Skip to main content

The Role of Infections and Microbes in Atherosclerosis

  • Chapter
  • First Online:
The Role of Microbes in Common Non-Infectious Diseases

Part of the book series: Emerging Infectious Diseases of the 21st Century ((EIDC,volume 1))

  • 1015 Accesses

Abstract

The complications of atherosclerosis, heart attacks and strokes, are the leading cause of death worldwide. Atherosclerosis is universally present in all adults but to varying degrees of severity. The biological process in development of the pathology starts in infancy but manifests later in life. The pathogenesis of atherosclerosis is a response to injury and involves chronic low grade inflammation and the repair process. The concept that this disease could be caused by microbes existed for over a century. Atherosclerosis is clearly a multifactorial disease with no single etiology. There is abundant biological evidence to support a plausible role of microbes in chronic or latent infection in the development of atherosclerosis, from initiation of endothelial dysfunction to acceleration of the process, and theoretically to enhance changes conducive to precipitation of acute vascular events. There is strong epidemiological evidence that influenza infection can precipitate acute vascular events [i.e., myocardial infarction] and this can be reduced in the influenza seasons by vaccination. In the past decade or more there has been a decline in interest and research on Chlamydia pneumoniae and periodontitis association with atherosclerosis genesis. This has been replaced by increasing attention of HIV disease association with increased cardiovascular disease, and the possible role of alterations of the bowel microbiota [through dietary habits] in acceleration and progression of this vascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ross R. Atherosclerosis–an inflammatory disease. N Engl J Med. 1999;340:115–26 [Review].

    PubMed  CAS  Google Scholar 

  2. Fong IW. Emerging relations between infectious diseases and coronary artery disease and atherosclerosis. CMAJ. 2000;163:49–56.

    PubMed  CAS  PubMed Central  Google Scholar 

  3. Fong IW. New perspectives of infections in cardiovascular disease. Curr Cardiol Rev. 2009;5:87–104.

    PubMed  PubMed Central  Google Scholar 

  4. Stary HC. The histological classification of atherosclerosis in human coronary arteries. In: Fuster V, Ross R, Topol EJ, editors. Atherosclerosis and coronary arteries, vol. 1. Philadelphia: Lippincott-Raven; 1996. p. 463–74.

    Google Scholar 

  5. Harrison GK, Jonasson L, Siefert PS, Stemme S. Immune mechanisms in atherosclerosis. Arteriosclerosis. 1989;9:567–78.

    Google Scholar 

  6. Fong IW. Atheroscleerosis and inflammation. In: Infection and the cardiovascular system: new perspectives. New York, NY: Kluwer Academic/Plenum Publishers; 2003. p. 33-61.

    Google Scholar 

  7. Fong IW. Traditional risk factors and newly recognized emerging risk factors for cardiovascular disease. In: Infection and the cardiovascular system: new perspectives. New York, NY: Kluwer Academic/Plenum Publishers; 2003. p. 63–89.

    Google Scholar 

  8. Hansson GK. Inflammation, atherosclerosis and coronary artery disease. N Engl J Med. 2005;352:1685–95.

    PubMed  CAS  Google Scholar 

  9. Wilcox JN, Smith KM, Schwartz SM, Gordon D. Localization of tissue factor in the normal vessel wall and in the athrosclerosis plaque. Proc Natl Acad Sci U S A. 1989;86:2839–43.

    PubMed  CAS  PubMed Central  Google Scholar 

  10. Libby P, Simon DI. Inflammation and thrombosis. The clot thickens. Circulation. 2001;103:1718–20.

    PubMed  CAS  Google Scholar 

  11. Khovidhunkit W, Memon RA, Feingold KR, Grunfeld FC. Infection and inflammation-induced proatherogenic changes of lipoproteins. J Infect Dis. 2000;181 Suppl 3:S462–72.

    PubMed  CAS  Google Scholar 

  12. Fong IW. Effect of infection on lipoprotein and the coagulation system. In: Infection and the cardiovascular system. New perspectives. New York, NY: Kluwer Academic/Plenum Publishers; 2003. p. 91–117.

    Google Scholar 

  13. Feingold KR, Krauss RM, Pang M, Doerrler W, Jensen P, Grunfeld C. The hypertriglyceridemia of acquired immunodeficiency syndrome is associated with increased prevalence of low density lipoprotein subclass pattern B. J Clin Endocrinol Metab. 1993;76:1423–7.

    PubMed  CAS  Google Scholar 

  14. Smeeth L, Thomas SC, Hall AJ, Hubbard R, Farrington P, Vallance P. Risk of myocardial infarction and stroke after acute infection or vaccination. N Engl J Med. 2004;351:2611–8.

    PubMed  CAS  Google Scholar 

  15. Warren Gash C, Bhaskaran K, Hayward A, et al. Circulating climactic factors, and acute myocardial infarction: a time series study in England and Wales and Hong Kong. J Infect Dis. 2011;20:1710–8.

    Google Scholar 

  16. Majid M, Miller CC, Zarubaev VV, et al. Influenza epidemics and acute respiratory infections are associated with a surge in autopsy–confirmed coronary heart death: results from 8 years of autopsies in 34,892 subjects. Eur Heart J. 2007;28:1205–10.

    Google Scholar 

  17. Naghavi M, Barlus Z, Siadaty S, Naguib S, Majid M, Casscells W. Association of influenza vaccination and reduced risk of current myocardial infarction. Circulation. 2000;102: 3039–45.

    PubMed  CAS  Google Scholar 

  18. Siscovick DS, Raghunathan TE, Lin D, et al. Influenza vaccination in the risk of primary cardiac arrest. Am J Epidemiol. 2000;152:674–7.

    PubMed  CAS  Google Scholar 

  19. Lavllee P, Perchaud V, Gautier-Bertrand M, Grabli D, Amarenco P. Association between influenza vaccination and reduced risk of brain infarction. Stroke. 2002;33:513–8.

    Google Scholar 

  20. Niroshan Siriwardena A, Gwini SM, Coupland CA. Influenza vaccination, pneumococcal vaccination and risk of acute myocardial infarction: matched case–controlled study. CMAJ. 2010;182:1617–23.

    PubMed  PubMed Central  Google Scholar 

  21. Johnstone J, Loeb M, Teo KK, et al. Influenza vaccination and major adverse vascular events in high–risk patients. Circulation. 2012;126:278–86.

    PubMed  Google Scholar 

  22. Udell J, Zawi R, Bhatt DL, et al. Association between influenza vaccination and cardiovascular outcomes in high–risk patients. A meta-analysis. JAMA. 2013;310:1711–20.

    PubMed  CAS  Google Scholar 

  23. Majid M, Vela D, Khalili-Tabrizi H, Cascells SW, Litovsky S. Systemic infections caused exaggerated local inflammation in atherosclerotic coronary arteries. Clues to the triggering effect of acute infections on coronary syndromes. Tex Heart Inst J. 2007;34:11–8.

    Google Scholar 

  24. Fong IW. Chlamydia pneumoniae and the cardiovascular system. In: Infections and the cardiovascular system. New perspectives. New York, NY: Kluwer Academic/Plenum Publishers; 2003. p. 121–77.

    Google Scholar 

  25. Fong IW. Periodontal disease and the cardiovascular system. In: Infections in the cardiovascular system. New perspectives. New York, NY: Kluwer Academic/Plenum publishers; 2003. p. 179–200.

    Google Scholar 

  26. Mathers CD, Loncar D. Projection of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006;3:e442.

    PubMed  PubMed Central  Google Scholar 

  27. Currier JS, Taylor A, Boyd F, et al. Coronary heart disease in HIV–infected individuals. J Acquir Immune Defic Syndr. 2003;33:506–12.

    PubMed  Google Scholar 

  28. Triant VA, Lee H, Hadigan C, Grinspoon SK. Increased acute myocardial infarction rates and cardiovascular risk factors among patients with human immunodeficiency virus disease. J Clin Endocrinol Metab. 2007;92:2506–12.

    PubMed  CAS  PubMed Central  Google Scholar 

  29. Obel N, Thomsen HF, Kronborg G, et al. Ischemic heart disease in HIV–infected and HIV–uninfected individuals: a population–based cohort study. Clin Infect Dis. 2007;44:1625–31.

    PubMed  Google Scholar 

  30. Lang S, Mary-Krause M, Cotte L, et al. Increased risk of myocardial infarction in HIV–infected patients in France, relative to the general population. AIDS. 2010;24:1228–30.

    PubMed  Google Scholar 

  31. Durand M, Sheehy O, Barid JG, Lelorier J, Tremblay C. Association between HIV infection, anti-retroviral therapy, and risk of acute myocardial infarction: a cohort and nested case–control study using Quebec’s public health insurance database. J Acquir Immune Defic Syndr. 2011;57:245–53.

    PubMed  Google Scholar 

  32. French AL, Gawal SH, Hershow R, et al. Trends in mortality and cause of death among women with HIV in the United States: a 10 years study. J Acquir Immune Defic Syndr. 2009;51:399–406.

    PubMed  PubMed Central  Google Scholar 

  33. Triant VA. HIV infection and coronary heart disease: an intersection of epidemics. J Infect Dis. 2012;205 Suppl 3:S355–61.

    PubMed  CAS  PubMed Central  Google Scholar 

  34. Islam FM, Wu J, Jansson J, Wilson DP. Relative risk of cardiovascular disease among people living with HIV: a systematic review and meta-analysis. HIV Med. 2012;13:453–68.

    PubMed  CAS  Google Scholar 

  35. Motoyarma S, Sarai M, Harigaya H, et al. Computed tomographic angiography characteristics of atherosclerotic plaques subsequently resulting in acute coronary syndrome. J Am Coll Cardiol. 2009;54:49–57.

    Google Scholar 

  36. Lo J, Abbara S, Shturman L, et al. Increased prevalence of subclinical coronary atherosclerosis detected by coronary computed tomographic angiography in HIV–infected men. AIDS. 2010;24:243–53.

    PubMed  PubMed Central  Google Scholar 

  37. Burdo TH, Lo J, Abbara S, et al. Soluble CD 163, a novel marker of activated macrophages, is elevated and associated with noncalcified coronary plaque in HIV–infected patients. J Infect Dis. 2011;204:1227–36.

    PubMed  CAS  PubMed Central  Google Scholar 

  38. Fitch KV, Srinivasa S, Abbara S, et al. Noncalcified coronary atherosclerotic plaque and immune activation in HIV–infected women. J Infect Dis. 2013;208:1737–46.

    PubMed  Google Scholar 

  39. Post WS, Budoff M, Kingsley L, et al. Associations between HIV infection and subclinical coronary atherosclerosis. Ann Intern Med. 2014;160:458–67.

    PubMed  Google Scholar 

  40. Francisi D, Giannini S, Baldelli F, et al. HIV type I infection, and not short–term HAART, induces endothelial dysfunction. AIDS. 2009;23:589–96.

    Google Scholar 

  41. Solages A, Vita JA, Thorton DJ, et al. Endothelial function in HIV–infected persons. Clin Infect Dis. 2006;42:1325–32.

    PubMed  PubMed Central  Google Scholar 

  42. Hsue PY, Hunt PW, Wu Y, et al. Association of abacavir and impaired endothelial function in treated and suppressed HIV–infected patients. AIDS. 2009;23:2021–7.

    PubMed  CAS  PubMed Central  Google Scholar 

  43. Grunfeld C, Delanet JA, Wanke C, et al. Preclinical atherosclerosis due to HIV infection; carotid intima–media thickness measurements from the FRAM study. AIDS. 2009;23:1841–9.

    PubMed  PubMed Central  Google Scholar 

  44. Hsue PY, Hunt PW, Sinclair E, et al. Increased carotid intima–media thickness in HIV patients is associated with increased cytomegalovirus–specific T–cell responses. AIDS. 2006;20:2275–83.

    PubMed  Google Scholar 

  45. Hsue PY, Lo JC, Franklin A, et al. Progression of atherosclerosis as assessed by carotid intima–media thickness in patients with HIV infection. Circulation. 2004;109:1603–8.

    PubMed  Google Scholar 

  46. Lorenz MW, Stephen C, Harmjanz A, et al. Both long term HIV infection and highly active retroviral therapy are independent risk factors for early carotid atherosclerosis. Atherosclerosis. 2008;196:720–6.

    PubMed  CAS  Google Scholar 

  47. Saues M, Chene G, Ducimetiere P, et al. Risk factors for coronary heart disease in patients treated for human immunodeficiency virus infection compared with the general population. Clin Infect Dis. 2003;37:292–8.

    Google Scholar 

  48. Friis-Moller N, Weber R, Reiss P, et al. Cardiovascular disease risk factors in HIV patients–association with antiretroviral therapy. Results from the DAD study. AIDS. 2003;17:1179–93.

    PubMed  Google Scholar 

  49. Hadigan C, Meigs JB, Corcoran C, et al. Metabolic abnormalities and cardiovascular disease risk factors in adults with human immunodeficiency virus infection and lipodystrophy. Clin Infect Dis. 2001;32:130–9.

    PubMed  CAS  Google Scholar 

  50. Seaberg EC, Munoz A, Lu M, et al. Association between highly active antiretroviral therapy and hypertension in a large cohort of men followed from 1984 to 2003. AIDS. 2005;19: 953–60.

    PubMed  Google Scholar 

  51. Rotger M, Glass TR, Junier T, et al. Contribution of genetic background, traditional risk factors, and HIV–related factors to coronary artery disease events in HIV–positive persons. Clin Infect Dis. 2013;57:112–21.

    PubMed  CAS  PubMed Central  Google Scholar 

  52. Nicholls M. Rheumatoid arthritis and heart disease. Circulation. 2006;113:f36.

    PubMed  Google Scholar 

  53. Hsue PY, Hunt PW, Schnell A, et al. Role of viral replication, antiretroviral therapy, and immunodeficiency in HIV–associated atherosclerosis. AIDS. 2009;23:1059–67.

    PubMed  CAS  PubMed Central  Google Scholar 

  54. Hunt PW, Brenchley J, Sinclair E, et al. Relationship between T-cell activation and CD4 [+] T-cell count in HIV–seropositive individuals with undetectable plasma HIV RNA levels in the absence of therapy. J Infect Dis. 2008;197:126–33.

    PubMed  PubMed Central  Google Scholar 

  55. Brenchley JW, Price DA, Schacter TN, et al. Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat Med. 2006;12:1365–71.

    PubMed  CAS  Google Scholar 

  56. Kitchens RL, Thompson PA. Modulating effects of sCD14and LBP on LPS–host cell interactions. J Endotoxin Res. 2005;11:225–9.

    PubMed  CAS  Google Scholar 

  57. Kelesidis T, Kendall MA, Yang OO, Hodis HN, Currier JS. Biomarkers of microbial translocation and macrophage activation: association with progression of subclinical atherosclerosis in HIV–1 infection. J Infect Dis. 2012;206:1558–67.

    PubMed  CAS  PubMed Central  Google Scholar 

  58. Stanley TK, Grinspoon SK. Body composition and metabolic changes in HIV–infected patients. J Infect Dis. 2012;205 Suppl 3:S383–90.

    PubMed  CAS  PubMed Central  Google Scholar 

  59. Bacchetti P, Gripshover B, Grunfeld C, et al. Fat distribution in men with HIV infection. J Acquir Immune Defic Syndr. 2005;40:121–31.

    PubMed  Google Scholar 

  60. Kim DJ, Westfall AV, Chamot E, et al. Multimorbidity patterns in HIV–infected patients: the role of obesity in chronic disease clustering. J Acquir Immune Defic Syndr. 2012;61:600–5.

    PubMed  PubMed Central  Google Scholar 

  61. Koethe JR, Hulgan T, Niswender K. Adipose tissue and immune function: a review of evidence relevant to HIV infection. J Infect Dis. 2013;208:1194–201.

    PubMed  CAS  Google Scholar 

  62. Lavi S, Mc Connell J, Rihall C, et al. Local production of lipoprotein–associated phospholipase A2, and lysophasphatidylcholine in the coronary circulation: association of coronary atherosclerosis and endothelial dysfunction in humans. Circulation. 2007;115:2715–21.

    PubMed  CAS  Google Scholar 

  63. Lp-PLA2 Studies Collaboration. Lipoprotein–associated phospholipase A2 and risk of coronary disease, stroke, and mortality: collaborative analysis of 32 prospective studies. Lancet. 2010;375:1536–44.

    Google Scholar 

  64. Masngili A, Ahmad R, Wolfert RL, Kuvin J, Polak JF, Karas RH, Wanke CA. Lipoprotein–associated phospholipase A2, a novel cardiovascular inflammation marker, in HIV–infected patients. Clin Infect Dis. 2014;58:893–900.

    Google Scholar 

  65. Carr A. Pathogenesis of cardiovascular disease in HIV infection. Curr Opin HIV AIDS. 2008;3:234–9.

    PubMed  Google Scholar 

  66. DAD Study Group. Class of antiretroviral drug and the risk of myocardial infarction. N Engl J Med. 2007;356:1723–35.

    Google Scholar 

  67. Dressman J, Kincer J, Matveev SV, et al. HIV protease inhibitors promote atherosclerotic lesion formation independently of dyslipidemia by increasing CD36–dependent cholesteryl ester accumulation in macrophages. J Clin Invest. 2003;111:389–97.

    PubMed  CAS  PubMed Central  Google Scholar 

  68. Blumer RME, van Vonderen MGA, Sutinen J, et al. Zidovudine/lamivudine contributes to insulin resistance within 3 months of starting combination antiretroviral therapy. AIDS. 2008; 22:227–36.

    PubMed  Google Scholar 

  69. Shlay JC, Visnegarwala F, Bartsch G, et al. Body composition and metabolic changes in antiretroviral–naïve patients randomized to didanosine and stavudine vs abacavir and lamivudine. J Acquir Immune Defic Syndr. 2005;38:147–55.

    PubMed  CAS  Google Scholar 

  70. Fleischman A, Johnson S, Systrom DM, et al. Effects of the nucleoside reverse transcriptase inhibitor, stavudine, on glucose disposal and mitochondrial function in muscle of healthy adults. Am J Physiol Endocrinol Metab. 2007;292:E1666–73.

    PubMed  CAS  PubMed Central  Google Scholar 

  71. Brown TT, Tassiopoulus K, Bosch RJ, Shikuma C, Mc Comsey GA. Association between systemic inflammation and incidental diabetes in HIV–infected patients after initiation of antiretroviral therapy. Diabetes Care. 2010;33:2244–9.

    PubMed  PubMed Central  Google Scholar 

  72. Brown TT, Cole SR, Li X, et al. Antiretroviral therapy and prevalence and incidence of diabetes mellitus in the multicenter AIDS cohort study. Arch Intern Med. 2005;165:1179–84.

    PubMed  Google Scholar 

  73. De Wit S, Sabin CA, Weber R, et al. Incidence and risk factors for new–onset diabetes in HIV–infected patients: the Data Collection on Adverse Events of Anti-HIV Drugs [D:A:D] study. Diabetes Care. 2008;31:1224–9.

    PubMed  PubMed Central  Google Scholar 

  74. Joshi R, Khandelwal B, Joshi D, Gupta OP. Chlamydia pneumoniae infection and cardiovascular disease. N Am J Med Sci. 2013;5:169–81.

    PubMed  PubMed Central  Google Scholar 

  75. Kutlin A, Roblin PM, Hammerslag MR. In vitro activities of azithromycin and ofloxacin against Chlamydia pneumoniae in a continuous–infection model. Antimicrob Agents Chemother. 1999;43:2268–72.

    PubMed  CAS  PubMed Central  Google Scholar 

  76. Wolf K, Malinverni R. Effects of azithromycin plus rifampin versus that of azithromycin alone on eradication of Chlamydia pneumoniae from lung tissue in experimental pneumonitis. Antimicrob Agents Chemother. 1999;43:1491–3.

    PubMed  CAS  PubMed Central  Google Scholar 

  77. Gieffers J, Fullgraf H, Jaln J, Klinger M, Dalhoff K, Katus HA. Chlamydia pneumoniae in circulating human monocytes is refractory to antibiotic treatment. Circulation. 2001;103: 351–6.

    PubMed  CAS  Google Scholar 

  78. Dechend R, Gieffers J, Dietz R, et al. Hydroxymethylglutaryl coenzyme A reductase inhibition reduces Chlamydia pneumoniae– induced cell interaction and activation. Circulation. 2003;108:261–5.

    PubMed  CAS  Google Scholar 

  79. Schmeck B, Beermann W, N’Guessan PD, et al. Simvastatin reduces Chlamydophila pneumoniae–mediated histone modification and gene expression and cultured human endothelial cells. Circ Res. 2008;102:888–95.

    PubMed  CAS  Google Scholar 

  80. Liuba P, Pesonen E, Paakkari I, et al. Protective effects of simvastatin on coronary artery function in swine with acute infection. Atherosclerosis. 2006;186:331–6.

    PubMed  CAS  Google Scholar 

  81. Grayston JT, Kronmal RA, Jackson LA, et al. Azithromycin for the secondary prevention of coronary events. N Engl J Med. 2005;352:1637–45.

    PubMed  CAS  Google Scholar 

  82. Connon CP, Braunwald E, Mc Cabe CH, et al. Antibiotic treatment after acute coronary syndrome. N Engl J Med. 2005;352:1646–54.

    Google Scholar 

  83. Jespersen CM, Als-Nielsen B, Damgaard M, et al. Randomized placebo–controlled on multicenter trial to assess short term clarithromycin for patients with stable coronary heart disease. CLARILORtrial. BMJ. 2006;332:22–7.

    PubMed  PubMed Central  Google Scholar 

  84. Wang B, Zhang L, Zhang T, et al. Chlamydia pneumoniae infection promotes vascular smooth muscle cell migration through a Toll- like receptor 2 related signaling pathway. Infect Immun. 2013;81:4583–91.

    PubMed  CAS  PubMed Central  Google Scholar 

  85. Zhao X, Bu DX, Hayfron K, Pinkerton KE, Bevins CL, Lichtman A, Wiedeman J. A combination of secondhand cigarette smoke and Chlamydia pneumoniae accelerates atherosclerosis. Atherosclerosis. 2012;222:59–66.

    PubMed  CAS  Google Scholar 

  86. Amo G, Kaski JC, Smith DA, Akiyu JP, Hughes SE, Baboonan C. Matrix metalloproteinase–9 expression is associated with the presence of Chlamydia pneumoniae in human coronary atherosclerotic plaques. Heart. 2005;91:521–5.

    Google Scholar 

  87. Clarke MCH, Figg N, Maguire JJ, et al. Apoptosis of vascular smooth muscle cells induces features of plaque vulnerability in atherosclerosis. Nat Med. 2006;12:1075–80.

    PubMed  CAS  Google Scholar 

  88. Schoier J, Hogdahl M, Soderlund G, Kihlstrom E. Chlamydia [Chlamydophila] pneumoniae–induced cell death in human coronary endothelial cells is caspase-independent and accompanied by some similar translocations of Box and apoptosis–inducing factor. FEMS Immunol Med Microbiol. 2006;47:207–16.

    PubMed  Google Scholar 

  89. Birck MM, Saraste A, Hyttel P, et al. Endothelial cell death and intimal foam cell accumulation in the copronary artery of infected hypercholesterolemic minipigs. J Cardiovasc Transl Res. 2013;6:579–87.

    PubMed  Google Scholar 

  90. Teles R, Wang CY. Mechanisms involved in the association between periodontal diseases and cardiovascular disease. Oral Dis. 2011;17:450–61.

    PubMed  CAS  PubMed Central  Google Scholar 

  91. Ohki T, Itabashi Y, Kohno T, et al. Detection of periodontal bacteria in thrombi of the patients with acute myocardial infarction by polymerase chain reaction. Am Heart J. 2012; 163:164–7.

    PubMed  CAS  Google Scholar 

  92. Lu B, Parkar D, Eaton CB. Relationship of periodontal attachment loss to peripheral vascular disease: an analysis of NHANES 1999–2002 data. Atherosclerosis. 2008;200:199–205.

    PubMed  CAS  Google Scholar 

  93. Desvarieux M, Demmer RT, Rundex T, et al. Periodontal microbiota and carotid intima–media thickness. The Oral Infections and Vascular Disease Epidemiology study [INVEST]. Circulation. 2005;111:576–82.

    PubMed  PubMed Central  Google Scholar 

  94. Rivera MF, Lee JY, Aneja M, et al. Polymicrobial infection with major periodontal pathogens induced periodontal disease and aortic atherosclerosis in hyperlipidemic APOE [null] mice. PLoS One. 2013;8:e57178.

    PubMed  CAS  PubMed Central  Google Scholar 

  95. Koren O, Spor A, Felin J, et al. Human oral, gut and plaque microbiota in patients with atherosclerosis. Proc Natl Acad Sci U S A. 2011;108 Suppl 1:4592–8.

    PubMed  CAS  PubMed Central  Google Scholar 

  96. Hayashi C, Madrigal AG, Liu X, et al. Pathogen–mediated inflammatory atherosclerosis is mediated in part via Toll–like receptor 2–induced inflammatory responses. J Innate Immun. 2010;2:334–43.

    PubMed  CAS  PubMed Central  Google Scholar 

  97. Hayashi C, Gudino CV, Gibson 3rd F, Genco CA. Review: pathogen–induced inflammation at sites distant from oral infection: Bacterial persistence and induction of cell–specific innate immune inflammatory pathways. Mol Oral Microbiol. 2010;25:305–16.

    PubMed  CAS  PubMed Central  Google Scholar 

  98. Fong IW.Cytomegalovirus and herpes simplex virus in cardiovascular disease. In: Infection and the cardiovascular system. New perspective. New York, NY: Kluwer Academic/Plenum Publishers; 2003. p. 201–38.

    Google Scholar 

  99. Fong IW. Miscellaneous infections and atherosclerosis: cardiovascular and cerebrovascular disease. In: Infection and the cardiovascular system. New perspective. New York, NY: Kluwer Academic/Plenum Publishers; 2003. p. 239–66.

    Google Scholar 

  100. Elkind MS, Ramakrishman P, Moon YP, et al. Infectious burden and risk of stroke: the northern Manhattan Study. Arch Neurol. 2010;67:33–8.

    PubMed  PubMed Central  Google Scholar 

  101. Elkind MS, Luna JM, Moon YP, et al. Infectious burden and carotid thickness: the northern Manhattan Study. Stroke. 2010;41:e117–22.

    PubMed  PubMed Central  Google Scholar 

  102. Nazmi A, Diez-Roux AV, Jenny NS, Tsai MY, Szklo M, Aillo AE. The influence of persistent pathogens on circulating levels of inflammatory markers: a cross–sectional analysis from the Multi- Ethnic Study of Atherosclerosis. BMC Public Health. 2010;10:706.

    PubMed  PubMed Central  Google Scholar 

  103. Karlsson FH, Fav F, Nookaew I, et al. Symptomatic atherosclerosis is associated with altered gut metagenome. Nat Commun. 2012;3:1245.

    PubMed  PubMed Central  Google Scholar 

  104. Koeth RA, Wang Z, Levison BS, et al. Intestinal microbiota metabolism of L–carnitine, a nutrient in red meat promotes. Nat Med. 2013;19:576–85.

    PubMed  CAS  PubMed Central  Google Scholar 

  105. Wang Z, Klipfell E, Bennett EJ, et al. Gut flora metabolism of phosphatidyl–choline promotes cardiovascular disease. Nature. 2011;472:57–63.

    PubMed  CAS  PubMed Central  Google Scholar 

  106. Wilson-Tang WH, Wang Z, Levison BS, et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med. 2013;368:1575–84.

    Google Scholar 

  107. Loscalzo J. Gut microbiota, the genome, and diet in atherosclerosis. N Engl J Med. 2013; 368:1647–9 [Editorial].

    PubMed  CAS  Google Scholar 

  108. Martin JC, Canle TC, Delplanique B, et al. IHNMR metabonomics can differentiate the early atherogenic effect of dairy products in hyperlipidemic hamsters. Atherosclerosis. 2009; 206:127–33.

    PubMed  CAS  Google Scholar 

  109. Haidari M, Wyde PR, Litovsky S, Vela D, Ali M, Casscells SW, Majid M. Influenza virus directly infects, inflames, and resides in the arteries of atherosclerotic and normal mice. Atherosclerosis. 2010;288:90–6.

    Google Scholar 

  110. Krebs P, Scandella E, Bolinger B, Engeler D, Miller S, Ludewig B. Chronic immune reactivity against persisting microbial antigen in the vasculature exacerbates atherosclerotic lesion formation. Arterioscler Thromb Vasc Biol. 2007;27:2206–13.

    PubMed  CAS  Google Scholar 

  111. Farid AS, Horii Y. Modulation of paroxonases during infectious diseases and its potential impact on atherosclerosis. Lipids Health Dis. 2012;11:92.

    PubMed  CAS  PubMed Central  Google Scholar 

  112. Rehman T. Role of the gut microbiota in age–related chronic inflammation. Endocr Metab Immune Disord Drug Targets. 2012;12:361–7.

    PubMed  CAS  Google Scholar 

  113. The Stability Investigators. Darapladib for preventing ischemic events in coronary heart disease. N Engl J Med. 2014;370:1702–11.

    Google Scholar 

  114. Chen L, Liu W, Li Y, et al. Lactobacillus acidophilus ATCC 4356 attenuates the atherosclerotic progression through modulation of oxidative stress and inflammatory process. Int Immunopharmacol. 2013;17:108–15.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fong, I.W. (2014). The Role of Infections and Microbes in Atherosclerosis. In: The Role of Microbes in Common Non-Infectious Diseases. Emerging Infectious Diseases of the 21st Century, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1670-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1670-2_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1669-6

  • Online ISBN: 978-1-4939-1670-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics