubMed  Google Scholar 

  86. Groen GJ, Baljet B, Drukker J (1988) The innervation of the spinal dura mater: anatomy and clinical implications. Acta Neurochir 92(1–4):39–46

    CAS  PubMed  Google Scholar 

  87. Konnai Y, Honda T, Sekiguchi Y, Kikuchi S, Sugiura Y (2000) Sensory innervation of the lumbar dura mater passing through the sympathetic trunk in rats. Spine 25(7):776–782

    CAS  PubMed  Google Scholar 

  88. Saxler G, Brankamp J, von Knoch M, Loer F, Hilken G, Hanesch U (2008) The density of nociceptive SP- and CGRP-immunopositive nerve fibers in the dura mater lumbalis of rats is enhanced after laminectomy, even after application of autologous fat grafts. Eur Spine J 17(10):1362–1372. doi:10.1007/s00586-008-0741-7

    PubMed Central  PubMed  Google Scholar 

  89. Floeth F, Herdmann J (2012) Chronic dura erosion and intradural lumbar disc herniation: CT and MR imaging and intraoperative photographs of a transdural sequestrectomy. Eur Spine J 21(Suppl 4):S453–S457. doi:10.1007/s00586-011-2073-2

    PubMed  Google Scholar 

  90. Edgar MA, Ghadially JA (1976) Innervation of the lumbar spine. Clin Orthop Relat Res 115:35–41

    PubMed  Google Scholar 

  91. Edgar MA, Nundy S (1966) Innervation of the spinal dura mater. J Neurol Neurosurg Psychiatry 29:530–534

    PubMed Central  Google Scholar 

  92. Kimmel DL (1961) Innervation of spinal dura mater and dura mater of the posterior cranial fossa. Neurology 11:800–809

    CAS  PubMed  Google Scholar 

  93. Artico M, Cavallotti C (2001) Catecholaminergic and acetylcholine esterase containing nerves of cranial and spinal dura mater in humans and rodents. Microsc Res Tech 53(3):212–220. doi:10.1002/jemt.1085

    CAS  PubMed  Google Scholar 

  94. Viejo-Fuertes D, Liguoro D, Rivel J, Midy D, Guerin J (1998) Morphologic and histologic study of the ligamentum flavum in the thoraco-lumbar region. Surg Radiol Anat 20(3):171–176

    CAS  PubMed  Google Scholar 

  95. Vandenabeele F, Creemers J, Lambrichts I, Robberechts W (1995) Fine structure of vesiculated nerve profiles in the human lumbar facet joint. J Anat 187(Pt 3):681–692

    PubMed Central  PubMed  Google Scholar 

  96. Ashton IK, Ashton BA, Gibson SJ, Polak JM, Jaffray DC, Eisenstein SM (1992) Morphological basis for back pain: the demonstration of nerve fibers and neuropeptides in the lumbar facet joint capsule but not in ligamentum flavum. J Orthop Res 10(1):72–78. doi:10.1002/jor.1100100109

    CAS  PubMed  Google Scholar 

  97. Bucknill AT, Coward K, Plumpton C, Tate S, Bountra C, Birch R, Sandison A, Hughes SP, Anand P (2002) Nerve fibers in lumbar spine structures and injured spinal roots express the sensory neuron-specific sodium channels SNS/PN3 and NaN/SNS2. Spine 27(2):135–140

    PubMed  Google Scholar 

  98. Rhalmi S, Yahia LH, Newman N, Isler M (1993) Immunohistochemical study of nerves in lumbar spine ligaments. Spine 18(2):264–267

    CAS  PubMed  Google Scholar 

  99. Hansson T, Suzuki N, Hebelka H, Gaulitz A (2009) The narrowing of the lumbar spinal canal during loaded MRI: the effects of the disc and ligamentum flavum. Eur Spine J 18(5):679–686. doi:10.1007/s00586-009-0919-7

    PubMed Central  PubMed  Google Scholar 

  100. Winkler PA, Zausinger S, Milz S, Buettner A, Wiesmann M, Tonn JC (2007) Morphometric studies of the ligamentum flavum: a correlative microanatomical and MRI study of the lumbar spine. Zentralbl Neurochir 68(4):200–204. doi:10.1055/s-2007-985853

    CAS  PubMed  Google Scholar 

  101. Keynan O, Smorgick Y, Schwartz AJ, Ashkenazi E, Floman Y (2006) Spontaneous ligamentum flavum hematoma in the lumbar spine. Skeletal Radiol 35(9):687–689. doi:10.1007/s00256-005-0945-4

    PubMed  Google Scholar 

  102. Shimada Y, Kasukawa Y, Miyakoshi N, Hongo M, Ando S, Itoi E (2006) Chronic subdural hematoma coexisting with ligamentum flavum hematoma in the lumbar spine: a case report. Tohoku J Exp Med 210(1):83–89

    PubMed  Google Scholar 

  103. Minamide A, Yoshida M, Tamaki T, Natsumi K (1999) Ligamentum flavum hematoma in the lumbar spine. J Orthop Sci 4(5):376–379

    CAS  PubMed  Google Scholar 

  104. Yamashita T, Minaki Y, Ozaktay AC, Cavanaugh JM, King AI (1996) A morphological study of the fibrous capsule of the human lumbar facet joint. Spine (Phila Pa 1976) 21(5):538–543

    CAS  Google Scholar 

  105. Schwarzer AC, Aprill CN, Derby R, Fortin J, Kine G, Bogduk N (1994) Clinical features of patients with pain stemming from the lumbar zygapophysial joints. Is the lumbar facet syndrome a clinical entity? Spine (Phila Pa 1976) 19(10):1132–1137

    CAS  Google Scholar 

  106. Manchikanti L, Manchikanti KN, Cash KA, Singh V, Giordano J (2008) Age-related prevalence of facet-joint involvement in chronic neck and low back pain. Pain Physician 11(1):67–75

    PubMed  Google Scholar 

  107. Eubanks JD, Lee MJ, Cassinelli E, Ahn NU (2007) Prevalence of lumbar facet arthrosis and its relationship to age, sex, and race: an anatomic study of cadaveric specimens. Spine (Phila Pa 1976) 32(19):2058–2062. doi:10.1097/BRS.0b013e318145a3a9

    Google Scholar 

  108. Beaman DN, Graziano GP, Glover RA, Wojtys EM, Chang V (1993) Substance P innervation of lumbar spine facet joints. Spine (Phila Pa 1976) 18(8):1044–1049

    CAS  Google Scholar 

  109. Igarashi A, Kikuchi S, Konno S, Olmarker K (2004) Inflammatory cytokines released from the facet joint tissue in degenerative lumbar spinal disorders. Spine (Phila Pa 1976) 29(19):2091–2095

    Google Scholar 

  110. El-Bohy AA, Yang KH, King AI (1989) Experimental verification of facet load transmission by direct measurement of facet lamina contact pressure. J Biomech 22(8–9):931–941

    CAS  PubMed  Google Scholar 

  111. Yamashita T, Cavanaugh JM, El-Bohy A, Getchell TV, King AI (1990) Mechanosensitive afferent units in the lumbar facet joint. J Bone Joint Surg Am 72A(6):865–880

    Google Scholar 

  112. Yamashita T, Cavanaugh JM, Ozaktay AC, Avramov A, Getchell TV, King AI (1993) Effects of substance P on the mechanosensitive units in the lumbar facet joint and adjacent tissue. J Orthop Res 11:205–214

    CAS  PubMed  Google Scholar 

  113. Avramov AI, Cavanaugh JM, Ozaktay AC, Getchell TV, King AI (1992) Effects of controlled mechanical loading on group III and IV afferents from the lumbar facet joint: an in vitro study. J Bone Joint Surg Am 74-A(10):1464–1471

    Google Scholar 

  114. Berberich P, Hoheisel U, Mense S (1988) Effects of a carrageenan-induced myositis on the discharge properties of group III and IV muscle receptors in the cat. J Neurophysiol 59(5):1395–1409

    CAS  PubMed  Google Scholar 

  115. Grigg P, Schaible HG, Schmidt RF (1986) Mechanical sensitivity of group III and IV afferents from posterior articular nerve in normal and inflamed cat knee. J Neurophysiol 55(4):635–643

    CAS  PubMed  Google Scholar 

  116. Rang HP, Bevan S, Dray A (1991) Chemical activation of nociceptive peripheral neurones. Br Med Bull 47(3):534–548

    CAS  PubMed  Google Scholar 

  117. Ozaktay AC, Cavanaugh JM, Blagoev D, Getchell TV, King AI (1994) Effects of carrageenan induced inflammation in rabbit lumbar facet joint capsule and adjacent tissue. Neurosci Res 20(4):355–364

    CAS  PubMed  Google Scholar 

  118. Yaksh TL (1988) Substance P release from knee joint afferent terminals: modulation by opioids. Brain Res 458(2):319–324

    CAS  PubMed  Google Scholar 

  119. Coderre TJ, Katz J, Vaccarino AL, Melzack R (1993) Contribution of central neuroplasticity to pathological pain: review of clinical and experimental evidence. Pain 52(3):259–285

    CAS  PubMed  Google Scholar 

  120. El-Bohy A, Cavanaugh JM, Getchell ML, Bulas T, Getchell TV, King AI (1988) Localization of substance P and neurofilament immunoreactive fibers in the lumbar facet joint capsule and supraspinous ligament of the rabbit. Brain Res 460(2):379–382

    CAS  PubMed  Google Scholar 

  121. Panjabi MM (2003) Clinical spinal instability and low back pain. J Electromyogr Kinesiol 13(4):371–379

    PubMed  Google Scholar 

  122. Atlasi MA, Mehdizadeh M, Bahadori MH, Joghataei MT (2009) Morphological identification of cell death in dorsal root ganglion neurons following peripheral nerve injury and repair in adult rat. Iran Biomed J 13(2):65–72

    PubMed  Google Scholar 

  123. Gladman SJ, Ward RE, Michael-Titus AT, Knight MM, Priestley JV (2010) The effect of mechanical strain or hypoxia on cell death in subpopulations of rat dorsal root ganglion neurons in vitro. Neuroscience 171(2):577–587. doi:10.1016/j.neuroscience.2010.07.009

    CAS  PubMed  Google Scholar 

  124. Ma J, Novikov LN, Wiberg M, Kellerth JO (2001) Delayed loss of spinal motoneurons after peripheral nerve injury in adult rats: a quantitative morphological study. Exp Brain Res 139(2):216–223

    CAS  PubMed  Google Scholar 

  125. Chen C, Cavanaugh JM, Song Z, Takebayashi T, Kallakuri S, Wooley PH (2004) Effects of nucleus pulposus on nerve root neural activity, mechanosensitivity, axonal morphology, and sodium channel expression. Spine (Phila Pa 1976) 29(1):17–25. doi:10.1097/01.brs.0000096675.01484.87

    Google Scholar 

  126. Matzner O, Devor M (1994) Hyperexcitability at sites of nerve injury depends on voltage-sensitive Na+ channels. J Neurophysiol 72(1):349–359

    CAS  PubMed  Google Scholar 

  127. Navarro X, Vivo M, Valero-Cabre A (2007) Neural plasticity after peripheral nerve injury and regeneration. Prog Neurobiol 82(4):163–201. doi:10.1016/j.pneurobio.2007.06.005

    CAS  PubMed  Google Scholar 

  128. Kuner R (2010) Central mechanisms of pathological pain. Nat Med 16(11):1258–1266. doi:10.1038/nm.2231

    CAS  PubMed  Google Scholar 

  129. Adrian ED, Zotterman Y (1926) The impulses produced by sensory nerve-endings: Part II. The response of a single end-organ. J Physiol 61:151–171

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Cuellar JM, Montesano PX, Antognini JF, Carstens E (2005) Application of nucleus pulposus to L5 dorsal root ganglion in rats enhances nociceptive dorsal horn neuronal windup. J Neurophysiol 94(1):35–48. doi:10.1152/jn.00762.2004

    CAS  PubMed  Google Scholar 

  131. Takebayashi T, Cavanaugh JM, Cuneyt Ozaktay A, Kallakuri S, Chen C (2001) Effect of nucleus pulposus on the neural activity of dorsal root ganglion. Spine (Phila Pa 1976) 26(8):940–945

    CAS  Google Scholar 

  132. Smyth MJ, Wright V (1958) Sciatica and the intervertebral disc; an experimental study. J Bone Joint Surg Am 40-A(6):1401–1418

    CAS  PubMed  Google Scholar 

  133. Howe JF, Loeser JD, Calvin WH (1977) Mechanosensitivity of dorsal root ganglia and chronically injured axons: a physiological basis for the radicular pain of nerve root compression. Pain 3(1):25–41

    CAS  PubMed  Google Scholar 

  134. Chen C, Cavanaugh JM, Ozaktay AC, Kallakuri S, King AI (1997) Effects of phospholipase A2 on lumbar nerve root structure and function. Spine (Phila Pa 1976) 22(10):1057–1064

    CAS  Google Scholar 

  135. Moldovan M, Alvarez S, Romer Rosberg M, Krarup C (2013) Axonal voltage-gated ion channels as pharmacological targets for pain. Eur J Pharmacol 708(1–3):105–112. doi:10.1016/j.ejphar.2013.03.001

    CAS  PubMed  Google Scholar 

  136. Devor M, Govrin-Lippmann R, Angelides K (1993) Na+ channel immunolocalization in peripheral mammalian axons and changes following nerve injury and neuroma formation. J Neurosci 13(5):1976–1992

    CAS  PubMed  Google Scholar 

  137. Olmarker K, Nordborg C, Larsson K, Rydevik B (1996) Ultrastructural changes in spinal nerve roots induced by autologous nucleus pulposus. Spine (Phila Pa 1976) 21(4):411–414

    CAS  Google Scholar 

  138. Rabin A, Gerszten PC, Karausky P, Bunker CH, Potter DM, Welch WC (2007) The sensitivity of the seated straight-leg raise test compared with the supine straight-leg raise test in patients presenting with magnetic resonance imaging evidence of lumbar nerve root compression. Arch Phys Med Rehabil 88(7):840–843. doi:10.1016/j.apmr.2007.04.016

    PubMed  Google Scholar 

  139. Goddard MD, Reid JD (1965) Movements induced by straight leg raising in the lumbo-sacral roots, nerves and plexus, and in the intrapelvic section of the sciatic nerve. J Neurol Neurosurg Psychiatry 28(1):12–18

    CAS  PubMed Central  PubMed  Google Scholar 

  140. Charnley J (1951) Orthopaedic signs in the diagnosis of disc protrusion. With special reference to the straight-leg-raising test. Lancet 1(6648):186–192

    CAS  PubMed  Google Scholar 

  141. Chen C, Virk G, Yaldo J, Tanimoto K, Kallakuri S, Cavanaugh JM (2012) Determination of spinal nerve injury tolerance to stretch. J Neurotrauma 29:A79–A79

    Google Scholar 

  142. Singh A, Kallakuri S, Chen C, Cavanaugh JM (2009) Structural and functional changes in nerve roots due to tension at various strains and strain rates: an in-vivo study. J Neurotrauma 26(4):627–640. doi:10.1089/neu.2008.0621

    PubMed  Google Scholar 

  143. Singh A, Lu Y, Chen C, Cavanaugh JM (2006) Mechanical properties of spinal nerve roots subjected to tension at different strain rates. J Biomech 39(9):1669–1676. doi:10.1016/j.jbiomech.2005.04.023

    PubMed  Google Scholar 

  144. Singh A, Lu Y, Chen C, Kallakuri S, Cavanaugh JM (2006) A new model of traumatic axonal injury to determine the effects of strain and displacement rates. Stapp Car Crash J 50:601–623

    PubMed  Google Scholar 

  145. Bono CM (2004) Low-back pain in athletes. J Bone Joint Surg Am 86-A(2):382–396

    PubMed  Google Scholar 

  146. Opar DA, Williams MD, Shield AJ (2012) Hamstring strain injuries: factors that lead to injury and re-injury. Sports Med 42(3):209–226. doi:10.2165/11594800-000000000-00000

    PubMed  Google Scholar 

  147. Garrett WE Jr (1996) Muscle strain injuries. Am J Sports Med 24(6 Suppl):S2–S8

    PubMed  Google Scholar 

  148. Solomonow M (2006) Sensory-motor control of ligaments and associated neuromuscular disorders. J Electromyogr Kinesiol 16(6):549–567. doi:10.1016/j.jelekin.2006.08.004

    CAS  PubMed  Google Scholar 

  149. Petrie S, Collins JG, Solomonow M, Wink C, Chuinard R, D’Ambrosia R (1998) Mechanoreceptors in the human elbow ligaments. J Hand Surg Am 23(3):512–518. doi:10.1016/s0363-5023(05)80470-8

    CAS  PubMed  Google Scholar 

  150. Chen C, Lu Y, Kallakuri S, Patwardhan A, Cavanaugh JM (2006) Distribution of A-delta and C-fiber receptors in the cervical facet joint capsule and their response to stretch. J Bone Joint Surg Am 88(8):1807–1816. doi:10.2106/jbjs.e.00880

    PubMed  Google Scholar 

  151. Schaible HG, Schmidt RF (1983) Activation of groups III and IV sensory units in medial articular nerve by local mechanical stimulation of knee joint. J Neurophysiol 49(1):35–44

    CAS  PubMed  Google Scholar 

  152. Lu Y, Chen C, Kallakuri S, Patwardhan A, Cavanaugh JM (2005) Neural response of cervical facet joint capsule to stretch: a study of whiplash pain mechanism. Stapp Car Crash J 49:49–65

    PubMed  Google Scholar 

  153. Azar NR, Kallakuri S, Chen C, Lu Y, Cavanaugh JM (2009) Strain and load thresholds for cervical muscle recruitment in response to quasi-static tensile stretch of the caprine C5-C6 facet joint capsule. J Electromyogr Kinesiol 19(6):e387–e394. doi:10.1016/j.jelekin.2009.01.002

    PubMed  Google Scholar 

  154. Azar NR, Kallakuri S, Chen C, Cavanaugh JM (2011) Muscular response to physiologic tensile stretch of the caprine c5/6 facet joint capsule: dynamic recruitment thresholds and latencies. Stapp Car Crash J 55:441–460

    PubMed  Google Scholar 

  155. Lis AM, Black KM, Korn H, Nordin M (2007) Association between sitting and occupational LBP. Eur Spine J 16(2):283–298

    PubMed Central  PubMed  Google Scholar 

  156. Jonsson E, Nachemson A (2000) Collected knowledge about back pain and neck pain. What we know–and what we don’t know. Lakartidningen 97(44):4974–4980

    CAS  PubMed  Google Scholar 

  157. Bovenzi M (1996) Low back pain disorders and exposure to whole-body vibration in the workplace. Semin Perinatol 20(1):38–53

    CAS  PubMed  Google Scholar 

  158. Seidel H (1993) Selected health risks caused by long-term, whole-body vibration. Am J Ind Med 23(4):589–604

    CAS  PubMed  Google Scholar 

  159. Bongers PM, Hulshof CT, Dijkstra L, Boshuizen HC, Groenhout HJ, Valken E (1990) Back pain and exposure to whole body vibration in helicopter pilots. Ergonomics 33(8):1007–1026. doi:10.1080/00140139008925309

    CAS  PubMed  Google Scholar 

  160. Shanahan DF, Reading TE (1984) Helicopter pilot back pain: a preliminary study. Aviat Space Environ Med 55(2):117–121

    CAS  PubMed  Google Scholar 

  161. Froom P, Hanegbi R, Ribak J, Gross M (1987) Low back pain in the AH-1 Cobra helicopter. Aviat Space Environ Med 58(4):315–318

    CAS  PubMed  Google Scholar 

  162. Desmedt JE (1983) Mechanisms of vibration-induced inhibition or potentiation: tonic vibration reflex and vibration paradox in man. Adv Neurol 39:671–683

    CAS  PubMed  Google Scholar 

  163. Vermeersch D, Vermeersch L, Vermeersch G (1986) The tonic vibration reflex of the musculus quadriceps femoris can be used to measure the change in tonus of the postural type. Electromyogr Clin Neurophysiol 26(7):481–487

    CAS  PubMed  Google Scholar 

  164. Richter J, Meister A, Bluethner R, Seidel H (1988) Subjective evaluation of isolated and combined exposure to whole-body vibration and noise by means of cross-modality matching. Act Nerv Super (Praha) 30(1):47–51

    CAS  Google Scholar 

  165. Wakeling JM, Nigg BM (2001) Modification of soft tissue vibrations in the leg by muscular activity. J Appl Physiol 90(2):412–420

    CAS  PubMed  Google Scholar 

  166. Ng GY, Cheng JM (2002) The effects of patellar taping on pain and neuromuscular performance in subjects with patellofemoral pain syndrome. Clin Rehabil 16(8):821–827

    PubMed  Google Scholar 

  167. Taimela S, Kankaanpaa M, Luoto S (1999) The effect of lumbar fatigue on the ability to sense a change in lumbar position. A controlled study. Spine (Phila Pa 1976) 24(13):1322–1327

    CAS  Google Scholar 

  168. Dupuis H, Zerlett G (1987) Whole-body vibration and disorders of the spine. Int Arch Occup Environ Health 59(4):323–336

    CAS  PubMed  Google Scholar 

  169. Dupuis H (1994) Medical and occupational preconditions for vibration-induced spinal disorders: occupational disease no. 2110 in Germany. Int Arch Occup Environ Health 66(5):303–308

    CAS  PubMed  Google Scholar 

  170. Tiemessen IJ, Hulshof CT, Frings-Dresen MH (2008) Low back pain in drivers exposed to whole body vibration: analysis of a dose-response pattern. Occup Environ Med 65(10):667–675. doi:10.1136/oem.2007.035147

    CAS  PubMed  Google Scholar 

  171. Frymoyer JW, Pope MH, Costanza MC, Rosen JC, Goggin JE, Wilder DG (1980) Epidemiologic studies of low-back pain. Spine (Phila Pa 1976) 5(5):419–423

    CAS  Google Scholar 

  172. Lings S, Leboeuf-Yde C (2000) Whole-body vibration and low back pain: a systematic, critical review of the epidemiological literature 1992–1999. Int Arch Occup Environ Health 73(5):290–297

    CAS  PubMed  Google Scholar 

  173. Wawrow PT, Jakobi JM, Cavanaugh JM (2011) Fatigue response of rat medial longissimus muscles induced with electrical stimulation at various work/rest ratios. J Electromyogr Kinesiol 21(6):939–946. doi:10.1016/j.jelekin.2011.08.007

    PubMed  Google Scholar 

  174. Mense S (2003) The pathogenesis of muscle pain. Curr Pain Headache Rep 7(6):419–425

    PubMed  Google Scholar 

  175. Keay KA, Bandler R (1993) Deep and superficial noxious stimulation increases Fos-like immunoreactivity in different regions of the midbrain periaqueductal grey of the rat. Neurosci Lett 154(1–2):23–26

    CAS  PubMed  Google Scholar 

  176. Berkowitz S (1978) The induction of II-III translocations by tris-(2,3-dibromopropyl) phosphate in Drosophila. Mutat Res 57(3):385–387

    CAS  PubMed  Google Scholar 

  177. Svensson P, Minoshima S, Beydoun A, Morrow TJ, Casey KL (1997) Cerebral processing of acute skin and muscle pain in humans. J Neurophysiol 78(1):450–460

    CAS  PubMed  Google Scholar 

  178. Ding Y, Cesare P, Drew L, Nikitaki D, Wood JN (2000) ATP, P2X receptors and pain pathways. J Auton Nerv Syst 81(1–3):289–294

    CAS  PubMed  Google Scholar 

  179. Sluka KA, Kalra A, Moore SA (2001) Unilateral intramuscular injections of acidic saline produce a bilateral, long-lasting hyperalgesia. Muscle Nerve 24(1):37–46

    CAS  PubMed  Google Scholar 

  180. Woolf CJ, Salter MW (2000) Neuronal plasticity: increasing the gain in pain. Science 288(5472):1765–1769

    CAS  PubMed  Google Scholar 

  181. Bovenzi M (2009) Metrics of whole-body vibration and exposure-response relationship for low back pain in professional drivers: a prospective cohort study. Int Arch Occup Environ Health 82(7):893–917. doi:10.1007/s00420-008-0376-3

    PubMed  Google Scholar 

  182. Chen C, Cheng B, Wang Z, Chen D, Tao X, Cavanaugh JM (2013) Back muscle activity while operating a vehicle. In: Proceedings of the FISITA 2012 world automotive congress, vol 197. Lecture notes in electrical engineering. Springer, Berlin/Heidelberg, pp 801–811. doi:10.1007/978-3-642-33805-2_65

  183. Ramirez A, Grasa J, Alonso A, Soteras F, Osta R, Munoz MJ, Calvo B (2010) Active response of skeletal muscle: in vivo experimental results and model formulation. J Theor Biol 267(4):546–553. doi:10.1016/j.jtbi.2010.09.018

    CAS  PubMed  Google Scholar 

  184. Tao X, Chen C, Cheng B, Wang Z, Wang W, Cavanaugh JM (2012) Characterization of muscle contraction force, electromyogram and fatigue in response to electrical stimuli – a preliminary study. Paper presented at The 2012 meeting of the Biomedical Engineering Society, Atlanta

    Google Scholar 

  185. Tao X, Cheng B, Wang W, Zhang F, Li G, Chen C, Cavanaugh JM (2012) SEMG based prediction for lumbar muscle fatigue during prolonged driving. Paper presented at The 34th FISITA world automotive congress

    Google Scholar 

  186. Lewicki MS (1998) A review of methods for spike sorting: the detection and classification of neural action potentials. Network 9(4):R53–R78

    CAS  PubMed  Google Scholar 

  187. Snider RK, Bonds AB (1998) Classification of non-stationary neural signals. J Neurosci Methods 84(1–2):155–166

    CAS  PubMed  Google Scholar 

  188. Chen C, Lu Y, Cavanaugh JM, Kallakuri S, Patwardhan A (2005) Recording of neural activity from goat cervical facet joint capsule using custom-designed miniature electrodes. Spine (Phila Pa 1976) 30(12):1367–1372

    Google Scholar 

  189. Lu Y, Chen C, Kallakuri S, Patwardhan A, Cavanaugh JM (2005) Development of an in vivo method to investigate biomechanical and neurophysiological properties of spine facet joint capsules. Eur Spine J 14(6):565–572. doi:10.1007/s00586-004-0835-9

    PubMed Central  PubMed  Google Scholar 

  190. Lu Y, Chen C, Kallakuri S, Patwardhan A, Cavanaugh JM (2005) Neurophysiological and biomechanical characterization of goat cervical facet joint capsules. J Orthop Res 23(4):779–787. doi:10.1016/j.orthres.2005.01.002

    PubMed  Google Scholar 

  191. Wyke B (1979) Neurology of the cervical spinal joints. Physiotherapy 65(3):72–76

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Preston Lemanski for his significant efforts in the organization of references and figures in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Cavanaugh M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cavanaugh, J.M., Chen, C., Kallakuri, S. (2015). Thoracolumbar Pain: Neural Mechanisms and Biomechanics. In: Yoganandan, N., Nahum, A., Melvin, J. (eds) Accidental Injury. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1732-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1732-7_20

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1731-0

  • Online ISBN: 978-1-4939-1732-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics