Skip to main content

Pain Biomechanics

  • Chapter
  • First Online:
Book cover Accidental Injury

Abstract

Painful injury is a tremendous problem affecting a large proportion of the population during their lifetime. Pain most commonly results from trauma and/or injury, with the spine as the most common injury site for producing chronic pain. This chapter reviews relevant anatomy, mechanics and techniques used to study cervical spine pain in particular, since it is the region most prone to injury and because the largest body of research has been in this region. In vivo, many behavioral assessments exist to functionally measure painful outcomes, with hyperalgesia and allodynia as the two primary classes of behavioral responses. Both provide quantitative measures of pain that relate to the clinical presentation of symptoms. This chapter begins with a brief review of the anatomical tissues that are most at risk for injury and pain generation. This is followed by a review highlighting the cellular and molecular mechanisms of nociception and pain, addressing modifications in the periphery and in the central nervous system (CNS). The relationship between injury biomechanics and the local and spinal cellular responses are presented in the context of nociception and pain, with specific focus on injury to the facet capsule and nerve root because of their common involvement in cervical spine injury. Lastly, a brief review of experimental methodologies used to study pain biomechanics, ranging from the macroscopic to the cellular and molecular scales, is provided along with contextualization of the relative advantages and limitations of each. A brief summary integrates all of the sections to identify future areas of research that will define a more detailed understanding of pain biomechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Breivik H, Collett B, Ventafridda V et al (2006) Survey of chronic pain in Europe: prevalence, impact on daily life, and treatment. Eur J Pain 10(4):287–333

    PubMed  Google Scholar 

  2. Hogg-Johnson S, van der Velde G, Carroll LJ et al (2008) The burden and determinants of neck pain in the general population. Eur Spine J 17(S1):S39–S51

    Google Scholar 

  3. Loeser JD, Treede RD (2008) The Kyoto protocol of IASP basic pain terminology. Pain 137(3):473–477

    PubMed  Google Scholar 

  4. DeLeo JA, Winkelstein BA (2002) Physiology of chronic spinal pain syndromes: from animal models to biomechanics. Spine 27(22):2526–2537

    PubMed  Google Scholar 

  5. Antonacci MD, Mody DR, Heggeness MH (1998) Innervation of the human vertebral body: a histologic study. J Spinal Disord 1(6):526–531

    Google Scholar 

  6. Inami S, Shiga T, Tsujino A et al (2001) Immunohistochemical demonstration of nerve fibers in the synovial fold of the human cervical facet joint. J Orthop Res 19(4):593–596

    CAS  PubMed  Google Scholar 

  7. Palmgren T, Gronblad M, Virri J et al (1999) An immunohistochemical study of nerve structures in the anulus fibrosus of human normal lumbar intervertebral discs. Spine 24(20):2075–2079

    CAS  PubMed  Google Scholar 

  8. Rhalmi S, Yahia LH, Newman N et al (1993) Immunohistochemical study of nerves in lumbar spine ligaments. Spine 18(2):264–267

    CAS  PubMed  Google Scholar 

  9. Bland JH (1990) Anatomy and physiology of the cervical spine. Semin Arthritis Rheum 20(1):1–20

    CAS  PubMed  Google Scholar 

  10. Clark CR (ed) (2005) The cervical spine. Lippincott, Philadelphia

    Google Scholar 

  11. Fagan A, Moore R, Vernon Roberts B et al (2003) ISSLS prize winner: the innervation of the intervertebral disc: a quantitative analysis. Spine 28(23):2570–2576

    PubMed  Google Scholar 

  12. Watson C, Paxinos G, Kayalioglu G (eds) (2009) The spinal cord. Elsevier, London

    Google Scholar 

  13. Ozawa T, Ohtori S, Inoue G et al (2006) The degenerated lumbar intervertebral disc is innervated primarily by peptide-containing sensory nerve fibers in humans. Spine 31(21):2418–2422

    PubMed  Google Scholar 

  14. Yoshizawa H, O’Brien JP, Smith WT et al (1980) The neuropathology of intervertebral discs removed for low-back pain. J Pathol 132(2):95–104

    CAS  PubMed  Google Scholar 

  15. Wang DL, Jiang SD, Dai LY (2007) Biologic response of the intervertebral disc to static and dynamic compression in vitro. Spine 32(23):2521–2528

    PubMed  Google Scholar 

  16. Freemont AJ (2009) The cellular pathobiology of the degenerated intervertebral disc and discogenic back pain. Rheumatology 48:5–10

    CAS  PubMed  Google Scholar 

  17. Freemont AJ, Peacock TE, Goupille P et al (1997) Nerve ingrowth into diseased intervertebral disc in chronic back pain. Lancet 350:178–181

    CAS  PubMed  Google Scholar 

  18. Ohtori S, Takahashi K, Chiba T et al (2002) Substance P and calcitonin gene-related peptide immunoreactive sensory DRG neurons innervating the lumbar intervertebral discs in rats. Ann Anat 184:235–240

    CAS  PubMed  Google Scholar 

  19. Branconi JL, Guarino BB, Baig HA et al (2012) Painful whole body vibration increases NGF and BDNF in cervical intervertebral discs in the rat. Paper presented at the northeast bioengineering conference, Philadelphia

    Google Scholar 

  20. Kartha S, Zeeman M, Baig H et al (2014) Upregulation of BDNF and NGF in cervical intervertebral discs exposed to painful whole-body vibration. Spine 39(19):1542–1548

    Google Scholar 

  21. Kokubo Y, Uchida K, Kobayashi S et al (2008) Herniated and spondylotic intervertebral discs of the human cervical spine: histological and immunohistological findings in 500 en bloc surgical samples. J Neurosurg Spine 9(3):285–295

    PubMed  Google Scholar 

  22. Panjabi MM, Oxland TR, Parks EH (1991) Quantitative anatomy of cervical spine ligaments part 1: upper cervical spine. J Spinal Disord 4(3):270–276

    CAS  PubMed  Google Scholar 

  23. Panjabi MM, Oxland TR, Parks EH (1991) Quantitative anatomy of cervical spine ligaments part 2: middle and lower cervical spine. J Spinal Disord 4(3):277–285

    CAS  PubMed  Google Scholar 

  24. Curatolo M, Bogduk N, Ivancic PC et al (2011) The role of tissue damage in whiplash-associated disorders. Spine 36(25S):S309–S315

    PubMed Central  PubMed  Google Scholar 

  25. Siegmund GP, Winkelstein BA, Ivancic PC et al (2009) The anatomy and biomechanics of acute and chronic whiplash injury. Traffic Inj Prev 10(2):101–112

    PubMed  Google Scholar 

  26. Higuchi K, Sato T (2002) Anatomical study of lumbar spine innervation. Folia Morphol (Warsz) 61(2):71–79

    Google Scholar 

  27. Imai S, Hukuda S, Maeda T (1995) Dually innervating nociceptive networks in the rat lumbar posterior longitudinal ligaments. Spine 20(19):2086–2092

    CAS  PubMed  Google Scholar 

  28. el-Bohy A, Cavanaugh JM, Getchell ML et al (1988) Localization of substance P and neurofilament immunoreactive fibers in the lumbar facet joint capsule and supraspinous ligament of the rabbit. Brain Res 460(2):379–382

    CAS  PubMed  Google Scholar 

  29. Kallakuri S, Cavanaugh JM, Blagoev DC (1998) An immunohistochemical study of innervation of lumbar spinal dura and longitudinal ligaments. Spine 23(4):403–411

    CAS  PubMed  Google Scholar 

  30. Imai S, Konttinen YT, Tokunaga Y et al (1997) An ultrastructural study of calcitonin gene-related peptide-immunoreactive nerve fibers innervating the rat posterior longitudinal ligament. A morphologic basis for their possible efferent actions. Spine 22(17):1941–1947

    CAS  PubMed  Google Scholar 

  31. Yahia LH, Newman N, Rivard CH (1988) Neurohistology of lumbar spine ligaments. Acta Orthop Scand 59(5):508–512

    CAS  PubMed  Google Scholar 

  32. Yamada H, Honda T, Yaginuma H et al (2001) Comparison of sensory and sympathetic innervation of the dura mater and posterior longitudinal ligament in the cervical spine after removal of the stellate ganglion. J Comp Neurol 434(1):86–100

    CAS  PubMed  Google Scholar 

  33. Jiang H, Russell G, Raso JV et al (1995) The nature and distribution of the innervation of human supraspinal and interspinal ligaments. Spine 20(8):869–876

    CAS  PubMed  Google Scholar 

  34. McLain RF (1994) Mechanoreceptor endings in human cervical facet joints. Spine 19(5):495–501

    CAS  PubMed  Google Scholar 

  35. McClain RF, Raiszadeh KR (1995) Mechanoreceptor endings of the cervical, thoracic, and lumbar spine. Iowa Orthop J 15:147–155

    Google Scholar 

  36. Bogduk N, Marsland A (1988) The cervical zygapophysial joints as a source of neck pain. Spine 13(6):610–617

    CAS  PubMed  Google Scholar 

  37. Kallakuri S, Singh A, Chen C et al (2004) Demonstration of substance P, calcitonin gene-related peptide, and protein gene product 9.5 containing nerve fibers in human cervical facet joint capsules. Spine 29(11):1182–1186

    PubMed  Google Scholar 

  38. Dwyer A, Aprill C, Bogduk N (1990) Cervical zygapophyseal joint pain patterns. 1: A study in normal volunteers. Spine 15(6):453–457

    CAS  PubMed  Google Scholar 

  39. Fukui S, Ohseto K, Shiotani M et al (1996) Referred pain distribution of the cervical zygapophyseal joints and cervical dorsal rami. Pain 68(1):79–83

    CAS  PubMed  Google Scholar 

  40. Lord SM, Barnsley L, Bogduk N (1995) Percutaneous radiofrequency neurotomy in the treatment of cervical zygapophysial joint pain: a caution. Neurosurgery 36(4):732–739

    CAS  PubMed  Google Scholar 

  41. Lord SM, Barnsley L, Wallis BJ et al (1996) Percutaneous radio-frequency neurotomy for chronic cervical zygapophyseal-joint pain. N Engl J Med 335(23):1721–1726

    CAS  PubMed  Google Scholar 

  42. Slipman CW, Lipetz JS, Plastaras CT et al (2001) Therapeutic zygapophyseal joint injections for headaches emanating from the C2-3 joint. Am J Phys Med Rehabil 80(3):182–188

    CAS  PubMed  Google Scholar 

  43. Yoganandan N, Knowles SA, Maiman DJ et al (2003) Anatomic study of the morphology of human cervical facet joint. Spine 28(20):2317–2323

    PubMed  Google Scholar 

  44. Yoganandan N, Pintar FA, Cusick JF et al (1998) Head-neck biomechanics in simulated rear impact. Annu Proc Assoc Adv Automot Med 42:209–231

    PubMed Central  Google Scholar 

  45. Webb AL, Collins P, Rassoulian H et al (2011) Synovial folds – a pain in the neck? Man Ther 16(2):118–124

    PubMed  Google Scholar 

  46. Adams MA, Dolan P (2005) Spine biomechanics. J Biomech 38(10):1972–1983

    PubMed  Google Scholar 

  47. Cusick JF, Yoganandan N (2012) Biomechanics of the cervical spine 4: major injuries. Clin Biomech 17(1):1–20

    Google Scholar 

  48. Myers BS, Winkelstein BA (1995) Epidemiology, classification, mechanism, and tolerance of human cervical spine injuries. Crit Rev Biomed Eng 23(5–6):307–409

    CAS  PubMed  Google Scholar 

  49. Wen N, Lavaste F, Santin JJ, Lassau JP (1993) Three-dimensional biomechanical properties of the human cervical spine in vitro. I. Analysis of normal motion. Eur Spine J 2(1):2–11

    CAS  PubMed  Google Scholar 

  50. White AA, Panjabi MM (1990) Clinical biomechanics of the spine, 2nd edn. Lippincott, New York

    Google Scholar 

  51. Myklebust JB, Pintar FA, Yoganandan N et al (1988) Tensile strength of spinal ligaments. Spine 13(5):526–531

    CAS  PubMed  Google Scholar 

  52. Yoganandan N, Pintar F, Butler J et al (1989) Dynamic response of human cervical spine ligaments. Spine 14(10):1102–1110

    CAS  PubMed  Google Scholar 

  53. Winkelstein BA (2004) Mechanisms of central sensitization, neuroimmunology & injury biomechanics in persistent pain: implications for musculoskeletal disorders. J Electromyogr Kinesiol 14(1):87–93

    PubMed  Google Scholar 

  54. Winkelstein BA (2011) How can animal models inform on the transition to chronic symptoms in whiplash? Spine 36(25s):S218–S225

    PubMed Central  PubMed  Google Scholar 

  55. Fricke B, Andres KH, Von During M (2001) Nerve fibers innervating the cranial and spinal meninges: morphology of nerve fiber terminals and their structural integration. Microsc Res Techn 53(2):96–105

    CAS  Google Scholar 

  56. Kumar R, Berger RJ, Dunsker SB et al (1996) Innervation of the spinal dura – myth or reality? Spine 21(1):18–25

    CAS  PubMed  Google Scholar 

  57. Yamada H, Honda T, Kikuchi S et al (1998) Direct innervation of sensory fibers from the dorsal root ganglion of the cervical dura mater of rats. Spine 23(14):1524–1529

    CAS  PubMed  Google Scholar 

  58. Wieseler-Frank J, Jekich BM, Mahoney JH et al (2007) A novel immune-to-CNS communication pathway: cells of the meninges surrounding the spinal cord CSF space produce proinflammatory cytokines in response to an inflammatory stimulus. Brain Behav Immun 21(5):711–718

    CAS  PubMed  Google Scholar 

  59. McMahon S, Koltzenburg M (eds) (2005) Wall and Melzack’s textbook of pain. Churchill Livingstone, London

    Google Scholar 

  60. Rexed B (1952) The cytoarchitectonic organization of the spinal cord in the cat. J Comp Neurol 96:415–496

    Google Scholar 

  61. Basso DM, Beattie MS, Bresnahan JC (1996) Graded histological and locomotor outcomes after spinal cord contusion using the NYU weight-drop device versus transection. Exp Neurol 139:244–256

    CAS  PubMed  Google Scholar 

  62. Belanger M, Drew T, Provencher J et al (1996) A comparison of treadmill locomotion in adult cats before and after spinal transection. J Neurophysiol 76:471–491

    CAS  PubMed  Google Scholar 

  63. Bresnahan JC, Beattie MS, Todd FD et al (1987) A behavioral and anatomical analysis of spinal cord injury produced by a feedback-controlled impaction device. Exp Neurol 95:548–570

    CAS  PubMed  Google Scholar 

  64. Muir GD, Whishaw IQ (2000) Red nucleus lesions impair overground locomotion in rats: a kinetic analysis. Eur J Neurosci 12:1113–1122

    CAS  PubMed  Google Scholar 

  65. Profyris C, Cheema SS, Zang D et al (2004) Degenerative and regenerative mechanisms governing spinal cord injury. Neurobiol Dis 15:415–436

    PubMed  Google Scholar 

  66. Hausmann ON (2003) Post-traumatic inflammation following spinal cord injury. Spinal Cord 41:369–378

    CAS  PubMed  Google Scholar 

  67. Sroga JM, Jones TB, Kigerl KA et al (2003) Rats and mice exhibit distinct inflammatory reactions after spinal cord injury. J Comp Neurol 462:223–240

    PubMed  Google Scholar 

  68. Beric A (1997) Post-spinal cord injury pain states. Anesthesiol Clin North Am 17(2):445–463

    Google Scholar 

  69. Siddall PJ, McClelland JM, Rutkowski SB et al (2003) A longitudinal study of the prevalence and characteristics of pain in the first 5 years following spinal cord injury. Pain 103:249–257

    PubMed  Google Scholar 

  70. Coggeshall RE (1979) Afferent fibers in the ventral root. Neurosurgery 4(5):443–448

    CAS  PubMed  Google Scholar 

  71. Hanai F, Matsui N, Hongo N (1996) Changes in responses of wide dynamic range neurons in the spinal dorsal horn after dorsal root or dorsal root ganglion compression. Spine 21(12):1408–1415

    CAS  PubMed  Google Scholar 

  72. Hu SJ, Xing JL (1998) An experimental model for chronic compression of dorsal root ganglion produced by intervertebral foramen stenosis in the rat. Pain 77(1):15–23

    CAS  PubMed  Google Scholar 

  73. Van Zundert J, Harney D, Joosten EA et al (2006) The role of the dorsal root ganglion in cervical radicular pain: diagnosis, pathophysiology, and rationale for treatment. Reg Anesth Pain Med 31(2):152–167

    PubMed  Google Scholar 

  74. Kitagawa T, Fujiwara A, Kobayashi N et al (2004) Morphologic changes in the cervical neural foramen due to flexion and extension – in vivo imaging study. Spine 29(24):2821–2825

    PubMed  Google Scholar 

  75. Tominaga Y, Maak TG, Ivancic PC et al (2006) Head-turned rear impact causing dynamic cervical intervertebral foramen narrowing: implications for ganglion and nerve root injury. J Neurosurg Spine 4(5):380–387

    PubMed  Google Scholar 

  76. Rothman SM, Nicholson KJ, Winkelstein BA (2010) Time-dependent mechanics and measures of glial activation and behavioral sensitivity in a rodent model of radiculopathy. J Neurotrauma 27(5):803–814

    PubMed  Google Scholar 

  77. Winkelstein BA, DeLeo JA (2004) Mechanical thresholds for initiation and persistence of pain following nerve root injury: mechanical and chemical contributions at injury. J Biomech Eng 126(2):258–263

    PubMed  Google Scholar 

  78. Cavanaugh JM (1995) Neural mechanisms of lumbar pain. Spine 20(16):1804–1809

    CAS  PubMed  Google Scholar 

  79. Mense S, Meyer H (1985) Different types of slowly conducting afferent units in cat skeletal muscle and tendon. J Physiol 363:403–417

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Vasavada AN, Brault JR, Siegmund GP (2007) Musculotendon and fascicle strains in anterior and posterior neck muscles during whiplash injury. Spine 32(7):756–765

    PubMed  Google Scholar 

  81. Elliott J, Jull GM, Noteboom JT (2006) Fatty infiltration in the cervical extensor muscles in persistent whiplash-associated disorders: a magnetic resonance imaging analysis. Spine 31(22):E847–E855

    PubMed  Google Scholar 

  82. Elliott J, Pedler A, Kenardy J et al (2011) The temporal development of fatty infiltrates in the neck muscles following whiplash injury: an association with pain and posttraumatic stress. PLoS One 6(6):e21194

    CAS  PubMed Central  PubMed  Google Scholar 

  83. O’leary S, Falla D, Elliot JM et al (2009) Muscle dysfunction in cervical spine pain: implications for assessment and management. J Orthop Sports Phys Ther 39(5):324–333

    PubMed  Google Scholar 

  84. Graven-Nielsen T, Mense S (2001) The peripheral apparatus of muscle pain: evidence from animal and human studies. Clin J Pain 17(1):2–10

    CAS  PubMed  Google Scholar 

  85. Smith LL (1991) Acute-inflammation – the underlying mechanism in delayed onset muscle soreness. Med Sci Sports Exerc 23(5):542–551

    CAS  PubMed  Google Scholar 

  86. Stauber WT (2004) Factors involved in strain-induced injury in skeletal muscles and outcomes of prolonged exposures. J Electromyogr Kinesiol 14(1):61–70

    PubMed  Google Scholar 

  87. Winkelstein BA, McLendon RE, Barbir A et al (2001) An anatomical investigation of the human cervical facet capsule, quantifying muscle insertion area. J Anat 198(Pt 4):455–461

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Siegmund GP, Sanderson DJ, Myers BS et al (2003) Rapid neck muscle adaptation alters the head kinematics of aware and unaware subjects undergoing multiple whiplash-like perturbations. J Biomech 36(4):473–482

    PubMed  Google Scholar 

  89. Chopard RP, de Miranda Neto MH, Lucas GA et al (1992) The vertebral artery: its relationship with adjoining tissues in its course intra and inter transverse processes in man. Rev Paul Med 110(6):245–250

    CAS  PubMed  Google Scholar 

  90. Thiel HW (1991) Gross morphology and pathoanatomy of the vertebral arteries. J Manipulative Physiol Ther 14(2):133–141

    CAS  PubMed  Google Scholar 

  91. Carlson EJ, Tominaga Y, Ivancic PC et al (2007) Dynamic vertebral artery elongation during frontal and side impacts. Spine J 7(2):222–228

    PubMed  Google Scholar 

  92. Chung YS, Han DH (2002) Vertebrobasilar dissection: a possible role of whiplash injury in its pathogenesis. Neurol Res 24(2):129–138

    PubMed  Google Scholar 

  93. Kawchuk GN, Wynd S, Anderson T (2004) Defining the effect of cervical manipulation on vertebral artery integrity: establishment of an animal model. J Manipulative Physiol Ther 27(9):539–546

    PubMed  Google Scholar 

  94. Saeed AB, Shuaib A, Al-Sulaiti G et al (2000) Vertebral artery dissection: warning symptoms, clinical features and prognosis in 26 patients. Can J Neurol Sci 27(4):292–296

    CAS  PubMed  Google Scholar 

  95. Svensson MY, Aldman B, Bostrom O et al (1998) Transient pressure gradients in the pig spinal canal during experimental whiplash motion causing membrane dysfunction in spinal ganglion nerve cells. Orthopade 27(12):820–826

    CAS  PubMed  Google Scholar 

  96. Steeds CE (2009) The anatomy and physiology of pain. Surgery 27(12):507–511

    Google Scholar 

  97. Woolf CJ, Salter MW (2000) Neuronal plasticity: increasing the gain in pain. Science 288:1765–1768

    CAS  PubMed  Google Scholar 

  98. Woolf CJ (2011) Central sensitization: implications for the diagnosis and treatment of pain. Pain 152:S2–S15

    PubMed Central  PubMed  Google Scholar 

  99. Coderre TJ, Katz J, Vaccarino AL et al (1993) Contribution of central neuroplasticity to pathological pain: review of clinical and experimental evidence. Pain 52:259–285

    CAS  PubMed  Google Scholar 

  100. Dubner R, Ruda MA (1992) Activity-dependent neuronal plasticity following tissue injury and inflammation. Trends Neurosci 15(3):96–103

    CAS  PubMed  Google Scholar 

  101. Markenson JA (1996) Mechanisms of chronic pain. Am J Med 101(1A):6S–18S

    CAS  PubMed  Google Scholar 

  102. Millan MJ (1999) The induction of pain: an integrative review. Prog Neurobiol 57(1):1–164

    CAS  PubMed  Google Scholar 

  103. Costigan M, Scholz J, Woolf CJ (2009) Neuropathic pain: a maladaptive response of the nervous system to damage. Annu Rev Neurosci 32:1–32

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Braz JM, Nassar MA, Wood JN et al (2005) Parallel “pain” pathways arise from subpopulations of primary afferent nociceptor. Neuron 47(6):787–793

    CAS  PubMed  Google Scholar 

  105. Julius D, Basbaum AI (2001) Molecular mechanisms of nociception. Nature 413(6852):203–210

    CAS  PubMed  Google Scholar 

  106. Boucher TJ, McMahon SB (2001) Neurotrophic factors and neuropathic pain. Curr Opin Pharmacol 1(1):66–72

    CAS  PubMed  Google Scholar 

  107. Latremoliere A, Woolf CJ (2009) Central sensitization: a generator of pain hypersensitivity by central neural plasticity. J Pain 10(9):895–926

    PubMed Central  PubMed  Google Scholar 

  108. Hucho T, Levine JD (2007) Signaling pathways in sensitization: toward a nociceptor cell biology. Neuron 55(3):365–376

    CAS  PubMed  Google Scholar 

  109. Verri WA Jr, Cunha TM, Parada CA et al (2006) Hypernociceptive role of cytokines and chemokines: targets for analgesic drug development? Pharmacol Ther 112(1):116–138

    CAS  PubMed  Google Scholar 

  110. Ji RR, Kohno T, Moore KA et al (2003) Central sensitization and LTP: do pain and memory share similar mechanisms? Trends Neurosci 26(12):696–705

    CAS  PubMed  Google Scholar 

  111. Devor M (2009) Ectopic discharge in Abeta afferents as a source of neuropathic pain. Exp Brain Res 196:115–128

    CAS  PubMed  Google Scholar 

  112. Djouhri L, Lawson SN (2004) Abeta-fiber nociceptive primary afferent neurons: a review of incidence and properties in relation to other afferent A-fiber neurons in mammals. Brain Res Rev 46(2):131–145

    PubMed  Google Scholar 

  113. Kohama I, Ishikawa K, Kocsis JD (2000) Synaptic reorganization in the substantia gelatinosa after peripheral nerve neuroma formation: aberrant innervation of lamina II neurons by Abeta afferents. J Neurosci 20(4):1538–1549

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Woolf CJ, Shortland P, Coggeshall RE (1992) Peripheral nerve injury triggers central sprouting of myelinated afferents. Nature 355:75–78

    CAS  PubMed  Google Scholar 

  115. Gould HJ 3rd, Gould TN, England JD et al (2000) A possible role for nerve growth factor in the augmentation of sodium channels in models of chronic pain. Brain Res 854(1–2):19–29

    CAS  PubMed  Google Scholar 

  116. Matayoshi S, Jiang N, Katafuchi T et al (2005) Actions of brain-derived neurotrophic factor on spinal nociceptive transmission during inflammation in the rat. J Physiol 569(Pt 2):685–695

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Moalem G, Tracey DJ (2006) Immune and inflammatory mechanisms in neuropathic pain. Brain Res Rev 51(2):240–264

    CAS  PubMed  Google Scholar 

  118. Pezet S, McMahon SB (2006) Neurotrophins: mediators and modulators of pain. Annu Rev Neurosci 29:507–538

    CAS  PubMed  Google Scholar 

  119. DeLeo JA, Yezierski RP (2001) The role of neuroinflammation and neuroimmune activation in persistent pain. Pain 90(1–2):1–6

    CAS  PubMed  Google Scholar 

  120. Chen C, Lu Y, Kallakuri S et al (2006) Distribution of Adelta and C-fiber receptors in the cervical facet joint capsule and their response to stretch. J Bone Joint Surg 88:1807–1816

    PubMed  Google Scholar 

  121. Lu Y, Chen C, Kallakuri S et al (2005) Neural response of cervical facet joint capsule to stretch: a study of whiplash pain mechanism. Stapp Car Crash J 49:49–65

    PubMed  Google Scholar 

  122. Crosby ND, Weisshaar CL, Winkelstein BA (2013) Spinal neuronal plasticity is evident within 1 day after a painful cervical facet joint injury. Neurosci Lett 542:102–106

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Quinn KP, Dong L, Golder FJ et al (2010) Neuronal hyperexcitability in the dorsal horn after painful facet joint injury. Pain 151:414–421

    PubMed Central  PubMed  Google Scholar 

  124. Lee KE, Winkelstein BA (2009) Joint distraction magnitude is associated with different behavioral outcomes and substance P levels for cervical facet joint loading in the rat. J Pain 10(4):436–445

    PubMed  Google Scholar 

  125. Winkelstein BA, Santos DG (2009) An intact facet capsular ligament modulates behavioral sensitivity and spinal glial activation produced by cervical facet joint tension. Spine 33(8):856–862

    Google Scholar 

  126. Chang YW, Winkelstein BA (2011) Schwann cell proliferation and macrophage infiltration are evident at day 14 after painful cervical nerve root compression in the rat. J Neurotrauma 28(12):2429–2438

    PubMed  Google Scholar 

  127. Rothman SM, Huang Z, Lee KE et al (2009) Cytokine mRNA expression in painful radiculopathy. J Pain 10(1):90–99

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Rothman SM, Winkelstein BA (2010) Cytokine antagonism reduces pain and modulates spinal astrocytic reactivity after cervical nerve root compression. Ann Biomed Eng 38(8):2563–2576

    PubMed  Google Scholar 

  129. Aprill C, Bogduk N (1992) The prevalence of cervical zygapophyseal joint pain: a first approximation. Spine 17(7):744–747

    CAS  PubMed  Google Scholar 

  130. Barnsley L, Lord S, Bogduk N (1993) Comparative local anaesthetic blocks in the diagnosis of cervical zygapophysial joint pain. Pain 55(1):99–106

    CAS  PubMed  Google Scholar 

  131. Lord SM, Barnsley L, Wallis BJ et al (1996) Chronic cervical zygapophysial joint pain after whiplash: a placebo-controlled prevalence study. Spine 21(15):1737–1744

    CAS  PubMed  Google Scholar 

  132. Stemper BD, Yoganandan N, Gennarelli TA et al (2005) Localized cervical facet joint kinematics under physiological and whiplash loading. J Neurosurg Spine 3(6):471–476

    PubMed  Google Scholar 

  133. Jaumard NV, Welch WC, Winkelstein BA (2011) Spinal facet joint biomechanics and mechanotransduction in normal, injury and degenerative conditions. J Biomech Eng 133(7):071010

    PubMed  Google Scholar 

  134. Kaneoka K, Ono K, Inami S et al (1999) Motion analysis of cervical vertebrae during whiplash loading. Spine 24(8):763–769

    CAS  PubMed  Google Scholar 

  135. Pearson AM, Ivancic PC, Ito S et al (2004) Facet joint kinematics and injury mechanisms during simulated whiplash. Spine 29(4):390–397

    PubMed  Google Scholar 

  136. Bogduk N, Yoganandan N (2001) Biomechanics of the cervical spine. Part 3: minor injuries. Clin Biomech 16(4):267–275

    CAS  Google Scholar 

  137. Deng B, Begeman PC, Yang KH et al (2000) Kinematics of human cadaver cervical spine during low speed read-end impacts. Stapp Car Crash J 44:171–188

    CAS  PubMed  Google Scholar 

  138. Panjabi MM (1998) Cervical spine models for biomechanical research. Spine 23:2684–2700

    CAS  PubMed  Google Scholar 

  139. Panjabi MM, Cholewicki J, Nibu K et al (1998) Simulation of whiplash trauma using whole cervical spine specimens. Spine 23:17–24

    CAS  PubMed  Google Scholar 

  140. Ono K, Kaneoka K, Wittek A et al (1997) Cervical injury mechanism based on the analysis of human cervical vertebral motion and head-neck-torso kinematics during low speed rear impacts. Stapp Car Crash J 41:339–356

    Google Scholar 

  141. Yoganandan N, Cusick JF, Pintar FA et al (2001) Whiplash injury determination with conventional spine imaging and cryomicrotomy. Spine 26(22):2443–2448

    CAS  PubMed  Google Scholar 

  142. Sundararajan S, Prasad P, Demetropoulos CK et al (2004) Effect of head-neck position on cervical facet stretch of post mortem human subjects during low speed rear end impacts. Stapp Car Crash J 48:331–372

    PubMed  Google Scholar 

  143. Winkelstein BA, Nightingale RW, Richardson WJ et al (2000) The cervical facet capsule and its role in whiplash injury: a biomechanical investigation. Spine 25(10):1238–1246

    CAS  PubMed  Google Scholar 

  144. Panjabi MM, Cholewicki J, Nibu K et al (1998) Mechanism of whiplash injury. Clin Biomech 13(4):239–249

    Google Scholar 

  145. Luan F, Yang KH, Deng B et al (2000) Qualitative analysis of neck kinematics during low-speed rear-end impact. Clin Biomech 15(9):649–657

    CAS  Google Scholar 

  146. Panjabi MM, Cholewicki J, Nibu K et al (1998) Capsular ligament stretches during in vitro whiplash simulations. J Spinal Disord 11(3):227–232

    CAS  PubMed  Google Scholar 

  147. Grauer JN, Panjabi MM, Cholewicki J et al (1997) Whiplash produces an S-shaped curvature of the neck with hyperextension at lower levels. Spine 22(21):2489–2494

    CAS  PubMed  Google Scholar 

  148. Siegmund GP, Myers BS, Davis MB et al (2000) Human cervical motion segment flexibility and facet capsular ligament strain under combined posterior shear, extension and axial compression. Stapp Car Crash J 44:159–170

    CAS  PubMed  Google Scholar 

  149. Siegmund GP, Myers BS, Davis MB et al (2001) Mechanical evidence of cervical facet capsule injury during whiplash: a cadaveric study using combined shear, compression, and extension loading. Spine 26(19):2095–2101

    CAS  PubMed  Google Scholar 

  150. Yoganandan N, Pintar FA (1997) Inertial loading of the human cervical spine. J Biomech Eng 119(3):237–240

    CAS  PubMed  Google Scholar 

  151. Quinn KP, Winkelstein BA (2007) Cervical facet capsular ligament yield defines the threshold for injury and persistent joint-mediated neck pain. J Biomech 40(10):2299–2306

    PubMed  Google Scholar 

  152. Lee KE, Franklin AN, Davis MB et al (2006) Tensile cervical facet capsule ligament mechanics: failure and subfailure responses in the rodent. J Biomech 39(7):1256–1264

    PubMed  Google Scholar 

  153. Chen C, Lu Y, Cavanaugh JM et al (2005) Recording of neural activity from goat cervical facet joint capsule using custom-designed miniature electrodes. Spine 30(12):1367–1372

    PubMed  Google Scholar 

  154. Dong L, Winkelstein BA (2010) Simulated whiplash modulates expression of the glutamatergic system in the spinal cord suggesting spinal plasticity is associated with painful dynamic cervical facet loading. J Neurotrauma 27(1):163–174

    PubMed Central  PubMed  Google Scholar 

  155. Lee KE, Davis MB, Winkelstein BA (2008) Capsular ligament involvement in the development of mechanical hyperalgesia after facet joint loading: behavioral and inflammatory outcomes in a rodent model of pain. J Neurotrauma 25(11):1383–1393

    PubMed  Google Scholar 

  156. Lee KE, Thinnes JH, Gokhin DS et al (2004) A novel rodent neck pain model of facet-mediated behavioral hypersensitivity: implications for persistent pain and whiplash injury. J Neurosci Methods 137(2):151–159

    PubMed  Google Scholar 

  157. Lu Y, Chen C, Kallakuri S et al (2005) Neurophysiological and biomechanical characterization of goat cervical facet joint capsules. J Orthop Res 23:779–787

    PubMed  Google Scholar 

  158. Weisshaar CL, Dong L, Bowman AS et al (2010) Metabotropic glutamate receptor-5 and protein kinase C-epsilon increase in dorsal root ganglion neurons and spinal glial activation in an adolescent rat model of painful neck injury. J Neurotrauma 27(12):2261–2271

    PubMed  Google Scholar 

  159. Lu Y, Chen C, Kallakuri S et al (2005) Development of an in vivo method to investigate biomechanical and neurophysiological properties of spine facet joint capsules. Eur Spine J 14(6):565–572

    PubMed Central  PubMed  Google Scholar 

  160. Kallakuri S, Singh A, Lu Y et al (2008) Tensile stretching of cervical facet joint capsule and related axonal changes. Eur Spine J 17(4):556–563

    PubMed Central  PubMed  Google Scholar 

  161. Quinn KP, Lee KE, Ahaghotu CC et al (2007) Structural changes in the cervical facet capsular ligament: potential contributions to pain following subfailure loading. Stapp Car Crash J 51:169–187

    PubMed  Google Scholar 

  162. Curatolo M, Petersen-Felix S, Arendt-Nielsen L et al (2001) Central hypersensitivity in chronic pain after whiplash injury. Clin J Pain 17(4):306–315

    CAS  PubMed  Google Scholar 

  163. Herren-Gerber R, Weiss S, Arendt-Nielsen L et al (2004) Modulation of central hypersensitivity by nociceptive input in chronic pain after whiplash injury. Pain 5(4):366–376

    Google Scholar 

  164. Lee KE, Davis MB, Mejilla RM et al (2004) In vivo cervical facet capsule distraction: mechanical implications for whiplash & neck pain. Stapp Car Crash J 48:373–396

    PubMed  Google Scholar 

  165. Rothman SM, Hubbard RD, Lee KE et al (2008) Detection, transmission, and perception of pain. In: Slipman C, Simeone F, Derby R (eds) Interventional spine: an algorithmic approach. Saunders, Philadelphia

    Google Scholar 

  166. Dong L, Quindlen JC, Lipschutz DE et al (2012) Whiplash-like facet joint loading initiates glutamatergic responses in the DRG and spinal cord associated with behavioral hypersensitivity. Brain Res 1461:51–63

    CAS  PubMed Central  PubMed  Google Scholar 

  167. Deriemer S, Strong J, Albert K et al (1985) Enhancement of calcium current in Aplysia neurons by phorbol ester and protein kinase C. Nature 313:313–316

    CAS  PubMed  Google Scholar 

  168. Xu T, Jiang W, Du D et al (2007) Role of spinal metabotropic glutamate receptor subtype 5 in the development of tolerance to morphine-induced antinociception in rat. Neurosci Lett 420:155–159

    CAS  PubMed  Google Scholar 

  169. Azkue JJ, Liu XG, Zimmermann M et al (2003) Induction of long-term potentiation of C fibre-evoked spinal field potentials requires recruitment of group I, but not group II/III metabotropic glutamate receptors. Pain 106:373–379

    CAS  PubMed  Google Scholar 

  170. Derjean D, Bertrand S, Le Masson G et al (2003) Dybamic balance of metabotropic inputs causes dorsal horn neurons to switch functional states. Nat Neurosci 6:274–281

    CAS  PubMed  Google Scholar 

  171. Young MR, Fleetwood-Walker SM, Dickinson T et al (1997) Behavioral and electrophysiological evidence supporting a role for group I metabotropic glutamate receptors in the mediation of nociceptive inputs to the rat spinal cord. Brain Res 777:161–169

    CAS  PubMed  Google Scholar 

  172. Gwak Y, Hulsebosch C (2005) Upregulation of group I metabotropic glutamate receptors in neurons and astrocytes in the dorsal horn following spinal cord injury. Exp Neurol 195:236–243

    CAS  PubMed  Google Scholar 

  173. Liang Y, Huang C, Hsu K (2005) Characterization of long-term potentiation of primary afferent transmission at trigeminal synapses of juvenile rats: essential role of subtype 5 metabotropic glutamate receptors. Pain 114:417–428

    CAS  PubMed  Google Scholar 

  174. Cao H, Zhang YQ (2008) Spinal glial activation contributes to pathological pain states. Neurosci Biobehav Rev 32(5):972–983

    PubMed  Google Scholar 

  175. DeLeo JA, Tanga FY, Tawfik VL (2004) Neuroimmune activation and neuroinflammation in chronic pain and opioid tolerance/hyperalgesia. Neuroscientist 10(1):40–52

    CAS  PubMed  Google Scholar 

  176. Suter MR, Wen YR, Decosterd I et al (2007) Do glial cells control pain? Neuron Glia Biol 3:255–268

    PubMed Central  PubMed  Google Scholar 

  177. Frymoyer JW (1998) Back pain and sciatica. N Engl J Med 318(5):291–300

    Google Scholar 

  178. Kelly JD, Aliquo D, Sitler MR et al (2000) Association of burners with cervical canal and foraminal stenosis. Am J Sports Med 28(2):214–217

    PubMed  Google Scholar 

  179. Nuckley DJ, Konodi MA, Raynak GC et al (2002) Neural space integrity of the lower cervical spine: effect of normal range of motion. Spine 27(6):587–595

    PubMed  Google Scholar 

  180. Abbed KM, Coumans J (2007) Cervical radiculopathy: pathophysiology, presentation, and clinical evaluation. Neurosurgery 60(1):28–34

    Google Scholar 

  181. Caridi JM, Matthias P, Hughes AP (2011) Cervical radiculopathy: a review. HSS J 7:265–272

    PubMed Central  PubMed  Google Scholar 

  182. Harden N, Cohen M (2003) Unmet needs in the management of neuropathic pain. J Pain Symptom Manage 25(5):S12–S17

    PubMed  Google Scholar 

  183. Slipman CW, Plastaras CT, Palmitier RA et al (1998) Symptom provocation of fluoroscopically guided cervical nerve root stimulation: are dynatomal maps identical to dermatomal maps? Spine 23(20):2235–2242

    CAS  PubMed  Google Scholar 

  184. Ellenberg MR, Honet JC, Treanor WJ (1994) Cervical radiculopathy. Arch Phys Med Rehabil 75(3):342–532

    CAS  PubMed  Google Scholar 

  185. Kawakami M, Hashizume H, Nishi H et al (2003) Comparison of neuropathic pain induced by the application of normal and mechanically compressed nucleus pulposus to lumbar nerve roots in the rat. J Orthop Res 21(3):535–539

    PubMed  Google Scholar 

  186. Rutkowski MD, Winkelstein BA, Hickey WF et al (2002) Lumbar nerve root injury induces central nervous system neuroimmune activation and neuroinflammation in the rat: relationship to painful radiculopathy. Spine 27(15):1604–1613

    PubMed  Google Scholar 

  187. Sunderland S (1974) Mechanisms of cervical nerve root avulsion in injuries of the neck and shoulder. J Neurosurg 41:705–714

    CAS  PubMed  Google Scholar 

  188. Krivickas LS, Wilbourn AJ (2000) Peripheral nerve injuries in athletes: a case series of over 200 injuries. Semin Neurol 20(2):225–232

    CAS  PubMed  Google Scholar 

  189. Panjabi MM, Maak TG, Ivancic PC et al (2006) Dynamic intervertebral foramen narrowing during simulated rear impact. Spine 31(5):128–134

    Google Scholar 

  190. Tominaga Y, Maak TG, Ivancic PC et al (2006) Head-turned rear impact causing dynamic cervical intervertebral foramen narrowing: implications for ganglion and nerve root injury. J Neurosurg Spine 26(1):57–62

    Google Scholar 

  191. Wainner RS, Gill H (2000) Diagnosis and nonoperative management of cervical radiculopathy. J Orthop Sports Phys Ther 30(12):728–744

    CAS  PubMed  Google Scholar 

  192. Singh A, Lu Y, Chaoyang C et al (2006) Mechanical properties of spinal nerve roots subjected to tension at different strain rates. J Biomech 39(9):1669–1676

    PubMed  Google Scholar 

  193. Singh A, Kallakuri A, Chen C et al (2009) Structural and functional changes in nerve roots due to tension at various strains and strain rates: an in-vivo study. J Neurotrauma 26(4):627–640

    PubMed  Google Scholar 

  194. Fung YC (1972) Stress-strain-history relations of soft tissues in simple elongation. In: Fung YC (ed) Biomechanics: its foundations and objectives. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  195. Yoganandan N, Kumaresan S, Pintar FA (2001) Biomechanics of the cervical spine part 2. Cervical spine soft tissue responses and biomechanical modeling. Clin Biomech 16(1):1–27

    CAS  Google Scholar 

  196. Hubbard RD, Chen Z, Winkelstein BA (2008) Transient cervical nerve root compression modulates pain: load thresholds for allodynia and sustained changes in spinal neuropeptide expression. J Biomech 41:677–685

    PubMed Central  PubMed  Google Scholar 

  197. Hubbard RD, Winkelstein BA (2005) Transient cervical nerve root compression in the rat induces bilateral forepaw allodynia and spinal glial activation: mechanical factors in painful neck injuries. Spine 30(17):1924–1932

    PubMed  Google Scholar 

  198. Winkelstein BA, DeLeo JA (2002) Nerve root injury severity differentially modulates spinal glial activation in a rat lumbar radiculopathy model: considerations for persistent pain. Brain Res 956(2):294–301

    CAS  PubMed  Google Scholar 

  199. Winkelstein BA, Rutkowski MD, Weinstein JN et al (2001) Quantification of neural tissue injury in a rat radiculopathy model: comparison of local deformation, behavioral outcomes, and spinal cytokine mRNA for two surgeons. J Neurosci Methods 111(1):49–57

    CAS  PubMed  Google Scholar 

  200. Winkelstein BA, Weinstein JN, DeLeo JA (2002) The role of mechanical deformation in lumbar radiculopathy: an in vivo model. Spine 27(1):27–33

    PubMed  Google Scholar 

  201. Hubbard RD, Winkelstein BA (2008) Dorsal root compression produces myelinated axonal degeneration near the biomechanical thresholds for mechanical behavioral hypersensitivity. Exp Neurol 212(2):482–489

    PubMed Central  PubMed  Google Scholar 

  202. Nicholson KJ, Gilliland TM, Winkelstein BA (2013) Duration of nerve root compressive trauma modulates the subsequent thermal hyperalgesia & spinal expression of the glutamate transporter, GLT1. Paper presented at the Proceedings of the ASME 2013 summer bioengineering conference, Sunriver, Oregon, 26–29 Jun 2013

    Google Scholar 

  203. Nicholson KJ, Guarino BB, Winkelstein BA (2012) Transient nerve root compression load and duration differentially mediate behavioral sensitivity and associated spinal astrocyte activation and mGluR5 expression. Neuroscience 209:187–195

    CAS  PubMed  Google Scholar 

  204. Scholz J, Woolf CJ (2007) The neuropathic triad: neurons, immune cells and glia. Nat Neurosci 10(11):1361–1368

    CAS  PubMed  Google Scholar 

  205. Hubbard RD, Quinn KP, Martinez JJ et al (2008) The role of graded nerve root compression on axonal damage, neuropeptide changes, and pain-related behaviors. Stapp Car Crash J 52:33–58

    PubMed  Google Scholar 

  206. Kobayashi S, Baba H, Uchida K et al (2005) Effect of mechanical compression on the lumbar nerve root: localization and changes of intraradicular inflammatory cytokines, nitric oxide, and cyclooxygenase. Spine 30(15):1699–1705

    PubMed  Google Scholar 

  207. Nicholson KJ, Quindlen JC, Winkelstein BA (2011) Development of a duration threshold for modulating evoked neuronal responses after nerve root compression injury. Stapp Car Crash J 55:1–24

    PubMed  Google Scholar 

  208. Olmarker K, Holm S, Rydevik B (1990) Importance of compression onset rate for the degree of impairment of impulse propagation in experimental compression injury of the porcine cauda equina. Spine 15(5):416–419

    CAS  PubMed  Google Scholar 

  209. Burchiel KJ, Hsu FPK (2001) Pain and spasticity after spinal cord injury: mechanisms and treatment. Spine 26(24):S146–S160

    CAS  PubMed  Google Scholar 

  210. Finnerup NB, Jensen TS (2004) Spinal cord injury pain: mechanisms and treatment. Eur J Neurol 11(2):73–82

    CAS  PubMed  Google Scholar 

  211. Hulsebosch CE, Hains BC, Crown ED et al (2009) Mechanisms of chronic central neuropathic pain after spinal cord injury. Brain Res Rev 60(1):202–213

    CAS  PubMed Central  PubMed  Google Scholar 

  212. Vierck CJ, Siddall P, Yezierski RP (2000) Pain following spinal cord injury: animal models and mechanistic studies. Pain 89(1):1–5

    PubMed  Google Scholar 

  213. Yezierski RP (2009) Spinal cord injury pain: spinal and supraspinal mechanisms. J Rehabil Res Dev 46(1):95–107

    PubMed  Google Scholar 

  214. Kwon BK, Tetslaff W, Grauer JN et al (2004) Pathophysiology and pharmacologic treatment of acute spinal cord injury. Spine J 4(4):451–464

    PubMed  Google Scholar 

  215. Saab CY, Waxman SG, Hains BC (2008) Alarm or curse? The pain of neuroinflammation. Brain Res Rev 58(1):226–235

    CAS  PubMed  Google Scholar 

  216. Hulsebosch CE (2002) Recent advances in pathophysiology and treatment of spinal cord injury. Adv Physiol Educ 26:238–255

    PubMed  Google Scholar 

  217. Yamashita T, Cavanaugh JM, el-Bohy AA et al (1990) Mechanosensitive afferent units in the lumbar facet joint. J Bone Joint Surg Am 72(6):865–870

    CAS  PubMed  Google Scholar 

  218. Adams MA, Roughley PJ (2006) What is intervertebral disc degeneration, and what causes it? Spine 31(18):2151–2161

    PubMed  Google Scholar 

  219. Setton LA, Chen J (2006) Mechanobiology of the intervertebral disc and relevance to disc degeneration. J Bone Joint Surg Am 88(Suppl 2):52–57

    PubMed  Google Scholar 

  220. Dai LY, Jia LS (2000) Central cord injury complicating acute cervical disc herniation in trauma. Spine 25(3):331–335

    CAS  PubMed  Google Scholar 

  221. Berrington NR, van Staden JF, Willers JG et al (1993) Cervical intervertebral disc prolapse associated with traumatic facet dislocations. Surg Neurol 40(5):395–399

    CAS  PubMed  Google Scholar 

  222. Brault JR, Siegmund GP, Wheeler JB (2000) Cervical muscle response during whiplash: evidence of a lengthening muscle contraction. Clin Biomech 15(6):426–435

    CAS  Google Scholar 

  223. Siegmund GP, Blouin JS, Carpenter MG et al (2008) Are cervical multifidus muscles active during whiplash and startle? An initial experimental study. BMC Musculoskelet Disord 9:80

    PubMed Central  PubMed  Google Scholar 

  224. Davis SJ, Teresi LM, Bradley WG et al (1991) Cervical spine hyperextension injuries: MR findings. Radiology 180(1):245–251

    CAS  PubMed  Google Scholar 

  225. Kliewer MA, Gray L, Paver J et al (1993) Acute spinal ligament disruption: MR imaging with anatomic correlation. J Magn Reson Imaging 3(6):855–861

    CAS  PubMed  Google Scholar 

  226. McMahon PJ, Dheer S, Raikin SM et al (2009) MRI of injuries to the first interosseous cuneometatarsal (Lisfranc) ligament. Skeletal Radiol 38(3):255–260

    Google Scholar 

  227. Billiar KL, Sacks MS (1997) A method to quantify the fiber kinematics of planar tissues under biaxial stretch. J Biomech 30(7):753–756

    CAS  PubMed  Google Scholar 

  228. Hansen KA, Weiss JA, Barton JK (2002) Recruitment of tendon crimp with applied tensile strain. J Biomech Eng 124(1):72–77

    PubMed  Google Scholar 

  229. Robinson PS, Tranquillo RT (2009) Planar biaxial behavior of fibrin-based tissue-engineered heart valve leaflets. Tissue Eng Part A 15(10):2763–2772

    CAS  PubMed Central  PubMed  Google Scholar 

  230. Snedeker JG, Pelled G, Zilberman Y et al (2006) Endoscopic cellular microscopy for in vivo biomechanical assessment of tendon function. J Biomed Opt 11(6):064010

    PubMed  Google Scholar 

  231. Snedeker JG, Pelled G, Zilberman Y et al (2008) An analytical model for elucidating tendon tissue structure and biomechanical function from in vivo cellular confocal microscopy images. Cells Tissues Organs 190:111–119

    PubMed  Google Scholar 

  232. Tower TT, Neidert MR, Tranquillo RT (2002) Fiber alignment imaging during mechanical testing of soft tissues. Ann Biomed Eng 30(10):1221–1233

    PubMed  Google Scholar 

  233. Sander EA, Barocas VH (2009) Comparison of 2D fiber network orientation measurement methods. J Biomed Mater Res A 88(2):322–331

    CAS  PubMed  Google Scholar 

  234. Quinn KP, Bauman JA, Crosby ND et al (2010) Anomalous fiber realignment during tensile loading of the rat facet capsular ligament identifies mechanically induced damage and physiological dysfunction. J Biomech 43(10):1870–1875

    PubMed  Google Scholar 

  235. Dickey JP, Hewlett BR, Dumas GA et al (1998) Measuring collagen fiber orientation: a two-dimensional quantitative macroscopic technique. J Biomech Eng 120(4):537–540

    CAS  PubMed  Google Scholar 

  236. Tower TT, Tranquillo RT (2001) Alignment maps of tissues: I. Microscopic elliptical polarimetry. Biophys J 81(5):2954–2963

    CAS  PubMed Central  PubMed  Google Scholar 

  237. Whittaker P, Canham PB (1991) Demonstration of quantitative fabric analysis of tendon collagen using two-dimensional polarized light microscopy. Matrix 11(1):56–62

    CAS  PubMed  Google Scholar 

  238. Quinn KP, Winkelstein BA (2010) Full field strain measurements of collagenous tissue by tracking fiber alignment through vector correlation. J Biomech 43(13):2637–2640

    PubMed  Google Scholar 

  239. Liem LK, Simard JM, Song Y et al (1995) The patch clamp technique. Neurosurgery 36(2):382–392

    CAS  PubMed  Google Scholar 

  240. Stanfa LC, Dickenson AH (2004) In vivo electrophysiology of dorsal horn neurons. In: Luo ZD (ed) Methods in molecular medicine. Humana, Totowa

    Google Scholar 

  241. Zhao Y, Inayat S, Dikin DA et al (2009) Patch clamp technique: review of the current state of the art and potential contributions from nanoengineering. Proc IMechE 222:1–11

    Google Scholar 

  242. Pine J (2006) A history of MEA development. In: Taketani M, Baudry M (eds) Advances in network electrophysiology: using multi-electrode arrays. Springer, New York

    Google Scholar 

  243. Lewicki MS (1998) A review of methods for spike sorting: the detection and classification of neural action potentials. Comput Neural Syst 9(4):R53–R78

    CAS  Google Scholar 

  244. Schouenberg J (1984) Functional and topographical properties of field potentials evoked in rat dorsal horn neurons by cutaneous C-fiber stimulation. J Physiol 356:169–192

    Google Scholar 

  245. Stett A, Egert U, Guenther E et al (2003) Biological applications of microelectrode arrays in drug discovery and basic research. Anal Bioanal Chem 377:486–495

    CAS  PubMed  Google Scholar 

  246. Hains BC, Willis WD, Hulsebosch CE (2003) Temporal plasticity of dorsal horn somatosensory neurons after acute and chronic spinal cord hemisection in rat. Brain Res 970:238–241

    CAS  PubMed  Google Scholar 

  247. Martindale JC, Wilson AW, Reeve AJ et al (2007) Chronic secondary hypersensitivity of dorsal horn neurons following inflammation of the knee joint. Pain 133:79–86

    CAS  PubMed  Google Scholar 

  248. Vernon H, Sun K, Zhang T et al (2009) Central sensitization induced in trigeminal and upper cervical dorsal horn neurons by noxious stimulation of deep cervical paraspinal tissues in rats with minimal surgical trauma. J Manipulative Physiol Ther 32(7):506–514

    PubMed Central  PubMed  Google Scholar 

  249. Ikeda H, Heinke B, Ruscheweyh R et al (2003) Synaptic plasticity in spinal lamina I projection neurons that mediate hyperalgesia. Science 299:1237–1240

    CAS  PubMed  Google Scholar 

  250. Randic M, Jiang MC, Cerne R (1993) Long-term potentiation and long-term depression of primary afferent neurotransmission in the rat spinal cord. J Neurosci 13(12):5228–5241

    CAS  PubMed  Google Scholar 

  251. Eytan D, Marom S (2006) Dynamics and effective topology underlying synchronization in networks of cortical neurons. J Neurosci 26(33):8465–8476

    CAS  PubMed  Google Scholar 

  252. Hofmann F, Bading H (2006) Long term recordings with multi-electrode arrays: studies of transcription-dependent neuronal plasticity and axonal regeneration. J Physiol Paris 99(2–3):125–132

    CAS  PubMed  Google Scholar 

  253. Kutzing MK, Luo V, Firestein BL (2011) Measurement of synchronous activity by microelectrode arrays uncovers differential effects of sublethal and lethal glutamate concentrations on cortical neurons. Ann Biomed Eng 39(8):2252–2262

    PubMed  Google Scholar 

  254. Yu Z, Graudejus O, Tsay C et al (2009) Monitoring hippocampus electrical activity in vitro on an elastically deformable microelectrode array. J Neurotrauma 26:1135–1145

    PubMed Central  PubMed  Google Scholar 

  255. Cheung KC, Renaud P, Tanila H et al (2007) Flexible polyimide microelectrode array for in vivo recordings and current source density analysis. Biosens Bioelectron 22(8):1783–1790

    CAS  PubMed  Google Scholar 

  256. Timko BP, Cohen-Karni T, Yu G et al (2009) Electrical recordings from hearts with flexible nanowire device arrays. Nano Lett 9(2):914–918

    CAS  PubMed Central  PubMed  Google Scholar 

  257. Viventi J, Kim DH, Moss JD et al (2010) A conformal, bio-interfaced class of silicon electronics for mapping cardiac electrophysiology. Sci Transl Med 2(24):24ra22

    PubMed Central  PubMed  Google Scholar 

  258. Saxena T, Gilbert J, Stelzner D et al (2012) Mechanical characterization of the injured spinal cord after lateral spinal hemisection injury in the rat. J Neurotrauma 29(9):1747–1757

    PubMed  Google Scholar 

  259. Levental I, Levental KR, Klein EA et al (2010) A simple indentation device for measuring micrometer-scale tissue stiffness. J Phys Condens Matter 22(19):194120

    CAS  PubMed Central  PubMed  Google Scholar 

  260. Miller WJ, Leventhal I, Scarcella D et al (2009) Mechanically induced reactive gliosis causes ATP-mediated alterations in astrocyte stiffness. J Neurotrauma 26(5):789–797

    PubMed Central  PubMed  Google Scholar 

  261. Vergara D, Martignago R, Leporatti S et al (2009) Biomechanical and proteomic analysis of IFN-β-treated astrocytes. Nanotechnology 20:244106–455115

    Google Scholar 

  262. Ouyang H, Galle B, Li J et al (2008) Biomechanics of spinal cord injury: a multimodal investigation using ex vivo guinea pig spinal cord white matter. J Neurotrauma 25(1):19–29

    PubMed  Google Scholar 

  263. East E, de Oliveira DB, Golding JP et al (2010) Alignment of astrocytes increases neuronal growth in three-dimensional collagen gels as is maintained following plastic compression to form a spinal cord repair conduit. Tissue Eng Part A 16(10):3173–3184

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Kathryn Lee, Kristen Nicholson, and Sonia Kartha for providing panels for the immunohistochemistry images. This work was supported by funding from the National Institutes of Health/National Institute of Arthritis, Musculoskeletal and Skin Diseases (#AR056288 and BIRT Supplement), the Department of Defense (W81XWH-10-1-1002 and W81XWH-10-2-0140), the National Science Foundation (Grant No. 054745), and the Cervical Spine Research Society, as well as the Catherine D. Sharpe and Ashton Foundations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beth A. Winkelstein Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Crosby, N.D., Smith, J.R., Winkelstein, B.A. (2015). Pain Biomechanics. In: Yoganandan, N., Nahum, A., Melvin, J. (eds) Accidental Injury. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1732-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1732-7_19

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1731-0

  • Online ISBN: 978-1-4939-1732-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics