Skip to main content

Introduction to and Applications of Injury Biomechanics

  • Chapter
  • First Online:
Accidental Injury
  • 3326 Accesses

Abstract

The four aims of impact biomechanics are (1) Identification and explanation of injury mechanisms (2) Quantification of mechanical response of body components to impact (3) Determination of tolerance levels to impact and (4) Assessment of safety devices and techniques to evaluate prevention systems. These are briefly described followed by a discussion of the methods used to study injury biomechanics. The rest of the chapter is devoted to injury mechanisms which need to be understood if preventative measures are to be developed and implemented. The mechanisms covered are brain injury and acute subdural hematoma, neck pain due to whiplash, aortic rupture, spinal injury due to vertical acceleration, disc rupture, hip fracture in the elderly, ankle (pilon) fracture and foot fracture. It is concluded that much misinformation exists in the literature regarding these injuries and the statement in Lancet (Issue 9773): “The most entrenched conflict of interest in medicine is a disinclination to reverse a previous opinion” is indeed true.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Centers for Disease Control (CDC) (2012) National Center for Injury Prevention and Control: WISQARs leading causes of death reports, national and regional. Webapp.cdc.gov/sasweb/ncipc/leadingcaus10_us.html

  2. Gurdjian ES, Lissner HR (1944) Mechanism of head injury as studied by the cathode ray oscilloscope, preliminary report. J Neurosurg 1:393–399

    Google Scholar 

  3. US Department of Transportation (2010) Seat belt used in 2010 – use rates in the states and territories, DOT HS811-493. US Government Printing Office, Washington, DC

    Google Scholar 

  4. Viano DC, King AI, Melvin JW, Weber K (1989) Injury biomechanics research: an essential element in the prevention of trauma. J Biomech 22(5):403–417

    CAS  PubMed  Google Scholar 

  5. Hardy WN, Foster CD, Mason MJ, Yang KH, King AI, Tashman S (2001) Investigation of head injury mechanisms using neutral density technology and high-speed biplanar X-ray. Stapp Car Crash J 45:337–368

    CAS  PubMed  Google Scholar 

  6. Gurdjian ES, Lissner HR (1945) Deformation of the skull in head injury; a study with the stresscoat technique. Surg Gynecol Obstet 81:679–687

    CAS  PubMed  Google Scholar 

  7. Evans FG, Lissner HR (1963) Studies on the energy absorbing capacity of human lumbar intervertebral discs. In: Proceedings of the 7th Stapp car crash conference, Los Angeles, pp 386–402

    Google Scholar 

  8. Mertz HJ, Patick LM (1967) Investigation of the kinematics and kinetics of whiplash. Paper presented at the proceedings of the 11th Stapp car crash conference, Anaheim

    Google Scholar 

  9. Yang KH, Hu J, White NA, King AI, Chou CC, Prasad P (2006) Development of numerical models for injury biomechanics research: a review of 50 years of publications in the Stapp car crash conference. Stapp Car Crash J 50:429–490

    PubMed  Google Scholar 

  10. Gurdjian ES, Lissner HR, Latimer FR, Haddad BF, Webster JE (1953) Quantitative determination of acceleration and intracranial pressure in experimental head injury; preliminary report. Neurology 3(6):417–423

    CAS  PubMed  Google Scholar 

  11. Ommaya AK, Grubb RL Jr, Naumann RA (1971) Coup and contre-coup injury: observations on the mechanics of visible brain injuries in the rhesus monkey. J Neurosurg 35(5):503–516. doi:10.3171/jns.1971.35.5.0503

    CAS  PubMed  Google Scholar 

  12. Gurdjian ES, Webster JE, Lissner HR (1955) Observations on the mechanism of brain concussion, contusion, and laceration. Surg Gynecol Obstet 101(6):680–690

    CAS  PubMed  Google Scholar 

  13. Vandevord PJ, Bolander R, Sajja VS, Hay K, Bir CA (2012) Mild neurotrauma indicates a range-specific pressure response to low level shock wave exposure. Ann Biomed Eng 40(1):227–236. doi:10.1007/s10439-011-0420-4

    PubMed  Google Scholar 

  14. Haines DE, Harkey HL, Al-Mefty O (1993) The “subdural” space: a new look at an outdated concept. Neurosurgery 32:111–120

    CAS  PubMed  Google Scholar 

  15. Weed LH (1917) An anatomical consideration of the cerebro-spinal fluids. Anat Rec 12:461–496

    Google Scholar 

  16. Cushing H (1914) Studies on the cerebro-spinal fluid: I. Introduction. J Med Res 31(1):1–19

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Penfield (1923) The cranial subdural space. Anat Rec 28:173–175

    Google Scholar 

  18. Weed LH (1920) The cells of the arachnoid. Johns Hopkins Hosp Bull 31:343–357

    Google Scholar 

  19. Weed LH (1938) Meninges and cerebrospinal fluid. J Anat 72(Pt 2):181–215

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Leary T (1939) Subdural or intradural hemorrhages? Arch Path Lab Med 28:808–820

    Google Scholar 

  21. Allen DJ, DiDio LJ (1977) Scanning and transmission electron microscopy of the encephalic meninges in dogs. J Submicrosc Cytol 9:1–22

    Google Scholar 

  22. Nabeshima S, Reese TS, Landis DM, Brightman MW (1975) Junctions in the meninges and marginal glia. J Comp Neurol 164(2):127–169. doi:10.1002/cne.901640202

    CAS  PubMed  Google Scholar 

  23. Alcolado R, Weller RO, Parrish EP, Garrod D (1988) The cranial arachnoid and pia mater in man: anatomical and ultrastructural observations. Neuropathol Appl Neurobiol 14(1):1–17

    CAS  PubMed  Google Scholar 

  24. Rascol MM, Izard JY (1976) The subdural neurothelium of the cranial meninges in man. Anat Rec 186(3):429–436. doi:10.1002/ar.1091860308

    CAS  PubMed  Google Scholar 

  25. Yamashima T, Yamamoto S (1984) How do vessels proliferate in the capsule of a chronic subdural hematoma? Neurosurgery 155:672–678

    Google Scholar 

  26. Schachenmayr W, Friede RL (1979) Fine structure of arachnoid cysts. J Neuropathol Exp Neurol 38(4):434–446

    CAS  PubMed  Google Scholar 

  27. Frederickson RG (1991) The subdural space interpreted as a cellular layer of meninges. Anat Rec 230(1):38–51. doi:10.1002/ar.1092300105

    CAS  PubMed  Google Scholar 

  28. Friede RL, Schachenmayr W (1978) The origin of subdural neomembranes. II. Fine structural of neomembranes. Am J Pathol 92(1):69–84

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Orlin JR, Osen KK, Hovig T (1991) Subdural compartment in pig: a morphologic study with blood and horseradish peroxidase infused subdurally. Anat Rec 230(1):22–37. doi:10.1002/ar.1092300104

    CAS  PubMed  Google Scholar 

  30. Reina MA, De Leon Casasola O, Lopez A, De Andres JA, Mora M, Fernandez A (2002) The origin of the spinal subdural space: ultrastructure findings. Anesth Analg 94(4):991–995, table of contents

    PubMed  Google Scholar 

  31. Yamashima T (2000) The inner membrane of chronic subdural hematomas: pathology and pathophysiology. Neurosurg Clin N Am 11(3):413–424

    CAS  PubMed  Google Scholar 

  32. Andrews BT, Dujovny M, Mirchandani HG, Ausman JI (1989) Microsurgical anatomy of the venous drainage into the superior sagittal sinus. Neurosurgery 24(4):514–520

    CAS  PubMed  Google Scholar 

  33. Ehrlich E, Maxeiner H, Lange J (2003) Postmortem radiological investigation of bridging vein ruptures. Leg Med (Tokyo) 5(Suppl 1):S225–S227

    Google Scholar 

  34. Yamashima T, Friede RL (1984) Why do bridging veins rupture into the virtual subdural space? J Neurol Neurosurg Psychiatry 47:121–127

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Trotter W (1914) Chronic subdural haemorrhage of traumatic origin, and its relation to pachymeningitis haemorrhagica interna. Br J Surg 2:271–291

    Google Scholar 

  36. Bongioanni F, Ramadan A, Kostli A, Berney J (1991) Acute subdural hematoma of arteriolar origin. Traumatic or spontaneous? Neurochirurgie 37(1):26–31

    CAS  PubMed  Google Scholar 

  37. Wilberger JE Jr, Harris M, Diamond DL (1991) Acute subdural hematoma: morbidity, mortality, and operative timing. J Neurosurg 74(2):212–218. doi:10.3171/jns.1991.74.2.0212

    PubMed  Google Scholar 

  38. Guterman A, Smith RW (1987) Neurological sequelae of boxing. Sports Med 4(3):194–210

    CAS  PubMed  Google Scholar 

  39. Gennarelli TA, Thibault LE (1982) Biomechanics of acute subdural hematoma. J Trauma 22(8):680–686

    CAS  PubMed  Google Scholar 

  40. Maxeiner H (1997) Detection of ruptured cerebral bridging veins at autopsy. Forensic Sci Int 89(1–2):103–110

    CAS  PubMed  Google Scholar 

  41. Maxeiner H, Spies C, Irnich B, Brock M (1999) Rupture of several parasagittal bridging veins without subdural bleeding. J Trauma 47(3):606–610

    CAS  PubMed  Google Scholar 

  42. Maxeiner H, Wolff M (2002) Pure subdural hematomas: a postmortem analysis of their form and bleeding points. Neurosurgery 50(3):503–508; discussion 508–509

    PubMed  Google Scholar 

  43. Shenkin HA (1982) Acute subdural hematoma. Review of 39 consecutive cases with high incidence of cortical artery rupture. J Neurosurg 57(2):254–257. doi:10.3171/jns.1982.57.2.0254

    CAS  PubMed  Google Scholar 

  44. Howard MA 3rd, Gross AS, Dacey RG Jr, Winn HR (1989) Acute subdural hematomas: an age-dependent clinical entity. J Neurosurg 71(6):858–863. doi:10.3171/jns.1989.71.6.0858

    PubMed  Google Scholar 

  45. Maxeiner H (1991) Arterial misplacement of a central venous catheter with a fatal cerebral embolism. Anaesthesist 40(8):452–455

    CAS  PubMed  Google Scholar 

  46. Karnath B (2004) Subdural hematoma. Presentation and management in older adults. Geriatrics 59(7):18–23

    PubMed  Google Scholar 

  47. Tandon PN (2001) Acute subdural haematoma: a reappraisal. Neurol India 49(1):3–10

    CAS  PubMed  Google Scholar 

  48. Lowenhielm P (1974) Dynamic properties of the parasagittal bridging veins. Z Rechtsmed 74(1):55–62

    CAS  PubMed  Google Scholar 

  49. Lee MC, Haut RC (1989) Insensitivity of tensile failure properties of human bridging veins to strain rate: implications in biomechanics of subdural hematoma. J Biomech 22(6–7):537–542

    CAS  PubMed  Google Scholar 

  50. Lee MC, Haut RC (1992) Strain rate effects on tensile failure properties of the common carotid artery and jugular veins of ferrets. J Biomech 25(8):925–927

    CAS  PubMed  Google Scholar 

  51. Monson KL, Goldsmith W, Barbaro NM, Manley GT (2003) Axial mechanical properties of fresh human cerebral blood vessels. J Biomech Eng 125(2):288–294

    PubMed  Google Scholar 

  52. Pang Q, Wang C, Hu Y, Xu G, Zhang L, Hao X, Zhang Q, Gregerson H (2001) Experimental study of the morphology of cerebral bridging vein. Chin Med Sci J 16(1):19–22

    CAS  PubMed  Google Scholar 

  53. Depreitere B, Van Lierde C, Sloten JV, Van Audekercke R, Van der Perre G, Plets C, Goffin J (2006) Mechanics of acute subdural hematomas resulting from bridging vein rupture. J Neurosurg 104(6):950–956. doi:10.3171/jns.2006.104.6.950

    PubMed  Google Scholar 

  54. Jin X, Yang KH, King AI (2011) Mechanical properties of bovine pia-arachnoid complex in shear. J Biomech 44(3):467–474. doi:10.1016/j.jbiomech.2010.09.035

    PubMed  Google Scholar 

  55. Deans GT, Magalliard JN, Kerr M, Rutherford WH (1987) Neck sprain–a major cause of disability following car accidents. Injury 18(1):10–12

    CAS  PubMed  Google Scholar 

  56. Squires B, Gargan MF, Bannister GC (1996) Soft-tissue injuries of the cervical spine. 15-year follow-up. J Bone Joint Surg Br 78(6):955–957

    CAS  PubMed  Google Scholar 

  57. States JD, Balcerak JD, Williams JS, Morris AT, Babcock W, Polvino R, Dawley RE (1972) Injury frequency and head restraint effectiveness in rear-end impact accidents. In: Proceedings of the 16th Stapp car crash conference, Detroit, pp 228–257

    Google Scholar 

  58. Castro WH, Schilgen M, Meyer S, Weber M, Peuker C, Wortler K (1997) Do “whiplash injuries” occur in low-speed rear impacts? Eur Spine J 6(6):366–375

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Kleinberger M (1993) Application of finite element techniques to the study of cervical spine mechanics. Paper presented at the proceedings of the 37th Stapp car crash conference, San Antonio

    Google Scholar 

  60. Lubin S, Sehmer J (1993) Are automobile head restraints used effectively? Can Fam Physician 39:1584–1588

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Schrader H, Obelieniene D, Bovim G, Surkiene D, Mickeviciene D, Miseviciene I, Sand T (1996) Natural evolution of late whiplash syndrome outside the medicolegal context. Lancet 347(9010):1207–1211

    CAS  PubMed  Google Scholar 

  62. Ferrari R, Russell AS (1999) Epidemiology of whiplash: an international dilemma. Ann Rheum Dis 58(1):1–5

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Radanov BP, Sturzenegger M, Di Stefano G (1995) Long-term outcome after whiplash injury. A 2-year follow-up considering features of injury mechanism and somatic, radiologic, and psychosocial findings. Medicine (Baltimore) 74(5):281–297

    CAS  Google Scholar 

  64. Bogduk N (2000) Epidemiology of whiplash. Ann Rheum Dis 59(5):394–395; author reply 395–396

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Deng B, Begeman PC, Yang KH, Tashman S, King AI (2000) Kinematics of human cadaver cervical spine during low speed rear-end impacts. Stapp Car Crash J 44:171–188

    CAS  PubMed  Google Scholar 

  66. Cavanaugh JM, Ozaktay AC, Yamashita T, Avramov A, Getchell TV, King AI (1997) Mechanisms of low back pain: a neurophysiologic and neuroanatomic study. Clin Orthop Relat Res 335:166–180

    PubMed  Google Scholar 

  67. Bogduk N, Marsland A (1988) The cervical zygapophysial joints as a source of neck pain. Spine (Phila Pa 1976) 13(6):610–617

    CAS  Google Scholar 

  68. Barnsley L, Lord SM, Wallis BJ, Bogduk N (1995) The prevalence of chronic cervical zygapophysial joint pain after whiplash. Spine (Phila Pa 1976) 20(1):20–25; discussion 26

    CAS  Google Scholar 

  69. Ozaktay AC, Cavanaugh JM, Blagoev DC, King AI (1995) Phospholipase A2-induced electrophysiologic and histologic changes in rabbit dorsal lumbar spine tissues. Spine (Phila Pa 1976) 20(24):2659–2668

    CAS  Google Scholar 

  70. MacNab I (1965) Whiplash injuries of the neck. In: Proceedings of the 8th annual AAAM conference. Rochester, MN

    Google Scholar 

  71. Garrett WE, Seaber AV, Best TM, Glisson RR, Nikolaou PK, Taylor DC (1997) Muscle strain injury: basic science and clinical application. Kappa delta paper. In: Proceedings of the 43rd annual meeting of Orthopaedic Research Society, San Francisco

    Google Scholar 

  72. Tencer A, Mirza S, Martin D, Goodwin V, Sackett R, Schaefer J (1999) Development of a retro-fit anti-whiplash seat cushion based on studies of drivers and human volunteers. In: Proceedings of the 9th injury prevention through biomechanics symposium, Wayne State University, Detroit, pp 39–45

    Google Scholar 

  73. Azar NR, Kallakuri S, Chen C, Cavanaugh JM (2011) Muscular response to physiologic tensile stretch of the caprine c5/6 facet joint capsule: dynamic recruitment thresholds and latencies. Stapp Car Crash J 55:441–460

    PubMed  Google Scholar 

  74. Azar NR, Kallakuri S, Chen C, Lu Y, Cavanaugh JM (2009) Strain and load thresholds for cervical muscle recruitment in response to quasi-static stretch of the caprine C5-C6 joint capsule. J Electromyogr Kinesiol 19:e387–e394

    PubMed  Google Scholar 

  75. Ono K, Kaneoka K, Wittek A, Kajzer J (1997) Cervical injury mechanism based on the analysis of human cervical vertebral motion and head-neck-torso kinematics during low speed rear impacts. In: Proceedings of the 41st Stapp car crash conference, Orlando, pp 339–356

    Google Scholar 

  76. Yoganandan N, Pintar FA, Cusick JF, Sun E, Eppinger R (1998) Whiplash injury mechanisms. In: Whiplash’98 symposium, Phoenix, p 23

    Google Scholar 

  77. Aldman B (1986) An analytical approach to the impact biomechanics of head and neck. In: Proceedings of the 30th annual AAAM conference, pp 439–454

    Google Scholar 

  78. Svensson MY, Aldman B, Hansson HA, Lovsund P, Seeman T, Suneson A, Oertengren T (1993) Pressure effects in the spinal canal during whiplash extension motion: A possible cause of injury to the cervical spinal ganglia. In: Proceedings of the 1993 IRCOBI conference, Eindhoven

    Google Scholar 

  79. Yang KH, Begeman PC (1996) A proposed role for facet joints in neck pain in low to moderate speed rear end impacts. Part I: Biomechanics. In: Proceedings of the 6th injury prevention through biomechanics symposium, Wayne State University, Detroit, pp 59–63

    Google Scholar 

  80. Lu Y, Chen C, Kallakuri S, Patwardhan A, Cavanaugh JM (2005) Neural response of cervical facet joint capsule to stretch: a potential whiplash pain mechanism. Stapp Car Crash J 49:49–65

    PubMed  Google Scholar 

  81. Strassman G (1947) Traumatic rupture of the aorta. Am Heart J 33(4):508–515

    CAS  PubMed  Google Scholar 

  82. Roberts VL, Jackson FR, Berkas EM (1966) Heart motion due to blunt trauma to the thorax. In: Proceedings of the 10th Stapp car crash conference, Detroit, pp 242–248

    Google Scholar 

  83. Viano DC (2011) Chest impact experiments aimed at producing aortic rupture. Clin Anat 24(3):339–349. doi:10.1002/ca.21110

    PubMed  Google Scholar 

  84. Hardy WN, Shah CS, Mason MJ, Kopacz JM, Yang KH, King AI, Van Ee CA, Bishop JL, Banglmaier RF, Bey MJ, Morgan RM, Digges KH (2008) Mechanisms of traumatic rupture of the aorta and associated peri-isthmic motion and deformation. Stapp Car Crash J 52:233–265

    PubMed  Google Scholar 

  85. Vulcan AP, King AI, Nakamura GS (1970) Effects of bending on the vertebral column during + Gz acceleration. Aerosp Med 41(3):294–300

    CAS  PubMed  Google Scholar 

  86. King AI, Prasad P, Ewing CL (1975) Mechanism of spinal injury due to caudocephalad acceleration. Orthop Clin North Am 6(1):19–31

    CAS  PubMed  Google Scholar 

  87. Prasad P, King AI, Ewing CL (1974) The role of articular facets during + Gz acceleration. J Appl Mech 41:321–326

    Google Scholar 

  88. Patrick LM (1961) Caudo-cephalad static and dynamic injuries to the vertebrae. In: Proceedings of the 5th Stapp car crash conference, Minneapolis, pp 171–181

    Google Scholar 

  89. Smith BR, Begeman P (2012) The development of a new injury criteria for the spine and tibia. In: Advanced technologies and new frontiers in military injury biomechanics symposium, Arlington

    Google Scholar 

  90. Ramasamy A, Hill AM, Masouros S, Gibb I, Bull AM, Clasper JC (2011) Blast-related fracture patterns: a forensic biomechanical approach. J R Soc Interface 8(58):689–698. doi:10.1098/rsif.2010.0476

    PubMed Central  PubMed  Google Scholar 

  91. Ramasamy A, Masouros SD, Newell N, Hill AM, Proud WG, Brown KA, Bull AM, Clasper JC (2011) In-vehicle extremity injuries from improvised explosive devices: current and future foci. Philos Trans R Soc Lond B Biol Sci 366(1562):160–170. doi:10.1098/rstb.2010.0219

    PubMed Central  PubMed  Google Scholar 

  92. Prasad P, King AI (1974) An experimentally validated dynamic model of the spine. J Appl Mech 41:546–550

    Google Scholar 

  93. Begeman PC, King AI, Prasad P (1973) Spinal loads resulting from -Gx acceleration. In: Proceedings of the 17th staff car crash conference, Oklahoma City, pp 343–360

    Google Scholar 

  94. Ball ST, Vaccaro AR, Albert TJ, Cotler JM (2000) Injuries of the thoracolumbar spine associated with restraint use in head-on motor vehicle accidents. J Spinal Disord 13(4):297–304

    CAS  PubMed  Google Scholar 

  95. Huelke DF, Mackay GM, Morris A (1995) Vertebral column injuries and lap-shoulder belts. J Trauma 38(4):547–556

    CAS  PubMed  Google Scholar 

  96. Robertson A, Branfoot T, Barlow IF, Giannoudis PV (2002) Spinal injury patterns resulting from car and motorcycle accidents. Spine (Phila Pa 1976) 27(24):2825–2830. doi:10.1097/01.BRS.0000035686.45726.0E

    Google Scholar 

  97. Rutherford WH (1985) The medical effects of seat-belt legislation in the United Kingdom: a critical review of the findings. Arch Emerg Med 2(4):221–223

    CAS  PubMed Central  PubMed  Google Scholar 

  98. King AI (2001) Injury to the thoracolumbar spine and pelvis. In: Melvin J, Nahum A (eds) Accidental injury: biomechanics and prevention, 2nd edn. Springer, New York

    Google Scholar 

  99. Cavanaugh JM, Ozaktay AC, Yamashita HT, King AI (1996) Lumbar facet pain: biomechanics, neuroanatomy and neurophysiology. J Biomech 29(9):1117–1129

    CAS  PubMed  Google Scholar 

  100. Yamashita T, Cavanaugh JM, el-Bohy AA, Getchell TV, King AI (1990) Mechanosensitive afferent units in the lumbar facet joint. J Bone Joint Surg Am 72(6):865–870

    CAS  PubMed  Google Scholar 

  101. Avramov AI, Cavannaugh JC, Ozaktay CA, Getchell TV, King AI (1992) The effects of controlled mechanical loading on Group II, III, and IV afferents from the lumbar facet joint and surrounding tissue: an in vitro study. J Bone Joint Surg 74A:1464–1471

    Google Scholar 

  102. Mooney V, Robertson J (1976) The facet syndrome. Clin Orthop Relat Res 115:149–156

    PubMed  Google Scholar 

  103. Henzel JH, Mohr GC, von Gierke HE (1968) Reappraisal of biodynamic implications of human ejections. Aerosp Med 39(3):231–240

    CAS  PubMed  Google Scholar 

  104. Ruff S (1950) Brief acceleration less than one second. In: German aviation medicine, world war II, vol I. US Government Printing Office, Washington, DC, pp 584–597

    Google Scholar 

  105. Brown T, Hansen R, Yorra A (1957) Some mechanical tests on the lumbo-sacral spine with particular reference to the intervertebral discs. J Bone Joint Surg 39A:1135–1164

    Google Scholar 

  106. Roaf R (1960) A study of the mechanics of spinal injuries. J Bone Joint Surg 42B:810–823

    Google Scholar 

  107. Brinckmann P (1986) Injury of the annulus fibrosus and disc protrusions. An in vitro investigation on human lumbar discs. Spine (Phila Pa 1976) 11(2):149–153

    CAS  Google Scholar 

  108. Farfan HF, Cossette JW, Robertson GH, Wells RV, Kraus H (1970) The effects of torsion on the lumbar intervertebral joints: the role of torsion in the production of disc degeneration. J Bone Joint Surg Am 52(3):468–497

    CAS  PubMed  Google Scholar 

  109. Adams MA, Hutton WC (1982) Prolapsed intervertebral disc. A hyperflexion injury 1981 Volvo Award in Basic Science. Spine (Phila Pa 1976) 7(3):184–191

    CAS  Google Scholar 

  110. Adams MA (2004) Biomechanics of back pain. Acupunct Med 22(4):178–188

    PubMed  Google Scholar 

  111. Yang KH, Byrd AJI, Kish VL, Radin EL (1988) Annulus fibrosus tears – an experimental mode. Orthop Trans 12:86–87

    Google Scholar 

  112. Gordon SJ, Yang KH, Mayer PJ, Mace AH Jr, Kish VL, Radin EL (1991) Mechanism of disc rupture. A preliminary report. Spine (Phila Pa 1976) 16(4):450–456

    CAS  Google Scholar 

  113. Hardy WG, Lissner HR, Webster JE, Gurdjian ES (1959) Repeated loading tests on the lumbar spine: a preliminary report. Surg Forum 9:690–695

    Google Scholar 

  114. Liu YK, Goel VK, Dejong A, Njus G, Nishiyama K, Buckwalter J (1985) Torsional fatigue of the lumbar intervertebral joints. Spine (Phila Pa 1976) 10(10):894–900

    CAS  Google Scholar 

  115. Liu YK, Njus G, Buckwalter J, Wakano K (1983) Fatigue response of lumbar intervertebral joints under axial cyclic loading. Spine (Phila Pa 1976) 8(8):857–865

    CAS  Google Scholar 

  116. Cawthon PM (2011) Gender differences in osteoporosis and fractures. Clin Orthop Relat Res 469(7):1900–1905. doi:10.1007/s11999-011-1780-7

    PubMed Central  PubMed  Google Scholar 

  117. Khosla S, Melton LJ 3rd, Riggs BL (1999) Osteoporosis: gender differences and similarities. Lupus 8(5):393–396

    CAS  PubMed  Google Scholar 

  118. Riggs BL, Melton Iii LJ 3rd, Robb RA, Camp JJ, Atkinson EJ, Peterson JM, Rouleau PA, McCollough CH, Bouxsein ML, Khosla S (2004) Population-based study of age and sex differences in bone volumetric density, size, geometry, and structure at different skeletal sites. J Bone Miner Res 19(12):1945–1954. doi:10.1359/JBMR.040916

    PubMed  Google Scholar 

  119. Cummings SR, Kelsey JL, Nevitt MC, O’Dowd KJ (1985) Epidemiology of osteoporosis and osteoporotic fractures. Epidemiol Rev 7:178–208

    CAS  PubMed  Google Scholar 

  120. Lotz JC, Hayes WC (1990) The use of quantitative computed tomography to estimate risk of fracture of the hip from falls. J Bone Joint Surg Am 72(5):689–700

    CAS  PubMed  Google Scholar 

  121. Melton LJI (1988) Epidemiology of fractures. In: Osteoporosis, etiology, diagnosis and management. Raven Press, New York, pp 111–131

    Google Scholar 

  122. Freeman MA, Todd RC, Pirie CJ (1974) The role of fatigue in the pathogenesis of senile femoral neck fractures. J Bone Joint Surg Br 56-B(4):698–702

    CAS  PubMed  Google Scholar 

  123. Sloan J, Holloway G (1981) Fractured neck of the femur: the cause of the fall? Injury 13(3):230–232

    CAS  PubMed  Google Scholar 

  124. Smith LD (1953) Hip fractures; the role of muscle contraction or intrinsic forces in the causation of fractures of the femoral neck. J Bone Joint Surg Am 35-A(2):367–383

    CAS  PubMed  Google Scholar 

  125. Yang KH, Shen KL, Demetropoulos CK, King AI, Kolodziej P, Levine RS, Fitzgerald RH Jr (1996) The relationship between loading conditions and fracture patterns of the proximal femur. J Biomech Eng 118(4):575–578

    CAS  PubMed  Google Scholar 

  126. Alffram PA (1964) An epidemiologic study of cervical and trochanteric fractures of the femur in an urban population. Analysis of 1,664 cases with special reference to etiologic factors. Acta Orthop Scand Suppl 65(Suppl 65):61–109

    Google Scholar 

  127. Kelly JP (1954) Fractures complicating electro-convulsive therapy and chronic epilepsy. J Bone Joint Surg Br 36-B(1):70–79

    CAS  PubMed  Google Scholar 

  128. Phillips R, Williams JF, Melick RA (1975) Predictions of the strength of the neck of the femur from its radiological appearance. Biomed Eng 10:367–372

    CAS  PubMed  Google Scholar 

  129. Parkkari J, Kannus P, Palvanen M, Natri A, Vainio J, Aho H, Vuori I, Jarvinen M (1999) Majority of hip fractures occur as a result of a fall and impact on the greater trochanter of the femur: a prospective controlled hip fracture study with 206 consecutive patients. Calcif Tissue Int 65(3):183–187

    CAS  PubMed  Google Scholar 

  130. Begeman P, Paravasthu N (1997) Static and dynamic compression loading of the lower leg. In: Proceedings of the 7th injury prevention through biomechanics symposium, Wayne State University, Detroit

    Google Scholar 

  131. Klopp GS, Crandall JR, Hall GW, Pilkey WD, Hurwitz SR, Kuppa S (1997) Mechanisms of injury and injury criteria for the human foot and ankle in dynamic axial impacts to the foot. In: Proceedings of the IRCOBI conference, Hanover, pp 73–86

    Google Scholar 

  132. Yoganandan N, Pintar F, Boynton M, Begeman P, Prasad P, Kuppa S, Morgan R, Eppinger R (1996) Dynamic axial tolerance of the human foot-ankle complex. In: Proceedings of the 40th Stapp car crash conference, Albuquerque, pp 207–218

    Google Scholar 

  133. Kitagawa Y, Ichikawa H, King AI, Levine RS (1998) A severe ankle and foot injury in frontal crashes and its mechanism. In: Proceedings of the 42nd Stapp conference, Tempe, pp 1–12

    Google Scholar 

  134. Crandall JR, Martin PG, Bass CR, Pilkey WD, Dischinger PC, Burgess AR, O’Quinn TD, Schmidhauser CB (1996) Foot and ankle injury: the roles of driver anthropometry, footwear, and pedal controls. In: Proceedings of the 40th AAAM conference, Vancouver, pp 1–18

    Google Scholar 

  135. Wiley JJ (1971) The mechanism of tarso-metatarsal joint injuries. J Bone Joint Surg Br 53(3):474–482

    CAS  PubMed  Google Scholar 

  136. Crandall JR, Portier L, Petit P, Hall GW, Bass CR, Klopp GS, Hurwitz SR, Pilkey WD, Trosseille X, Tarriere C, Lassau PJ (1996) Biomechanical response and physical properties of the leg, foot, and ankle. In: Proceedings of the 40th Stapp car crash conference, Albuquerque, pp 173–192

    Google Scholar 

  137. Smith BR, Begeman PC, Leland R, Meehan R, Levine RS, Yang KH, King AI (2005) A mechanism of injury to the forefoot in car crashes. Traffic Inj Prev 6(2):156–169. doi:10.1080/15389580590931635

    CAS  PubMed  Google Scholar 

  138. Mertz HJ, Irwin AL, Prasad P (2003) Biomechanical and scaling bases for frontal and side impact injury assessment reference values. Stapp Car Crash J 47:155–188

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert I. King Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

King, A.I. (2015). Introduction to and Applications of Injury Biomechanics. In: Yoganandan, N., Nahum, A., Melvin, J. (eds) Accidental Injury. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1732-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1732-7_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1731-0

  • Online ISBN: 978-1-4939-1732-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics