Skip to main content

Microbes in Colon Cancer and Inflammatory Bowel Disease

  • Chapter
  • First Online:
The Role of Microbes in Common Non-Infectious Diseases

Part of the book series: Emerging Infectious Diseases of the 21st Century ((EIDC,volume 1))

  • 1046 Accesses

Abstract

Section A of this chapter reviews the current epidemiology, risk factors, and pathogenic mechanisms of colorectal cancers [CRC], which are increasing in westernized societies. This trend is generally attributed to increased consumption of red meat and fat with less usage of vegetables and fruits in the diet. In this chapter the pathobiology of the epithelial cells to development of cancer is reviewed. The emerging concepts demonstrated by studies over the past decade of the importance of the gut microflora, which can be altered by diet and antimicrobials to either protect or predispose to neoplastic changes of the intestinal epithelium. The chemical changes in the gut environment produced by favorable and unfavorable gut commensals and role on development of CRC are reviewed. Data from human clinical studies and animal models are discussed.

Section B reviews the increasing evidence of the importance of a normal balance of different genera of the gut microbiota to protect against inflammatory bowel diseases [IBD], which are diseases of modernization and westernization. Dysbiosis of the gut microbiota predisposes some individuals with inherited genetic risk to develop IBD, which can also lead to CRC. Thus, the role of microbes in the pathogenic mechanisms of these two conditions appears to be closely related.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Padusis JC, Beasley GM, McMahon NS, Tyler DS, Ludwig KA. Neoplasms of the small intestine, vermiform appendix, and peritoneum, and carcinoma of the colon and rectum. In: Hong WK, Bast Jr RC, Hait WN, Kufe DW, Pollock RE, Weichselbaum RR, Holland JF, Frei III E, editors. Holland-Frei cancer medicine. 8th ed. CT, USA: BC Decker; 2009. p. 1172–93.

    Google Scholar 

  2. Huether SE. Cancer of the digestive system. In: McCance KL, Huether SE, Brashers VL, Rote NS, editors. Pathophysiology: the biologic basis for disease in adults and children. 6th ed. Missouri: Mosby Elsevier; 2010. p. 1478–515.

    Google Scholar 

  3. Ahnen JD. The genetic basis of colorectal cancer risk. Adv Intern Med. 1996;41:531–2.

    PubMed  CAS  Google Scholar 

  4. Lupton JR, Turner ND. Dietary fiber. In: Stiponuk MH, editor. Biochemical and physiological aspects of human nutrition. Philadelphia: WB Saunders co.; 2000. p. 143–54.

    Google Scholar 

  5. Moghaddam A, Woodward M, Huxley R. Obesity and risk of colorectal cancer: a meta- analysis of 31 studies with 70,000 events. Cancer Epidemiol Biomarkers Prev. 2007;116:2533–47.

    Google Scholar 

  6. Gustafson-Svard C, Lilja J, Hallbook O, Sjodahi R. Cyclooxygenase and colon cancer: clues to the aspirin effect? Ann Med. 1997;24:247–52.

    Google Scholar 

  7. Moore LL, Bradlee ML, Singer MR, et al. BMI and waist circumference as predictors of lifetime colon cancer risk in Framingham study adults. Int J Obes Relat Metab Disord. 2004;28:559–67.

    PubMed  CAS  Google Scholar 

  8. Donohoe CL, Pidgeon GP, Lysught J, Reynolds JV. Obesity and gastrointestinal cancer. Br J Surg. 2010;97:628–42.

    PubMed  CAS  Google Scholar 

  9. Watson AJM, Collins PD. Colon cancer: a civilization disorder. Dig Dis. 2011;29:222–8.

    PubMed  Google Scholar 

  10. Coyle YM. Lifestyle, genes, and cancer. Methods Mol Biol. 2009;472:25–56.

    PubMed  Google Scholar 

  11. Diergaarde B, Vrieling A, Van Kraats AA, van Muijen GN, Kok FJ, Kampman E. Cigarette smoking genetic alterations in sporadic colon carcinomas. Carcinogenesis. 2003;24:565–71.

    PubMed  CAS  Google Scholar 

  12. Cho E, Smith-Warner SA, Ritz J, et al. Alcohol intake and colorectal cancer: a pooled analysis of 8 cohort studies. Ann Intern Med. 2004;140:603–13.

    PubMed  Google Scholar 

  13. Giovannucci E, Stampfer MJ, Colditz GA, et al. Folate, methionine, and alcohol intake and risk of colorectal adenoma. J Natl Cancer Inst. 1993;85:875–84.

    PubMed  CAS  Google Scholar 

  14. Kanazawa K, Konishi F, Mitsouka T, et al. Factors influencing the development of colon cancer. Bacteriologic and biochemical studies. Cancer. 1996;77(8 Suppl):1701–6.

    PubMed  CAS  Google Scholar 

  15. Kados S, Uchida K, Funabashi H, et al. Intestinal microflora are necessary for development of spontaneous adenocarcinoma of the large intestine in T–cell receptor chain and P 53 double knockout mice. Cancer Res. 2001;61:2395–8.

    Google Scholar 

  16. Newman JV, Kosaka T, Sheppard BJ, Fox JG, Shauer DB. Bacterial infection promotes colon tumorigenesis in APC [Min/4] mice. J Infect Dis. 2001;184:227–30.

    PubMed  CAS  Google Scholar 

  17. Maggio-Price L, Treuting P, Zang W, Tsang M, Bielefeldt-Ohmann H, Iritani BM. Helicobacter is required for inflammation and colon cancer in SMAD 3-deficient mice. Cancer Res. 2006;66:828–38.

    PubMed  CAS  Google Scholar 

  18. Erdmaqn SE, Rao VP, Poutahidis T, et al. CD4 [+] CD25 [+] regulatory lymphocytes require interleukin–10 to interrupt colon cancer in mice. Cancer Res. 2003;63:6042–50.

    Google Scholar 

  19. Onoue M, Kado S, Sabaitani Y, Uchida K, Morotomi M. Specific species of intestinal flora influenced the induction of aberrant crypt foci by 1, 2-dimethylhydrazine in rats. Cancer Lett. 1997;113:179–86.

    PubMed  CAS  Google Scholar 

  20. Macionowski KG, Turner ND, Lupton JR, Chaokin RS, Shermer CL, Ha SD, Ricke SC. Diet and carcinogen alter the microbial population of rats. J Nutr. 1997;127:449–57.

    Google Scholar 

  21. Hambly RJ, Rumney CJ, Fletcher JM, Rifkin PJ, Rowland IR. Effects of high–and low–risk diets on gut microflora–associated biomarkers of colon cancer in human–flora associated rats. Nutr Cancer. 1992;27:250–5.

    Google Scholar 

  22. Stone WL, Papas AM. Tocopherols and the etiology of colon cancer. J Natl Cancer Inst. 1997;89:1006–14.

    PubMed  CAS  Google Scholar 

  23. Horie H, Kanazawa K, Okada M, Narushima S, Itoh K, Terada A. Effects of intestinal bacteria on the development of colonic neoplasms: an experimental study. Eur J Cancer Prev. 1999;8:237–45.

    PubMed  CAS  Google Scholar 

  24. Horie H, Kanazawa K, Kobayashi E, Okada M, Fugimura A, Yamigiwa S, Abo T. Effect of intestinal bacteria on the development of colonic neoplasms II. Changes in the immunological environment. Eur J Cancer Prev. 1999;8:533–7.

    PubMed  CAS  Google Scholar 

  25. Singh J, Rivenson A, Tomita M, Shimamura S, Ishibashi N, Reddy BS. Bifidobacterium longum, lactic acid producing intestinal bacterium inhibits colon cancer and modulates the intermediate biomarkers of colon carcinogenesis. Carcinogenesis. 1997;18:833–41.

    PubMed  CAS  Google Scholar 

  26. O’Mahony L, Feeney M, O’Halleram S, et al. Probiotic impact on microbial flora, inflammation and tumor development in IL–10 knockout mice. Aliment Pharmacol Ther. 2001;15:1219–25.

    PubMed  Google Scholar 

  27. Le Leu RK, Hu Y, Brown IL, Woodman RJ, Young GP. Symbiotic intervention of Bifidobacterium lactis and resistance starch protects against colon cancer development in rats. Carcinogenesis. 2010;31:246–51.

    PubMed  Google Scholar 

  28. Otte JM, Mahjuriam-Namari R, Brand S, Werner I, Schmidt WE, Schmitz F. Probiotics regulate expression of Cox–2 in intestinal epithelial cells. Nutr Cancer. 2009;61:103–13.

    PubMed  CAS  Google Scholar 

  29. Le Leu RK, Brown IL, Hy Y, Bird AR, Jackson M, Esterman A, Young GP. A symbiotic combination of resistant starch and Bifidobacterium lactis facilitates apoptotic deletion of carcinogen–damaged cells in rat colon. J Nutr. 2005;135:966–1001.

    Google Scholar 

  30. Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science. 1995;267:1456–62.

    PubMed  CAS  Google Scholar 

  31. Perdigon G, Fuller R, Raya R. Lactic acid bacteria and their effect on the immune system. Curr Issues Intest Microbiol. 2001;2:27–42.

    PubMed  CAS  Google Scholar 

  32. Thayaraju M, Crestci GA, Ananth S, et al. GPR 109A as G–protein- coupled receptor for the bacterial fermentation product butyrate and function as tumor suppressor in colon. Cancer Res. 2009;69:2826–32.

    Google Scholar 

  33. Pagnini C, Corletto VD, Hioung SB, Saed R, Cominelli F, Delle Fave G. Commensal bacteria and “oncologic surveillance”: suggestion from an experimental model. J Clin Gastroenterol. 2008;42 Suppl 3:S193–6.

    PubMed  Google Scholar 

  34. Ma EL, Choi YJ, Choi J, Pothoulakis C, Rhee SH, Im E. The anticancer effect of probiotic Basillus polyfermentus on the human colon cancer cells is mediated through ErbB2 and ErbB3 inhibition. Int J Cancer. 2009;127:780–90.

    Google Scholar 

  35. Kanath S, Buolamwini JK. Targeting EGFR and HER–2 receptor tyrosine kinases for cancer drug discovery. Med Res Rev. 2006;26:569–94.

    Google Scholar 

  36. Balish E, Warner T. Enterococcus faecalis induces inflammatory bowel disease in interleukin–10 knockout mice. Am J Pathol. 2002;160:2253–7.

    PubMed  CAS  PubMed Central  Google Scholar 

  37. Wong X, Allen TD, May RJ, Lightfoot S, Houchen CW, Huycke MM. Enterococcus faecalis induces aneuploidy and tetraploidy in colonic epithelial cells through a bystander effect. Cancer Res. 2008;68:9909–17.

    Google Scholar 

  38. Wu S, Rhee KJ, Albesiano E, et al. A human colonic commensal promotes colon tumorigenesis via activation of T-helper type 17T–cell responses. Nat Med. 2009;15:1016–22.

    PubMed  CAS  PubMed Central  Google Scholar 

  39. Goodwin AC, Shields CE, Wu S, et al. Polyamine catabolism contributes to enterotoxigenic Bacteroides fragilis–induced colon tumorigenesis. Proc Natl Acad Sci U S A. 2011;108:15354–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  40. Pourtahidis T, Haigis KM, Rao VP, et al. Rapid reversal of interleukin-6-dependent epithelial invasion in a mouse model of microbiology induced colon carcinoma. Carcinogenesis. 2007;28:2614–23.

    Google Scholar 

  41. Chen GY, Shaw MH, Redondo G, Nunez G. The innate immune receptor Nod1 protects the intestine from inflammation–induced tumorigenesis. Cancer Res. 2008;68:10060–7.

    PubMed  CAS  PubMed Central  Google Scholar 

  42. Strus M, Gosiewski T, Kochan P, Heczko PB. A role of hydrogen peroxide producing commensal bacteria present in colon of children with IBD in perpetuation of the inflammatory process. J Physiol Pharmacol. 2009;60 Suppl 6:49–54.

    PubMed  Google Scholar 

  43. Strus M, Janczyk A, Gonet-Surowka A, Bryzychczy-Wloch M, Stochel G, Kochan P, Heczko PB. Effect of hydrogen peroxide of bacterial origin on apoptosis, necrosis of gut mucosa epithelial cells, as possible patho-mechanism of inflammatory bowel disease and cancer. J Physiol Pharmacol. 2009;60 Suppl 6:55–60.

    PubMed  Google Scholar 

  44. Huycke MM, Gaskins HR. Commensal bacteria, redox stress, and colorectal cancer: mechanisms and models. Exp Biol Med. 2004;229:586–97.

    CAS  Google Scholar 

  45. Povey AC, Schiffman M, Taffe BG, Harris CC. Laboratory and epidemiologic studies of fecapentaenes. Mutat Res. 1991;259:387–97.

    PubMed  CAS  Google Scholar 

  46. Marnett LJ. Oxyradicals and DNA damage. Carcinogenesis. 2000;21:361–70.

    PubMed  CAS  Google Scholar 

  47. Henle ES, Linn S. Formation, prevention, and repair of DNA damage by iron/hydrogen peroxide. J Biol Chem. 1997;272:19095–8.

    PubMed  CAS  Google Scholar 

  48. Babbs LF. Hypothesis paper: free radicals and the etiology of colon cancer. Free Radic Biol Med. 1990;8:191–200.

    PubMed  CAS  Google Scholar 

  49. Erhardt JG, Lim SS, Bode JC, Bode C. A diet rich in fat and poor in dietary fiber increases the in vitro formation of reactive oxygen species in human feces. J Nutr. 1997;127:106–9.

    Google Scholar 

  50. Owen RW, Spiegelhalder B, Bartsch H. Generation of reactive oxygen species by the fecal matrix. Gut. 2000;46:225–32.

    PubMed  CAS  PubMed Central  Google Scholar 

  51. Huycke MM, Abrams V, Moore DR. Enterococcus faecalis produces extra- cellular superoxide and hydrogen peroxide that damages colonic epithelial cell DNA. Carcinogenesis. 2002;23:529–36.

    PubMed  CAS  Google Scholar 

  52. Deplanke B, Gaskins HR. Hydrogen sulfide induces serum–independent cell cycle entry in non-transformed rat intestinal epithelial cells. FASEB J. 2003;17:1310–2.

    Google Scholar 

  53. Chung DC. The genetic basis of colorectal cancer: insights into critical pathways of tumorigenesis. Gastroenterology. 2000;119:854–65.

    PubMed  CAS  Google Scholar 

  54. Pelizzaro C, Coradini D, Daiclone MG. Modulation of angiogenesis–related protein synthesis by sodium butyrate in colon cancer cell line HT 29. Carcinogenesis. 2002;23:735–40.

    Google Scholar 

  55. O’Keefe SJD, Chung D, Mahmoud N, et al. Why do African Americans get more colon cancer than native Africans? J Nutr. 2007;137(1 Suppl):175S–80.

    PubMed  Google Scholar 

  56. Kanazawa K, Konishi F, Mitsuoka T, et al. Factors influencing the development of sigmoid colon cancer. Bacteriologic and biochemical studies. Cancer. 1996;77:1701–6.

    PubMed  CAS  Google Scholar 

  57. Pagnini C, Corleto VD, Mangoni ML, et al. Alteration of local microflora and alpha-defensins hyperproduction in colonic adenoma mucosa. J Clin Gastroenterol. 2011;45:602–10.

    PubMed  CAS  Google Scholar 

  58. Martin HM, Campbell BJ, Hart CA, et al. Enhanced Escherichia coli adherence and invasion in Crohn’s disease and colon cancer. Gastroenterology. 2004;127:80–93.

    PubMed  CAS  Google Scholar 

  59. Kostic AD, Gevers D, Pedmallu CS, et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res. 2012;22:299–306.

    Google Scholar 

  60. Castellarin M, Warren RL, Freeman JD, et al. Fusobacterium nucleotum infection is prevalent in human colorectal carcinoma. Genome Res. 2012;22:299–306.

    PubMed  CAS  PubMed Central  Google Scholar 

  61. Qin J, Raes J, Arumugam M, et al. A human gut microbial gene catalog established by meta- genomic sequencing. Nature. 2010;464:59–65.

    PubMed  CAS  PubMed Central  Google Scholar 

  62. Marchesi JB, Dutilh BE, Hall N, Peters WH, Roelofs R, Bolief A, Tjalma H. Towards the human colorectal cancer microbiome. PLoS One. 2011;6:e20447. doi:10.1371/journal.pone.0020447.

    PubMed  CAS  PubMed Central  Google Scholar 

  63. Friedman S, Blumberg RS. Inflammatory bowel disease. In: Longo DC, Kasper DL, Jameson JL, Fauci AS, Hauser SL, Loscalzo J, editors. Harrison’s principles of internal medicine. 18th ed. New York, NY: McGraw Hill; 2011. p. 2477–95.

    Google Scholar 

  64. Elson CO, Weaver CT. In vivo models of IBD. In: Targan SR, Shanahan F, Karp LC, editors. Inflammatory bowel disease: translating basic science into clinical practice. Oxford: Wiley Blackwell; 2009. p. 25–51.

    Google Scholar 

  65. Osterman MT, Lichenstein GR. Ulcerative colitis. In: Feldman M, Friedman LA, Brandt LJ, editors. Sleisenger and Fortran’s gastrointestinal and liver disease. 9th ed. Philadelphia: Saunders-Elsevier; 2010. p. 1975–2013.

    Google Scholar 

  66. Strober W, Fuss IJ. Proinflammatory cytokines in the pathogenesis of inflammatory bowel diseases. Gastroenterology. 2011;140:1756–67.

    PubMed  CAS  PubMed Central  Google Scholar 

  67. Kaser A, Blumberg RS. Autophagy, microbial sensing, endoplasmic reticulum stress and epithelial function in inflammatory bowel diseases. Gastroenterology. 2011;140:1738–47.

    PubMed  CAS  Google Scholar 

  68. Abraham C, Medzhitov R. Interactions between host innate immune system and microbes in inflammatory bowel disease. Gastroenterology. 2011;140:1729–37.

    PubMed  CAS  PubMed Central  Google Scholar 

  69. Saleh M, Elson CO. Experimental inflammatory bowel disease: insights into the host–microbiota dialogue. Immunity. 2011;34:293–302.

    PubMed  CAS  PubMed Central  Google Scholar 

  70. Chassang B, Daefeuille-Michaud A. The commensal microbiota and enteropathogens in the pathogenesis of inflammatory bowel diseases. Gastroenterology. 2011;140:1720–8.

    Google Scholar 

  71. Over K, Crandell PG, O’Bryan CA, Ricke SC. Current perspectives on Mycobacterium avium subsp. partuberculosis, Johne’s disease, and Crohn’s disease: a review. Crit Rev Microbiol. 2011;37:141–56.

    PubMed  Google Scholar 

  72. Feller M, Huwiler K, Stephan R, et al. Mycobacterium avium subspecies paratuberculosis and Crohn’s disease: systematic review and meta-analysis. Lancet Infect Dis. 2007;7:607–13.

    PubMed  Google Scholar 

  73. Tuci A, Tonon F, Castellani L, et al. Fecal detection of Mycobacterium avium parotuberculosis using IS 900, DNA sequences in Crohn’s disease and ulcerative colitis and healthy subjects. Dig Dis Sci. 2011;56:2957–62.

    PubMed  Google Scholar 

  74. Pravda J. Crohn’s disease: evidence for involvement of unregulated transcytosis in disease dispathogenesis. World J Gastroenterol. 2011;17:1416–26.

    PubMed  PubMed Central  Google Scholar 

  75. Ng SC, Benjamin JL, McCarthy NE, et al. Relationships between human intestinal dendritic cells gut microbiota, and disease activity in Crohn’s disease. Inflamm Bowel Dis. 2011;17:2027–37.

    PubMed  CAS  Google Scholar 

  76. Darfeulle-Michaud A, Boudeau J, Bulois P, et al. High prevalence of adherent–invasive Escherichia coli associated with ileal mucosa in Crohn’s disease. Gastroenterology. 2004;127:412–21.

    Google Scholar 

  77. Glasser AL, Boudeau J, Burnich N, Perruchot AH, Columbel JF, Darfeulle-Michaud A. Adherent- invasive Escherichia coli strains from patients with Crohn’s disease survive and replicate within macrophages without inducing host cell death. Infect Immun. 2001;69:5529–37.

    PubMed  CAS  PubMed Central  Google Scholar 

  78. Meconi S, Vercellone A, Levillane F, et al. Adherent-invasive Escherichia coli isolated from Crohn’s disease patients induce granulomas in vitro. Cell Microbiol. 2007;9:1252–61.

    PubMed  CAS  Google Scholar 

  79. Simpson KW, Dogan B, Richniw M, et al. Adherent and invasive Escherichia coli is associated with granulomatous colitis in Boxer dogs. Infect Immun. 2006;74:4778–92.

    PubMed  CAS  PubMed Central  Google Scholar 

  80. Vaseille E, Bringer MA, Gardarin A, et al. Role of meprins to protect ileal mucosa of Crohn’s disease patients from colonization by adherent-invasive E. coli. PLoS One. 2011;6:e21199.

    Google Scholar 

  81. Strobar W. Adherent-invasive E. coli in Crohn’s disease: bacterial “agent provocateur”. J Clin Invest. 2011;121:841–4.

    Google Scholar 

  82. Edwards LA, Lucas M, Edwards EA, et al. Aberrant response to Bacteroides thetaiotamicron in Crohn’s disease: an ex vivo human organ culture study. Inflamm Bowel Dis. 2011;17:1201–8.

    PubMed  CAS  Google Scholar 

  83. Pruteanu H, Hyland NP, Clark DJ, Kelly B, Shanahan F. Degradation of the extracellular matrix components by bacteria-derived metalloproteases: implications for inflammatory diseases. Inflamm Bowel Dis. 2011;17:1189–200.

    PubMed  Google Scholar 

  84. Thomson JM, Hansen R, Berry SH, et al. Enterohepatic helicobacter in ulcerative colitis: potential pathogenic entities? PLoS One. 2011;6:e17184.

    PubMed  CAS  PubMed Central  Google Scholar 

  85. Hansen R, Thomson JM, Fox JG, El-Omar EM, Hold GL. Could Helicobacter organisms cause inflammatory bowel disease? FEMS Immunol Med Microbiol. 2011;6:1–14.

    Google Scholar 

  86. Man SM, Kaakoush NO, Mitchell HM. The role of bacteria and pattern-recognition receptors in Crohn’s disease. Nat Rev Gastroenterol Hepatol. 2011;8:152–68.

    PubMed  Google Scholar 

  87. Zhang L, Man SM, Day AS. Detection and isolation of Campylobacter species other than C jejuni from children with Crohn’s disease. J Clin Microbiol. 2009;47:453–5.

    PubMed  PubMed Central  Google Scholar 

  88. Man SM, Kaakoush NO, Leach ST, et al. Host attachment, invasion, and stimulation of proinflammatory cytokines by Campylobacter concisus and other non-Campylobacter jejuni Campylobacter species. J Infect Dis. 2010;202:1855–65.

    PubMed  CAS  Google Scholar 

  89. Man SM, Zhang L, Day AS, Leach ST, Lemberg DL, Mitchell H. Campylobacter concisus and other Campylobacter species in children with newly diagnosed Crohn’s disease. Inflamm Bowel Dis. 2010;16:1008–16.

    PubMed  Google Scholar 

  90. Aabenhus R, Stenram U, Anderson LP, Permin H, Jjungh A. First attempt to produce experimental Campylobacter concisus infection in mice. World J Gastroenterol. 2008;14:6954–9.

    PubMed  PubMed Central  Google Scholar 

  91. Kabi A, Nickerson KP, Homer CR, McDonald C. Digesting the genetics of inflammatory bowel disease: insights from studies of autophagy risk genes. Inflamm Bowel Dis. 2012;18:782–92.

    PubMed  PubMed Central  Google Scholar 

  92. Vora P, McGovern DPB. LRRK2 as a negative regulator of NFAT: implications for the pathogenesis of inflammatory bowel disease. Expert Rev Clin Immunol. 2012;8:227–9.

    PubMed  CAS  Google Scholar 

  93. Frank DN, Robertson CE, Hamm CM, et al. Disease phenotype and genotype are associated with shifts in intestinal-associated microbiota in inflammatory bowel disease. Inflamm Bowel Dis. 2011;17:179–84.

    PubMed  Google Scholar 

  94. MacDonald TT, Monteleone G. Immunity, inflammation and allergy in the gut. Science. 2005;307:1920–5.

    PubMed  CAS  Google Scholar 

  95. MacDonald TT, Pender SL. Mechanisms of tissue injury. In: Sartor RB, Sandborn WJ, editors. Kirsner’s inflammatory bowel disease. 6th ed. London: Saunders; 2004. p. 163–78.

    Google Scholar 

  96. Bourma G, Strober W. The immunological and genetic basis of inflammatory bowel disease. Nat Rev Immunol. 2003;3:521–33.

    Google Scholar 

  97. Sartor RB. Animal models of intestinal inflammation. In: Sartor RB, Sandborn WJ, editors. Kirsner’s inflammatory bowel disease. 6th ed. London: Saunders; 2004. p. 138–62.

    Google Scholar 

  98. Rath HC, Wilson KH, Santor RB. Differential induction of colitis and gastritis in HLA-B27 transgenic rats selectively colonized with Bacteroides vulgates or Escherichia coli. Infect Immun. 1999;67:2969–74.

    PubMed  CAS  PubMed Central  Google Scholar 

  99. Chassaing B, Darfeulle-Michaud A. The commensal microbiota and enteropathgens in the pathogenesis of inflammatory bowel diseases. Gastroenterology. 2011;140:1720–8.

    PubMed  Google Scholar 

  100. Swidsinki A, Ladhoff A, Pernthaler A, et al. Mucosal flora in inflammatory bowel disease. Gastroenterology. 2002;122:44–54.

    Google Scholar 

  101. Neut C, Bulois P, Desreumaux P, et al. Changes in the bacterial flora of the neoterminal ileum after ileocolonic resection of Crohn’s disease. Am J Gastroenterol. 2002;97:939–46.

    PubMed  Google Scholar 

  102. Kleesen B, Knoesen AJ, Buhr HJ, Blaut M. Mucosal and invading bacteria in patients with inflammatory bowel disease compared with controls. Scand J Gastroenterol. 2002;9:1034–41.

    Google Scholar 

  103. Seksik P, Rigottier-Gois L, Gramet G, et al. Alterations of fecal bacterial groups in patients with Crohn’s disease of the colon. Gut. 2003;52:237–42.

    PubMed  CAS  PubMed Central  Google Scholar 

  104. Ott SJ, Musfeld T, Wenderoth DJ, et al. Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory disease. Gut. 2004;53:685–95.

    PubMed  CAS  PubMed Central  Google Scholar 

  105. Mylonaki M, Rayment NB, Rampton DS, Hudspith BN, Brostoff J. Molecular characterization of rectal mucosa-associated bacterial flora in inflammatory bowel disease. Inflamm Bowel Dis. 2005;11:481–7.

    PubMed  Google Scholar 

  106. Lepage P, Seksik P, Sutren M, et al. Biodiversity of the mucosa-associated microbiota is stable along the distal digestive tract in healthy individuals and patients with IBD. Inflamm Bowel Dis. 2005;11:473–80.

    PubMed  Google Scholar 

  107. Seksik P, Lepage P, de La Cochetiere MF, et al. Search for localized dysbiosis in Crohn’s disease ulcerations by temporal gradient gel electrophoresis of 16S rRNA. J Clin Microbiol. 2005;43:4654–8.

    PubMed  CAS  PubMed Central  Google Scholar 

  108. Manichanh C, Rigottier-Gois L, Bonnaud E, et al. Reduced diversity of fecal microbiota in Crohn’s disease revealed by metagenomic approach. Gut. 2006;55:205–11.

    PubMed  CAS  PubMed Central  Google Scholar 

  109. Conte MP, Schippa S, Zamboni I, et al. Gut-associated microbiota in pediatric patients with inflammatory bowel disease. Gut. 2006;55:1760–7.

    PubMed  CAS  PubMed Central  Google Scholar 

  110. Martinez-Medina M, Aldeguer X, Gonzalez-Huix F, Acero D, Garcia-Gil LJ. Abnormal microbiota composition in the ileocolonic mucosa of Crohn’s disease patients, as revealed by polymerase chain reaction-denaturing gradient gel electrophoresis. Inflamm Bowel Dis. 2006;12:1136–45.

    PubMed  Google Scholar 

  111. Sokol H, Seksik P, Rigotier-Gois L, et al. Specificities of fecal microbiota in inflammatory bowel disease. Inflamm Bowel Dis. 2006;12:106–11.

    PubMed  Google Scholar 

  112. Kotlowski R, Bernstein CN, Sepehri S, Krause DO. High prevalence of Escherichia coli belonging to the B2 + D phylogenetic group in inflammatory bowel disease. Gut. 2007;56:669–75.

    PubMed  CAS  PubMed Central  Google Scholar 

  113. Baumgart M, Dogan B, Rishniw M, et al. Culture independent analysis of ileal mucosa reveals a selective increase in invasive Escherichia coli of novel phylogeny relative to depletion of Clostridiales in Crohn’s disease involving the ileum. ISME J. 2007;1:403–18.

    PubMed  CAS  Google Scholar 

  114. Andoh A, Sakata S, Koizumi Y, Mitsuyama K, Fujiyama Y, Benno Y. Terminal restriction fragment length polymorphism analysis of the diversity of fecal microbiota in patients with ulcerative colitis. Inflamm Bowel Dis. 2007;13:955–62.

    PubMed  Google Scholar 

  115. Frank DN, Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel disease. Proc Natl Acad Sci U S A. 2007;104:1380–5.

    Google Scholar 

  116. Vasquez N, Mangin I, Lepage P, et al. Patchy distribution of mucosal lesions in ileal Crohn’s disease is not linked to differences in the dominant mucosa-associated bacteria: a study using fluorescence in situ hybridization and temperature gradient gel electrophoresis. Inflamm Bowel Dis. 2007;13:684–92.

    PubMed  Google Scholar 

  117. Sokol H, Lepage P, Seksik P, et al. Molecular comparison of dominant mirobiota associated with injured versus non-injured mucosa in ulcerative colitis. Gut. 2007;56:152–4.

    PubMed  CAS  PubMed Central  Google Scholar 

  118. Ott SJ, Plamondon S, Hart A, Begun A, Rehman A, Kamm MA, Schreiber S. Dynamics of the mucosa-associated flora in ulcerative colitis patients during remission and clinical relapse. J Clin Microbiol. 2008;46:3510–3.

    PubMed  CAS  PubMed Central  Google Scholar 

  119. Martinez C, Antolin M, Santos J, et al. Unstable composition of the fecal microbiota in ulcerative colitis during clinical remission. Am J Gastroenterol. 2008;103:643–8.

    PubMed  Google Scholar 

  120. Sokol H, Pigneur B, Watterlot L, et al. Faecalbacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn’s disease patients. Proc Natl Acad Sci U S A. 2008;105:16731–6.

    PubMed  CAS  PubMed Central  Google Scholar 

  121. Nishikawa J, Kudo T, Sakata S, Benno Y, Sugiyama T. Diversity of mucosa-associated microbiota in active and inactive ulcerative colitis. Scand J Gastroenterol. 2009;44:180–6.

    PubMed  CAS  Google Scholar 

  122. Willing BP, Dicksved J, Halfvarson J, et al. A pyrosequencing study in twins shows that gastrointestinal microbial profiles vary with inflammatory bowel disease phenotypes. Gastroenterology. 2010;139:1844–54.

    PubMed  Google Scholar 

  123. Mondot S, Kang S, Furet JP, et al. Highlighting new phylogenetic specificities of Crohn’s disease microbiota. Inflamm Bowel Dis. 2011;17:185–92.

    PubMed  CAS  Google Scholar 

  124. Walker AW, Sanderson JD, Churcher C, et al. High through put clone library analysis of mucosa-associated microbiota reveals dysbiosis and differences between inflamed and non-inflamed regions of the intestine in inflammatory bowel disease. BMC Microbiol. 2011;11:7.

    PubMed  PubMed Central  Google Scholar 

  125. Joossens M, Huys G, Cnockaert M, et al. Dysbiosis of the fecal microbiota in patients with Crohn’s disease and their unaffected relatives. Gut. 2011;60:631–7.

    PubMed  Google Scholar 

  126. Andoh A, Imaeda H, Anomatsu T, et al. Comparisons of the fecal microbiota profiles between ulcerative colitis and Crohn’s disease using terminal restriction fragment length polymorphism analysis. J Gastroenterol. 2011;46:479–86.

    PubMed  Google Scholar 

  127. Lepage P, Hasler R, Spehlman AE, et al. Twin study indicates loss of interaction between microbiota and mucosa of patients with ulcerative colitis. Gastroenterology. 2011;141:227–36.

    PubMed  Google Scholar 

  128. Strauss J, Kaplan GG, Beck PL, et al. Invasive potential of gut mucosa- derived Fusobacterium nucleotum positively correlates with IBD status of the host. Inflamm Bowel Dis. 2011;17:1971–8.

    PubMed  Google Scholar 

  129. Meijer BJ, Dieleman LA. Probiotics in the treatment of human inflammatory bowel diseases: update 2011. J Clin Gastroenterol. 2011;45 suppl: S139–44.

    Google Scholar 

  130. Kruis W, Fric P, Pokrotnieks J, et al. Maintaining remission of ulcerative colitis with the probiotic Escherichia coli Nissle 1917 is as effective as with standard mesalazine. Gut. 2004;53:1617–23.

    PubMed  CAS  PubMed Central  Google Scholar 

  131. Vilela EG, Ferrari M, Torres HO, et al. Influence of Saccharomyces boulardii on the intestinal permeability of patients with Crohn’s disease in remission. Scand J Gastroenterol. 2008;43:842–8.

    CAS  Google Scholar 

  132. Giochetti P, Rizzello F, Venturi A, et al. Oral bacteriotherapy as maintenance treatment in patients with chronic pouchitis: a double-blind, placebo–controlled trial. Gastroenterology. 2000;119:305–9.

    Google Scholar 

  133. Gionchetti P, Rizzello F, Helwig U, et al. Prophylaxis of pouchitis onset with probiotic therapy: a double-blind, placebo–controlled trial. Gastroenterology. 2003;124:1202–9.

    PubMed  Google Scholar 

  134. Gosselink MP, Schouten WR, van Lieshout LM, et al. Delay of the first onset of pouchitis by oral intake of the probiotic strain Lactobacillus rhamosus GG. Dis Colon Rectum. 2004;47:876–84.

    PubMed  Google Scholar 

  135. Sood A, Midha V, Makharia GK, et al. The probiotic preparation VSL#3 induces remission in patients with mild–moderately active ulcerative colitis. Clin Gastroenterol Hepatol. 2009;7:1202–9.

    PubMed  Google Scholar 

  136. Tursi A, Brandimarte G, Papa A, et al. Treatment of relapsing mild- to- moderate ulcerative colitis with the probiotic VSL#3 as adjunctive to a standard pharmaceutical treatment; a double-blind, randomized, placebo–controlled study. Am J Gastroenterol. 2010;105:2218–27.

    PubMed  PubMed Central  Google Scholar 

  137. Ishikawa H, Matsumoto S, Ohashi Y, et al. Beneficial effects of probiotic Bifidobacterium and galacto–oligosaccharide in patients with ulcerative colitis: a randomized controlled study. Digestion. 2011;84:128–33.

    PubMed  Google Scholar 

  138. Benjamin JL, Hedin CR, Koufsoumpas A, et al. Randomized double-blind, placebo–controlled trial of fructo–oligosaccharides in active Crohn’s disease. Gut. 2011;60:923–9.

    PubMed  CAS  Google Scholar 

  139. Phillippe D, Heupel E, Blum-Sperisen S, Riedel CU. Treatment with Bifidobacterium bifidum 17 partially protects mice from the Th1-driven inflammation in a chemically induced model of colitis. Int J Food Microbiol. 2011;14:45–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fong, I.W. (2014). Microbes in Colon Cancer and Inflammatory Bowel Disease. In: The Role of Microbes in Common Non-Infectious Diseases. Emerging Infectious Diseases of the 21st Century, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1670-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1670-2_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1669-6

  • Online ISBN: 978-1-4939-1670-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics