Skip to main content

Extracellular Acidosis and Cancer

  • Chapter
  • First Online:
  • 584 Accesses

Abstract

Solid tumours acidify their interstitial fluid by a number of diverse processes that result in net proton export. These include activity of monocarbonate and bicarbonate transporters, V-type ATPases, carbonic anhydrases and voltage-gated proton channels. The acidic extracellular microenvironment influences the activity of cancer, vascular endothelial and immune cells such that tumour growth is promoted although the exact signalling pathways are still only poorly understood. This chapter addresses how changes in extracellular proton concentration can affect cells in cancerous tissue.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bellone M, Calcinotto A, Filipazzi P, De Milito A, Fais S, Rivoltini L (2013) The acidity of the tumor microenvironment is a mechanism of immune escape that can be overcome by proton pump inhibitors. Oncoimmunology 2:e22058

    Google Scholar 

  2. Ben-Chaim Y, Tour O, Dascal N, Parnas I, Parnas H (2003) The M2 muscarinic G-protein-coupled receptor is voltage-sensitive. J Biol Chem 278:22482–22491

    Article  PubMed  CAS  Google Scholar 

  3. Borisevich N, Loznikova S, Sukhodola A, Halets I, Bryszewska M, Shcharbin D (2013) Acidosis, magnesium and acetylsalicylic acid: effects on thrombin. Spectrochim Acta A Mol Biomol Spectrosc 104:158–164

    Article  PubMed  CAS  Google Scholar 

  4. Bygrave FL, Benedetti A (1996) What is the concentration of calcium ions in the endoplasmic reticulum? Cel Calcium 19:547–551 PMID 8842522

    Google Scholar 

  5. Calcinotto A, Fillipazzi P, Grioni M, Iero M, De Militio A, Ricupito A, Cova A, Canese R, Jachetti E, Rossetti M, Huber V, Parmiani G, Generoso L, Santinami M, Borghi M, Fais S, Bellone M, Rivoltini L (2012) Modulation of microenvironment acidity reverses anergy in human and murine tumor-infiltrating T lymphocytes. Cancer Res 72:2746–2756

    Article  PubMed  CAS  Google Scholar 

  6. Chen YF, Chen YT, Chiu WT, Shen MR (2013) Remodeling of calcium signalling in tumor progression. J Biomed Sci 20:23

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. DeCoursey TE (2008) Voltage-gated proton channels. Cell Mol Life Sci 65:2554–2573

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Glitsch M (2011) Protons and Ca2+: Ionic allies in tumor progression? Physiology 26:252–265

    Article  PubMed  CAS  Google Scholar 

  9. Goel S, Duda DG, Xu L, Munn LL, Boucher Y, Fukumura D, Jain RK (2011) Normalization of the vasculature for treatment of cancer and other diseases. Physiol Rev 91:1071–1121

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Hashim IA, Cornnell HH, Coelho RML, Abrahams D, Cunningham J, Lloyd M, Martinez GV, Gatenby RA, Gillies RJ (2011) Reduction of metastasis using a non-volatile buffer. Clin Exp Metastasis 28:841–849

    Google Scholar 

  11. Helmlinger G, Sckell A, Dellian M, Forbes NS, Jain RK (2002) Acid production in glycolysis-impaired tumors provides new insights into tumor metabolism. Clin Cancer Res 8:1284–1291

    PubMed  CAS  Google Scholar 

  12. Holzer P (2009) Acid-sensitive ion channels and receptors. In: Canning BJ, Spina D (eds) Sensory nerves. Handbook of experimental pharmacology, vol 194. Springer, Berlin, 283–332

    Chapter  Google Scholar 

  13. Huang WC, Swietach P, Vaughan-Jones RD, Ansorge O, Glitsch MD (2008) Extracelllar acidification elicits spatially and temporally distinct Ca2+ signals. Curr Biol 18:781–785

    Article  PubMed  CAS  Google Scholar 

  14. Hulikova A, Harris AL, Vaughan-Jones RD, Swietach P (2012) Acid-extrusion from tissue: the interplay between membrane transporters and pH buffers. Curr Pharm Des 18:1331–1337

    Article  PubMed  CAS  Google Scholar 

  15. Junge W, McLaughlin S (1987) The role of fixed and mobile buffers in the kinetics of proton movement. Biochim Biophys Acta 890:1–5

    Article  PubMed  CAS  Google Scholar 

  16. Levinthal C, Barkdull L, Jacobson P, Storjohann L, Van Wagenen BC, Stormann TM, Hammerland LG (2004) Modulation of group III metabotropic glutamate receptors by hydrogen ions. Pharmacology 83:88–94

    Article  Google Scholar 

  17. Li H, Wang D, Singh LS, Berk M, Tan H, Zhao Z, Steinmetz R, Kirmani K, Wei G, Xu Y (2009) Abnormalities in osteoclastogenesis and decreased tumorigenesis in mice deficient for ovarian cancer G protein coupled receptor 1. PLoS ONE 4:e5705

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ludwig MG, Vanek M, Guerini D, Gasser JA, Jones CE, Junker U, Hofstetter H, Wolf RM, Seuwen K (2003) Proton-sensing G-protein-coupled receptors. Nature 425:93–98

    Article  PubMed  CAS  Google Scholar 

  19. Mahaut-Smith MP, Martinez-Pinna J, Gurung IS (2008) A role for membrane potential in regulating GPCRs? Trends Pharmacol Sci 29:421–429

    Article  PubMed  CAS  Google Scholar 

  20. Martinez-Pinna J, Gurung IS, Mahaut-Smith MP, Morales A (2010) Direct voltage control of endogenous lysophosphatidic acid G-protein-coupled receptors in Xenopus oocytes. J Physiol 588:1683–1693

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Mason SD, Joyce JA (2011) Proteolytic networks in cancer. Trends Cell Biol 21:228–237

    Article  PubMed  CAS  Google Scholar 

  22. Mitchell P (1976) Vectorial chemistry and the molecular mechanics of chemiosmotic coupling: power transmission by proticity. Biochem Soc Trans 4:399–430

    PubMed  CAS  Google Scholar 

  23. Moellering RE, Black KC, Krishnamurty C, Baggett BK, Stafford P, Rain M, Gatenby RA, Gillies RJ (2008) Acid treatment of melanoma cells selects for invasive phenotypes. Clin Exp Metastasis 25:411–425

    Article  PubMed  CAS  Google Scholar 

  24. Monteith GR, Davis FM, Roberts-Thomson SJ (2012) Calcium channels and pumps in cancer: changes and consequences. J Biol Chem 287:1666–1673

    Article  Google Scholar 

  25. Morth JP, Pedersen BP, Toustrup-Jensen MS, Sorensen TL, Petersen J, Andersen JP, Vilsen B, Nissen P (2007) Crystal structure of the sodium-potassium pump. Nature 450:1043–1049

    Article  PubMed  CAS  Google Scholar 

  26. Neri D, Supuran CT (2011) Interfering with pH regulation in tumours as a therapeutic strategy. Nat Rev Drug Discov 10:767–777

    Article  PubMed  CAS  Google Scholar 

  27. Newell K, Franchi A, Pouysségur J, Tannock I (1993) Studies with glycolysis-deficient cells suggest that production of lactic acid is not the only cause of tumor acidity. Proc Natl Acad Sci U S A 90:1127–1131

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Parent L, Supplisson S, Loo DD, Wright EM (1992) Electrogenic properties of the cloned Na+/glucose cotransporter: I. Voltage-clamp studies. J Membr Biol 125:49–62

    PubMed  CAS  Google Scholar 

  29. Quinn SJ, Bai M, Brown EM (2004) pH sensing by the Calcium-sensing Receptor. J Biol Chem 279:37241–37249

    Article  PubMed  CAS  Google Scholar 

  30. Robey IF, Baggett BK, Kirkpatrick ND, Roe DJ, Dosescu J, Sloane BF, Hashim AJ, Morse DL, Raghunand N, Gatenby RA, Gillies RJ (2009) Bicarbonate increases tumor pH and inhibits spontaneous metastases. Cancer Res 69:2260–2268

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Rofstad EK, Mathiesen B, Kindem K, Galappathi K (2006) Acidic extracellular pH promotes experimental metastasis of human melanoma cells in athymic nude mice. Cancer Res 66:6699–6707

    Article  PubMed  CAS  Google Scholar 

  32. Schornack PA, Gillies RJ (2003) contributions of cell metabolism and H + diffusion to the acidic pH of tumors. Neoplasia 5:135–145

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Seuwen K, Ludwig MG, Wolf RM (2006) Receptors for protons or lipid messengers or both? J Recept Signal Transduct Res 26:599–610

    Article  PubMed  CAS  Google Scholar 

  34. Shi Q, Le X, Wang B, Abbruzzese JL, Xiong Q, He Y, Xie K (2001) Regulation of vascular endothelial growth factor expressin by acidosis in human cancer cells. Oncogene 20:3751–3756

    Article  PubMed  CAS  Google Scholar 

  35. Swietach P, Vaughan-Jones R, Harris A (2007) Regulation of tumor pH and the role of carbonic anhydrase 9. Cancer Metastasis Rev 26:299–310

    Article  PubMed  CAS  Google Scholar 

  36. Tominaga M, Caterina MJ, Malmberg AB, Rosen TA, Gilbert H, Skinner K, Raumann BE, Basbaum AI, Julius D (1998) The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21:531–543

    Article  PubMed  CAS  Google Scholar 

  37. Villalba-Galea CA (2012) Voltage-controlled enzymes: the new janus bifrons. Front Pharmacol 3:161

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Virginio C, Church D, North RA, Surprenant A (1997) Effects of divalent cations, protons and calmidazolium at the rat P2X7 receptor. Neuropharmacology 36:1285–1294

    Article  PubMed  CAS  Google Scholar 

  39. Waldmann R, Chamnpigny G, Bassilana F, Heurteaux C, Lazdunski M (1997) A proton-gated cation channel involved in acid-sensing. Nature 386:173–177

    Article  PubMed  CAS  Google Scholar 

  40. Wang Y, Li SJ, Pan J, Che Y, Yin Z, Zhao Q (2011) Specific expression of the human voltage-gated proton channel Hv1 in highly metastatic breast cancer cells, promotes tumor progression and metastasis. Biochem Biophys Res Commun 412:353–359

    Article  PubMed  CAS  Google Scholar 

  41. Wang Y, Li SJ, Wu X, Che Y, Li Q (2012) Clinicopathological and biological significance of human voltage-gated proton channel Hv1 protein overexpression in breast cancer. J Biol Chem 287:13877–13888

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Webb BA, Chimenti M, Jacobson MP, Barber DL (2011) Dysregulated pH: a perfect storm for cancer progression. Nat Rev Cancer 11:671–677

    Article  PubMed  CAS  Google Scholar 

  43. Wyder L, Suply T, Ricoux B, Billy E, Schnell C, Baumgaren BU, Maira SM, Koelbing C, Ferretti M, Kinzel B, Müller M, Seuwen K, Ludwig MG (2011) Reduced pathological angiogenesis and tumor growth in mice lacking GPR4, a proton sensing receptor. Angiogenesis 14:533–544

    Article  PubMed  CAS  Google Scholar 

  44. Yamagata M, Hasuda K, Stamato T, Tannock IF (1998) The contribution of lactic acid to acidification of tumours: studies of variant cells lacking lactate dehydrogenase. Br J Cancer 77:1726–1731

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  45. Zheng J, Shen W, He DZZ, Long KB, Madison LD, Dallos P (2000) Prestin is the motor protein of cochlear outer hair cells. Nature 405:149–155

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maike D. Glitsch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Glitsch, M. (2014). Extracellular Acidosis and Cancer. In: Chi, JT. (eds) Molecular Genetics of Dysregulated pH Homeostasis. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1683-2_7

Download citation

Publish with us

Policies and ethics