Skip to main content

Nanoparticles Formed by Microbial Metabolism of Metals and Minerals

  • Chapter
  • First Online:
Book cover Nanomicrobiology

Abstract

Microorganisms produce a wide variety of metallo-nanoparticles. These are deposited in the cytoplasm, periplasm, extracellular area, or on the surface of the cell. These nanoparticles may be the result of energy-conserving dissimilatory metal reduction processes, cell-building assimilatory activities, or co-metabolism. This formation of metal or metalloid nanoparticles from soluble cations and anions generally result in the lowering of the concentration of toxic chemicals in the environment. While the reduction of metals and metalloids is observed with growing cultures, the reduction also occurs with bacteria in the stationary growth phase, or with enzymes isolated from bacteria. As the industrial use of metallo-nanoparticles increases, the use of microorganisms is preferred over some of the chemical processes, as they can have a lower impact on the environment. This chapter focuses on the cellular systems, enzymes, and electron transport proteins of microorganisms contributing to the production of metallo-nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelous A, Gong WL, Lutze W, Shelnutt JA, Franco R, Moura (2000) Using cytochrome c3 to make selenium wires. Chem Mat 12:1510–1512

    Google Scholar 

  • Afkar E, Lisak J, Saltikov C, Basu P, Oremland RS, Stolz JF (2003) The respiratory arsenate reductase from Bacillus selenitireducens strain MLS10. FEMS Microbiol Lett 226:107–112

    CAS  PubMed  Google Scholar 

  • Aickin RM, Dean, ACR, Cheetham, AK, Skarnulis. AJ (1979) Electron microscope studies on the uptake of lead by a Citrobacter species. Microbios Lett 9:7–15

    Google Scholar 

  • Ali DM, Divya C, Gunasekaran M, Thajuddin N (2011) Biosynthesis and characterization of silicon-germanium oxide nanocomposite by diatom. Digest J Nanomater Biostruct 6:117–120

    Google Scholar 

  • Antipov AN, Lyalikova NN, Khijniak TV, L’vov NP (2000a) Vanadate reduction by molybdate-free dissimilatory nitrate reductases from vanadate-reducing bacteria. IUBMB Life 50:39–42

    CAS  Google Scholar 

  • Antipov AN, Lyalikova NN, L’vov NP (2000b) Vanadium-binding protein excreted by vanadate-reducing bacteria. IUBMB Life 49:137–141

    CAS  Google Scholar 

  • Avazéri C, Turner RJ, Pommier J, Weiner JH, Giordano G, Verméglio A (1997) Tellurite reductase activity of nitrate reductase is responsible for the basal resistance of Escherichia coli to tellurite. Microbiology 143:1181–1189

    PubMed  Google Scholar 

  • Baesman SM, Bullen TD, Dewald J, Zhang D, Curran S, Islam FS, Beveridge TJ, Oremland RS (2007) Formation of tellurium nanocrystals during anaerobic growth of bacteria that use Te oxyanions as respiratory electron acceptors. Appl Environ Microbiol 73:2135–2143

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baesman SM, Stolz JF, Kulp TR, Oremland RS (2009) Enrichment and isolation of Bacillus beveridgei sp. nov., a facultative anaerobic haloalkaliphile from Mono Lake, California, that respires oxyanions of tellurium, selenium, and arsenic. Extremophiles 13:695–705

    CAS  PubMed  Google Scholar 

  • Bai HJ, Zhang ZM, Guo Y, Yang GE (2009) Biosynthesis of cadmium sulfide nanoparticles by photosynthetic bacteria Rhodopseudomonas palustris. Colloids Surf B Biointerfaces 70:142–146. doi:10.1016/j.colsurfb.2008.12.025

    CAS  PubMed  Google Scholar 

  • Bajaj M, Schmidt S, Winter J (2012) Formation of Se(0) nanoparticles by Duganella sp. and Agrobacterium sp. isolated from Se-laden soil of North-East Punjab, India. Microbial Cell Factories 11:64. http://www.microbialcellfactories.com/content/11/1/64

    CAS  PubMed Central  PubMed  Google Scholar 

  • Banfield JF, Nealson KH (eds) (1997) Geomicrobiology: Interactions between microbes and minerals. Rev Microbiol Geochem, vol 35. Washington DC, Mineralogical Society of America

    Google Scholar 

  • Bansal V, Rautaray D, Ahmad A, Sastry M (2004) Biosynthesis of zirconia nanoparticles using the fungus Fusarium oxysporum. J Mater Chem 14:3303–3305

    CAS  Google Scholar 

  • Barton LL, Fauque G (2009) Biochemistry physiology and biotechnology of sulfate-reducing bacteria. Adv Appl Microbiol 68:41–98

    CAS  PubMed  Google Scholar 

  • Barton LL, Northup DE (2011) Microbial ecology. Wiley-Blackwell, Hooboken

    Google Scholar 

  • Barton LL, Fekete FA, Marietta EV, Nuttall HE Jr, Jain R (1992) Potential for bacterial remediation of waste sites containing selenium or lead. In: Sabatini DA, Knox RC (eds) Transport and remediation of subsurface contaminants: Colloidal, interfacial and subsurface phenomena, pp 99–107. Washington DC, American Chemical Society

    Google Scholar 

  • Barton LL, Mandl M, Loy A (eds) (2010) Geomicrobiology: Molecular and environmental perspective. Springer Science + Business Media B.V., Dordrecht, The Netherlands

    Google Scholar 

  • Biswas KC, Barton LL, Tsui WL, Shuman K, Gillespie J, Eze CS (2011) A novel method for the measurement of elemental selenium produced by bacterial reduction of selenite. J Microbiol Methods 86:140–144

    CAS  PubMed  Google Scholar 

  • Blake RC, II, Choate D, Bardhan S, Revis N, Barton LL, Zocco T (1993) Chemical transformations of toxic metals by a Pseudomonas strain from a toxic waste site. Environ Toxicol Chem 12:1365–1376

    CAS  Google Scholar 

  • Blumb JS, Bindi AB, Buzzelli J, Stolz JF, Oremland RS (1999) Bacillus arsenoselenatis, sp. nov., and Bacillus selenitireducens, sp. nov.: Two halophiles from Mono Lake, California that respire oxyanions of selenium and arsenic. Arch Microbiol 171:19–30

    Google Scholar 

  • Bunge M, Søbjerg LS, Rotaru A-E, Gauthier D, Lindhardt AT, Hause G, Finster K, Kingshott P, Skrydstrup T, Meyer RI (2010) Formation of palladium(0) nanoparticles at microbial surfaces. Biotechnol Bioeng 107:206–215

    CAS  PubMed  Google Scholar 

  • Calderón IL, Arenas FA, Pérez JM, Fuentes DE, Araya MA, Saavedra CP, Tantaleán JC, Pichuantes SE, Youderian PA, Vásquez CC (2006) Catalases are NAD(P)H—dependent tellurite reductases. PLoS ONE. 1:e70. doi:10.1371/journal.pone.0000070

    PubMed Central  PubMed  Google Scholar 

  • Carpentier W, Sandra K, De Smet I, Brige A, DeSmit L, Van Beeumen J (2003) Microbial reduction and precitiatation of vanadium by Shewanella oneidensis. Appl Environ Microbiol 69:3636–3639

    CAS  PubMed Central  PubMed  Google Scholar 

  • Castro-Longoria E, Vilchis-Nestor AR, Avalos-Borja M (2011) Biosynthesis of silver, gold and bimetallic nanoparticles using the fungus Neurospora crassa. Colloids Surface B 83:42–48

    CAS  Google Scholar 

  • Checa SK, Espariz M, Audero ME, Botta PE, Spinelli SV, Soncini FC (2007) Bacterial sensensing of and resistance to gold salts. Mol Microbiol 63:1307–1318

    CAS  PubMed  Google Scholar 

  • Chen G, Chen X, Yang Y et al. (2011) Sorption and distribution of copper in unsaturated Pseudomonas putida CZ1 biofilms as determined by X-ray fluorescence microscopy. Appl Environ Microbiol 77:4719–4727

    CAS  PubMed Central  PubMed  Google Scholar 

  • Corbari L, Cambon-Bonavita M-A, Long GJ, Grandjean F, Zbinden M, Gaill F, Compère P (2008) Iron oxide deposits associated with the ectoendosymbiotic bacteria in the hydrothermal vent shrimp Rimicaris exoculata. Biogeosciences 5:1295–1310

    CAS  Google Scholar 

  • Cunningham DP, Lundie LL (1993) Precepitation of cadmium by Clostridium thermoaceticum. Appl Environ Microbiol 59:7–14

    CAS  PubMed Central  PubMed  Google Scholar 

  • DeMoll-Decker H, Macy JM (1993) The periplasmic nitrite reductase of Thauera selenatis may catalyze the reduction of selenite to elemental selenium. Arch Microbiol 160:241–247

    CAS  Google Scholar 

  • Devieux CM, Dridge EJ, Mueller CM, Splatt P, Paszkiewicz K, Knight I, Florance H, Lore J, Titball RW, Lewis RJ, Richardson DJ, Butler CD (2011) A bacterial process for selenium nanosphere assembly. Proc Natl Acad Sci 108:13480–13485

    Google Scholar 

  • Dhanjai S, Cameotra SS (2010) Aerobic biogenesis of selenium nanospheres by Bacillus cerus isolated from coalmine soil. Microbial Cell Factories 9:52–58

    Google Scholar 

  • Dunham-Cheatham S, Rui X, Bunker B, Munguy N, Hellmann R, Fein J (2011) The effects of non-metabolizing bacterial cells on the precipitation of U, Pb and Ca phosphates. Geochim Cosmochim Acta 75:2828–2847

    CAS  Google Scholar 

  • Duran N, Seabra AB (2012) Microbial synthesis of metallic sulfide nanoparticles: An overview. Curr Biotechnol 1:287–296

    CAS  Google Scholar 

  • El-Raheem A, El-Shanshoury R, Elsik SL, Ebeid ME (2011) Extracellular biosynthesis of silver naoparticles using Escherichia coli 8739, Bacillus subtilis ATCC 6633, and Streptococcus thermophilus ESh1 their antimicrobial activities. ISRN Nanotechnol. Article ID 385480 (7 pages). doi:5402/2011/385480

    Google Scholar 

  • Fahey RC (2001) Novel thiols of prokaryotes. Ann Rev Microbiol 55:333–356

    CAS  Google Scholar 

  • Fahey RC, Brown WC, Adams WB, Worsham MB (1978) Occurence of glutathione in bacteria. J Bacteriol 133:1126–1129

    CAS  PubMed Central  PubMed  Google Scholar 

  • Falcone G, Nickerson WJ (1963) Reduction of selenite by intact yeast cells and cell-free preparations. J Bacteriol 85:754–762

    CAS  PubMed Central  PubMed  Google Scholar 

  • Francis AJ, Dodge CJ, Lu F, Halada GP, Clayton CR (1994) XPS and XANES studies of uranium reduction by Clostridium sp. Environ Sci Tech 28:636–639

    CAS  Google Scholar 

  • Fredrickson JK, Kostandarithes HM, Li SW, Plymale AE, Daly MJ (2000) Reduction of Fe(III), Cr(VI), U(VI), and Tc(VII) by Deinococcus radiodurans R1. Appl Environ Microbiol 66:2006–2011

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gadd GM (2010) Metals, minerals and microbes: Geomicrobiology and bioremediation. Microbiology 156:609–643

    CAS  PubMed  Google Scholar 

  • Ganther HE (1971) Reduction of selenotrisulfite deravites of glutathione to a persulfite analog by glutathione reductase. Biochemistry 16:4089–4098

    Google Scholar 

  • Gao W, Francis AJ (2013) Fermentation and hydrogen metabolism affect uranium reduction by clostridia. ISRN Biotechnol. http://dx.doi.org/10.5402/2013657160

  • Glasauer S, Langley S, Boyanov M, Lai B, Kemner K, Beveridge TJ (2007) Mixed-valence cytoplasmic iron granules are linked to anaerobic respiration. Appl Environ Microbiol 73:993–996

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gurunathan S, Kalishwaralal K, Vaidyanathan R, Venkataraman D, Pandian SR, Muniyandi J, Hariharan N, Eom SH (2009) Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids Surf B Biointerfaces 74:328–335

    CAS  PubMed  Google Scholar 

  • Holmes JD, Farrer JA, Richardson DJ, Russell DA, Sodeau JR (1997a) Bacterial cadmium sulfide semiconductor particles: an assessment of their photoactivity by EPR spectroscopy. Photochem Photobiol 65:811–817

    CAS  Google Scholar 

  • Holmes JD, Richardson DJ, Saed S, Evans-Growing R, Russell DA, Sodeau JR (1997b) Cadmium-specific formation of metal sulfide ‘Q-particles’ by Klebsiella pneumoniae. Microbiology 143:2521–2530

    CAS  Google Scholar 

  • Honary S, Barabadi H, Gharael-Fathabad E, Naghibi F (2012) Green synthesis of copper oxide nanoparticles using Penicillium aurantigriseum, Penicillium citrinum and Penicillium wakshami. Digest J Nanomater Biostruct 7:999–1055

    Google Scholar 

  • Hosseini MR, Schaffie M, Pazouki M, Darezereshki E, Ranjbar M (2012) Biologically synthesized copper sulfide nanoparticles: production and characterization. Mat Sci Semicon Proc 15:222–225

    CAS  Google Scholar 

  • Iterson Wv, Leene W (1964a) A cytochemical localization of reductive sites in a Gram-positive bacterium. Tellurite reduction in Bacillus subtilis. J Cell Biol 20:361–375

    Google Scholar 

  • Iterson Wv, Leene W (1964b) A cytochemical localization of reductive sites in a Gram-negative bacterium. J Cell Biol 20:377–387

    Google Scholar 

  • Jha AK, Prasad K (2010) Ferroelectric BaTiO3 nanoparticles: Biosynthesis and characterization. Colloids Surfaces B Biointerfaces 1:330–334

    Google Scholar 

  • Jha AK, Prasad K, Prasad K (2009) A green low-cost biosynthesis of Sb2O3 nanoparticles. Biochem Eng. J 43:303–306

    CAS  Google Scholar 

  • Jiang S, Lee J-H, Kim M-G, Myung NV, Fredrickson JK, Sadowsky MJ, Hur H-G (2009) Biogenic formation of As–S nanotubes by diverse Shewanella strains. App Environ Microbiol 75:6896–6899

    CAS  Google Scholar 

  • Jiang S, Ho CT, Lee J-H, Duong HV, Han S, Hur H-G (2012) Mercury capture into biogenic amorphous selenium nanospheres produced by mercury resistant Shewanella putrefaciens 200. Chemosphere 87:621–624

    CAS  PubMed  Google Scholar 

  • Johnson CW, Wyall MA, Li X, Ibrahim A, Schuster J, Southam G, Magarvey NA (2013) Gold biomineralization by a metallophore from a gold-associated microbe. Nat Chem Biol 9:241–243

    Google Scholar 

  • Kashefi K, Lovley DR (2000) Reduction of Fe(III), Mn(IV) and toxic metals at 100°C by Pyrobaculum islandicum. Appl Environ Microbiol 66:1050–1056

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kashefi K, Tor JM, Nevin KP, Lovley DR (2001) Reductive precipitation of gold by dissimilatory Fe(III)-Reducing Bacteria and AAppl Environ Microbiol 67:3275–3279. Applied and Environmental Microbiologyaem.asm.org

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kemner K, Kelly S, Lai B et al. (2004) Elemental and redox analysis of single bacterial cells by X-ray microbeam analysis. Science 306:686–687

    CAS  PubMed  Google Scholar 

  • Kessi J (2006) Enzymatic cystems proposed to be involved in the dissimilatory reduction of selenite in the purple non-sulfur bacteria Rhosospirillus rubrum and Rhodobacter capsulatus. Microbiology 152:731–743

    CAS  PubMed  Google Scholar 

  • Khijniak TV, Slobodkin AI, Coker V, Renshaw JC, Livens FR, Bonch-Osmolovskaya N-K, Medvedeva-Lyalikova, NN, Lyoyd JR (2005) Reduction of uranium phosphate during growth of the thermophyllic bacterium Thermoterrabacterium ferrireducens. Appl Environ Microbiol 71:6423–6426

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kieft TL, Fredrickson JK, Onstott TC, Gorby YA, Kostandarithes HM, Bailey TJ, Kennedy DW, Li SW, Plymale AE, Spadoni CM, Gray MS (1999) Dissimilatory reduction of Fe(III) and other electron acceptors by a Thermus isolate. Appl Environ Microbiol 65:1214–1221

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim D-H, Kanaly RA, Hur H-G (2012) Biological accumulation of tellurium nanorod structures via reduction of tellurite by Shewanella oneidensis MR –1. Bioresource Technol 125C:127–131

    Google Scholar 

  • Konhauser K (2007) Introduction to geomicrobiology. Blackwell Publishing, Oxford, UK. Applied and Environmental Microbiologyaem.asm.org

    Google Scholar 

  • Konishi Y, Ohno K, Saitoh N, Nomura T, Nagamine S, Hishida H, Takahashi Y, Uruga T (2007) Bioreductive deposition of platinum nanoparticles on the bacterium Shewanella algae. J Biotechnol 128:648–653

    CAS  PubMed  Google Scholar 

  • Krafft T, Macy JM (1998) Purification and characterization of the respiratory arsenate reductase of Chrysiogenes arsenatis. Eur J Biochem 255:647–653

    CAS  PubMed  Google Scholar 

  • Kumar SA, Ansary AA, Abroad A, Khan MI (2007) Extracellular biosynthesis of CdSe quantum dots by the fungus Fusarium oxysoprum. J Biomedical Nanotechnol 3:190–194

    CAS  Google Scholar 

  • Labrenz M, Druschel GK, Thomsen-Ebert T, Gilbert B, Welch SA, Kemner KM, Logan GA, Summons RE, De Stasio G, Bond PL, Lai B, Kelly SD, Banfield JF (2000) Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria. Science 290:1744–1747

    CAS  PubMed  Google Scholar 

  • Landa ER (2005) Microbial geochemistry of uranium mill tailings. Adv Appl Microbiol 27:113–130

    Google Scholar 

  • Law N, Ansari S, Livens FR, Renshaw JC, Lloyd JR (2008) Formation of nanoscale elemental silver particles via enzymatic reduction by Geobacter sulfurreducens. Appl Environ Microbiol 74:7090–7093

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee J-H, Kim M-G, Yoo B, Myung NV, Maeng J, Lee T, Dohnalkova AC, Fredrickson JK, Sadowsky MJ, Hur H-G (2007) Biogenic formation of photoactive arsenic-sulfide nanotubes by Shewanella sp. strain HN –41. Proc Natl Acad Sci 104:20410–20415

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lengke MF, Southam G (2007) The deposition of elemental gold from gold(I)-thiosulfate complexes mediated by sulfate-reducing bacterial conditions. Econ Geol 102:109–126

    CAS  Google Scholar 

  • Lengke MF, Ravel B, Fleet ME, Wanger G, Gordon RA, Southam G (2006a) Mechanisms of gold bioaccumulation by filamentous cyanobacteria from gold(III)-chloride comolex. Environ Sci Technol 40:6304–6309

    CAS  Google Scholar 

  • Lengke MF, Fleet ME, Southam G (2006b) Synthesis of platinum nanoparticles by reaction of filamentous cyanobacteria with platinum(IV) chloride complexes. Langmuir 22:7318–7323

    CAS  Google Scholar 

  • Lengke MF, Fleet ME, Southam G (2007a) Biosynthesis of silver nanoparticles by filamentous cyanobacteria from a silver(I) nitrate complex. Langmuir 23:2694–2699

    CAS  Google Scholar 

  • Lengke ML, Fleet ME, Southam F (2007c) Synthesis of palladium nanoparticles by reaction of filamentous cyanobacterial biomass with a palladium(II) chloride complex. Langmuir 23:8982–8987

    CAS  Google Scholar 

  • Lenz M, Kolvenbach B, Gygox B, Moes S, Corvini PFX (2011) Shedding light on selenium biomineralization: proteins associated with bionanominerals. Appl Environ Microbiol 77:4676–4680

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li X, Xu H, Chen Z-S, Chen G (2011) Biosynthesis of nanoparticles by microorganisms and their application. J Anomaterials 16 pages. doi:10.1155/2011/270974

    Google Scholar 

  • Liu Y-Y, Fu J-K, Zhou Z-H, Yu X-S, Yao B-X (2000) A study of Pt4+ absorption and its reduction by Bacillus megaterium D01. Chem Res Chinese Univ 16:246–249

    Google Scholar 

  • Lloyd JR, Yong P, Macaskie LE (1998) Enzymatic recovery of elemental palladium by using sulfate-reducing bacteria. Appl Environ Microbiol 64:4607–4609

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lloyd JR, Lovley DR, Macaskie LE (2003) Biotechnological applications of metal-reducing microorganisms. Adv Appl Microbiol 53:85–128

    CAS  PubMed  Google Scholar 

  • Lovley DR (ed) (2000) Environmental microbe-metal interactions. ASM Press, Washington DC

    Google Scholar 

  • Lovley DR, Giovannoni SJ, White DC, Champine JE, Phillips EJ, Gorby YA, Goodwin S (1993a) Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch Microbiol 159:336–344

    CAS  Google Scholar 

  • Lovley DR, Roden EE, Phillips EJP, Woodward JC (1993b) Enzymatic iron and uranium reduction by sulfate-reducing bacteria. Marine Geol 113:41–53

    CAS  Google Scholar 

  • Lovley DR, Wildman PK, Woodward JC, Phillips EJP (1993c) Reduction of uranium by cytochrome c 3 of Desulfovibrio vulgaris. Appl Environ Microbiol 59:33572–3576

    Google Scholar 

  • Macaskie LE, Dean ACR (1987) Use of immobilized biofilm of Citrobacter sp. for the removal of uranium and lead from aqueous flows. Enzyme Microbial Technol 9:2–4

    CAS  Google Scholar 

  • Marshall MJ, Alexander S, Beliaev AS, Dohnalkova AC, Kennedy DW, Shi L, Wang Z, Boyanov MI, Lai B, Barry K, Kemmer MK, McLean JS, Reed SB, Culley DE, Bailey VL, Simonson CJ, Saffarini DA, Romine MF, Zachara JM, Fredrickson JK (2006) c-type cytochrome-dependent formation of U(IV) nanoparticles by Shewanella oneidensis. PLOS Biol 4:1324–1333

    CAS  Google Scholar 

  • Masip L, Veeravalli K, Georgiou G (2006) The many faces of glutathione in bacteria. Antioxid Redox Signal 8:753–762

    CAS  PubMed  Google Scholar 

  • Mikheenko IP, Rousset M, Dementin S, Macaskie LE (2008) Bioaccumulation of palladium by Desulfovibrio fructoslvorans wild-type and hydrogenase-deficient strains. Appl Environ Microbiol 74:6144–6146

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mishra RR, Prajapati S, Das J, Dangar TK, Das N, Thatoi H (2011) Reduction of selenite to red elemental selenium by moderately halotolerant Bacillus megaterium strains isolated from Bhitarkanika mangrove soil and characterization of reduced product. Chemosphere 84:1231–1237

    CAS  PubMed  Google Scholar 

  • Moreau JW, Webb RI, Banfield JF (2004) Ultrastructure, aggregation-state, and crystal growth of biogenic nanocrystalline sphalerite and wurtzite. Amer Minerologist 89:950–960

    CAS  Google Scholar 

  • Moreau JW, Weber PK, Martin MC, Gilbert B, Hutcheon ID, Banfield JF (2007) Extracellular proteins limit the disopersal of biogenic nanoparticles. Science 316:1600–1603

    CAS  PubMed  Google Scholar 

  • Morita M, Uemoto H, Watanabe A (2007) Reduction of selenium oxyanions in wastewater using two bacterial strains. Eng Life Sci 7:235–240

    CAS  Google Scholar 

  • Natarajan K, Selvaraj S, Murty VR (2010) Microbial production of silver nanoparticles. Digest J Nanopart Biostruct 5:135–140

    Google Scholar 

  • Nelson YM, Lion LW, Ghiorse WC, Schuler ML (1999) Production of biogenic Mn oxides by Leptothrix discoophora SS –1 in a chemically defined growth medium and evaluation of their Pb adsorption characteristics. Appl Environ Microbiol 65:175–180

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nermut MV (1960) Über die Lage der Tellurit-Reduktionsorte in Zellen von Proteus vulgaris. Zentr. Bakt 1. Orig 178:348–358

    CAS  Google Scholar 

  • Newman DK, Beveridge TJ, Morel FMM (1997) Precepitation of arsenic trisulfide by Desulfotomaculum auripigmentum. Appl Environ Microbiol 63:2022–2028

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nies DH (1999) Microbial heavy metal resistance. Appl Microbiol Biotechnol 51:730–750

    CAS  PubMed  Google Scholar 

  • Ollivier PRL, Bahrou AS, Marcus S, Cox T, Church TM, Hanson TE (2008) Volatilization and precipitation of tellurium by aerobic, tellurite-resistant marine microbes. Appl Environ Microbiol 74:7163–7173

    CAS  PubMed Central  PubMed  Google Scholar 

  • Oremland RS, Herbel MJ, Blum JS, Langley S, Beveridge TJ, Alayan PM, Sutto T, Ellis AV, Curran S (2004) Structural and special features of selenium mamospheres by Se-respiring bacteria. Appl Environ Microbiol 70:52–60

    CAS  PubMed Central  PubMed  Google Scholar 

  • Owens RA, Hartman PE (1986) Export of glutathione by some widely used Salmonella typhimurium and Escherichia coli strains. J Bacterial 168:109–114

    CAS  Google Scholar 

  • Oza G, Pandey A, Shah R, Sharon M (2012) Extracellular fabrication of silver nanoparticles using Pseudomonas aeruginosa and its antimicrobialassay. Adv Appl Sci Res 3:1776–1783

    CAS  Google Scholar 

  • Payne RB, Gentry DM, Rapp-Giles BJ, Casalot L, Wall JD (2002) Uranium reduction by Desulfovibrio desulfuricans G20 strain G20 and a cytochrome c 3 mutant. Appl Environ Microbiol 68:3129–3132

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pearce C, Pattrick R, Law N, Charnock JM, Coker VS, Fellowes JW, Oremland RS, Lloyd JR (2009) Investigating different mechanisms for biogenic selenite transformations: Geobacter sulfurreducens, Shewanella oneidensis and Veillonella atypical. Environ Technol 30:1313–1326

    CAS  PubMed  Google Scholar 

  • Pietzsch K, Babael W (2003) A sulphate-reducing bacterium that can detoxify U(VI) and obtain energy via nitrate reduction. J Basic Microbiol 4:348–361

    Google Scholar 

  • Pieulle L, Stocker P, Vinay M, Nouailler M, Vita N, Brasseur G, Garcin E, Sebban-Kreuzer C, Dolla A (2011) Study of the thiol/disulfide redox systems of the anaerobe Desulfovibrio vulgaris points out pyruvate:ferredoxin oxidoreductase as a new target for thioredoxin 1. J. Biol. Chem. 286:7812–7821

    CAS  PubMed Central  PubMed  Google Scholar 

  • Popescu M, Velea A, LÓ§rinczi A (2010) Biogenic production of nanoparticles. Digest J Nanomater Biostruct 5:1035–1040

    Google Scholar 

  • Prakash A, Sharma S, Ahmad N, Ghosh A, Sinha P (2010) Bacteria mediated extracellular synthesis of metallic nanoparticles. Int Res J Biotechnol 1:71–79

    Google Scholar 

  • Rashamuse KT, Whiteley CG (2007) Bioreduction of Pt(IV) from aqueous solution using sulphate-reducing bacteria. Appl Microbiol Biotechnol 75:1429–1435

    CAS  PubMed  Google Scholar 

  • Rathgeber C, Yurkova N, Stackebrandt E, Beatty JT, Yurkov V (2002) Isolation of tellurite- and selenite-resistant bacteria from hydrothermal vents of the Juan de Fuca Ridge in the Pacific Ocean. Appl Environ Microbiol 68:4613–4622

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rautaray D, Sanyal A, Adyanthaya SD, Ahmad A, Sastry M. 2004. Biological synthesis of strontium carbonate crystals using the fungus Fusarium oxysporum. Langmuir 20:6827–6833

    CAS  PubMed  Google Scholar 

  • Reith F, Etschmann B, Grosse C, Moors H, Benotmane MA, Monsieurs P, Grass G, Doonan C, Vogt S, Lai B, Martinez-Criado G, George GH, Nies DH, Mergay M, Pring A, Southam G, Brugger J (2009) Mechanisms of gold biomineralization in the bacterium Cupriavidus metallidurans. Proc Natl Acad Sci 106:17757–17762

    CAS  PubMed Central  PubMed  Google Scholar 

  • Riddin TL, Govender Y, Gericke M, Whiteley CG (2009) Two different hydrogenase enzymes from sulphate-reducing bacteria are responsible for the bioreductive mechanism of platinum into nanoparticles. Enzyme Microbial Technol 45:267–273

    CAS  Google Scholar 

  • Ritz D, Beckwith J (2001) Roles of thiol-redox pathways in bacteria. Ann Rev Microbiol 55:21–48

    CAS  Google Scholar 

  • Roh Y, Liu SV, Li G, Huang H, Phelps TJ, Zhou J (2002) Isolation and characterization of metal-reducing Thermoanaerobacter strains from deep subsurface environments of the Piceance Basion, Colorado. Appl Environ Microbiol 68:6013–6020

    CAS  PubMed Central  PubMed  Google Scholar 

  • Santini JM, Streimann ICA, vander Hoven RN (2004) Bacillus macyae sp. nov., an arsenate-respiring bacterium isolated from an Australian gold mine. IJSEM 54:2241–2244

    CAS  PubMed  Google Scholar 

  • Sanyal A, Rautaray D, Bansal V, Ahmad A, Sastry M (2005) Heavy-metal remediation by a fungus as a means of production of lead and cadmium carbonate crystals. Langmuir 21:7222–7224

    Google Scholar 

  • Sarkar J, Dey P, Saha S, Acharya K (2011) Mycosynthesis of selenium nanoparticles. Micro Nano Lett 6:599–602

    CAS  Google Scholar 

  • Schröder I, Rech S, Krafft T, Macy JM (1997) Purification and characterization of the selenate reductase from Thauera selenatis. J Biol Chem 272:23765–23768

    PubMed  Google Scholar 

  • Senapati S, Ahmad A, Khan MI, Sastry M, Kumar R (2005) Extracellular biosynthesis of biometallic Au–Ag alloy nanoparticles. Small 1:517–520

    CAS  PubMed  Google Scholar 

  • Sharma N, Pinnaka AK, Raje M, Fnu A, Bhattacharyya MS, Choudhury AR (2012) Exploitation of marine bacteria for production of gold nanoparticles. Microbial Cell Factories 11:86–87

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shelobolina ES, Coppi MV, Korenivsky AA, DiDonato LN, Sullivan SA, Konishi H, Xu H, Leang C, Butler JE, Kim S-C, Lovley DR (2007) Importance of c-type cytochromes for U(VI) reduction by Geobacter sulfurreducens. BMC Microbiol 7:16

    PubMed Central  PubMed  Google Scholar 

  • Singh S, Bhatta UM, Satyam PV, Dhawan A, Sastry M, Prasad BLV (2008) Bacterial synthesis of silicon/silica nanocomposites. J Mater Chem 18:2601–2606

    CAS  Google Scholar 

  • Singh V, Patil R, Anand A, Milani P, Gade WN (2010) Biological synthesis of copper oxide nano particles using Escherichia coli. Curr Nanosci 6:365–369

    CAS  Google Scholar 

  • Sinha A, Khare S (2011) Mercury bioaccumulation and simultaneous nanoparticle synthesis by Enterobacter sp. cells. Bioresour Technol 102:4281–4284

    CAS  PubMed  Google Scholar 

  • Sinha A, Singh VN, Mehta BR, Khare SK (2011) Synthesis and characterization of monodispersed orthorhombic manganese oxide nanoparticles produced by Bacillus sp. cells simultaneous to its bioremediation. J Hazard Mater 192:620–627

    CAS  PubMed  Google Scholar 

  • Sintubin L, De Windt W, Dick J, Mast J, van der Ha D, Verstraete W, Boon N (2009) Lactic acid bacteria as reducing and capping agents for the fast and efficient production of silver nanoparticles. Appl Microbiol Bacteriol 84:741–749

    CAS  Google Scholar 

  • Sintubin L, Verstraete W, Boon N (2011) Biologically produced nanosilver: Current state and future perspectives. Biotechnol Bioeng 109:2422–2436

    Google Scholar 

  • Sparks DL (2005) Toxic metals in the environment: the role of surfaces. Elements 1:193–196

    CAS  Google Scholar 

  • Spiro TG, Bargar JR, Sposito G, Tebo BM (2010) Bacteriogenic manganese oxides. Acc Chem Res 43:2–9

    CAS  PubMed  Google Scholar 

  • Suresh AK (2012) Metallic nanocrystallites and their interaction with microbial systems. Springer, London, UK

    Google Scholar 

  • Suresh AK, Pelletier DA, Wang W, Moon J-W, Gu B, Mortensen NP, Allison DP, Joy DC, Phelps TJ, Doktyez MJ (2010) Silver nanocrystallites: Biofabrication using Shewanella oneidensis and an evaluation of their comparative toxicity on Gram-negative and Gram-positive bacteria. Environ Sci Technol 44:5210–5215

    CAS  PubMed  Google Scholar 

  • Tam K, Ho CT, Lee J-H, Lai M, Chang CH, Rheem Y, Chen W, Hur HG, Myung NV (2010) Growth mechanisms of amorphous selenium nanoparticles synthesized by Shewanella sp. HN –41. Biosci Biotechnol Biochem 74:696–700

    CAS  PubMed  Google Scholar 

  • Tebo BM, Obraztsova AY (1998) U(VI) sulphate-reducing bacterium grows with Cr(VI), Mn(IV), and Fe(III) as electron acceptors. FEBS Microbiol Lett 162:193–198

    CAS  Google Scholar 

  • Tebo BM, Geszvain K, Lee S-W (2010) The molecular geomicrobiology of bacterial manganese(II) oxidation. In: Barton LL, Mandl M, Loy A (eds) Geomicrobiology: Molecular and environmental perspective. Springer, Dordrecht, pp 285–308

    Google Scholar 

  • Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomedicine 6:257–262

    CAS  PubMed  Google Scholar 

  • Tomei FA, Barton LL, Lemanski CL, Zocco TG (1992) Reduction of selenate and selenite to elemental selenium by Wolinella succinogenes. Can J Microbiol 38:1328–1333

    CAS  Google Scholar 

  • Tomei FA, Barton LL, Lemanski CL, Zocco TG, Fink NH, Sillerud LO (1995) Transformation of selenate and selenite to elemental selenium by Desulfovibrio desulfuricans. J Ind Microbiol 14:329–336

    CAS  Google Scholar 

  • Trutko SM, Akimenko VK, Suzina NE, Anisimova LA, Shlyapnikov MG, Baskunov BP, Duda VI, Boronin AM (2000) Involvement of the respiratory chain of Gram-negative bacteria in the reduction of tellurite. Arch Microbiol 173:178–186

    CAS  PubMed  Google Scholar 

  • Tsibakhashvili NY, Kirkesali EI, Pataraya DT, Gurielidze MA, Kalabegishvili TL, Gvarjaladze DN, Tsertsvadze GI, Frontasyeva MV, Zinicovscais II, Wakstein MS, Khakhanov SN, Shvindina NV, Shklover VY (2011) Microbial synthesis of silver nanoparticles by Streptomyces glaucus and Spirulina platensis. Nanomater Appl Prop 2:306–310

    Google Scholar 

  • Tucker MD, Barton LL, Thomson BM (1998) Reduction of Cr, Mo, Se and U by Desulfovibrio desulfuricans immobilized in polyacrylamide gels. J Ind Microbiol Biotechnol 20:13–19

    CAS  PubMed  Google Scholar 

  • Tucker MD, Barton LL, Thomson BM (2000) Removal of U and Mo from water by immobilized Desulfovibrio desulfuricans in column reactors. Biotechnol Bioeng 60:88–96

    Google Scholar 

  • Vaidyanathan R, Gopalram S, Kalishwaralal K, Deepak V, Pandian SRK, Gurunathan S. 2010. Enhanced silver nanoparticle synthesis by optimization of nitrate reductase activity. Colloids Surf B Biointerfaces 75:7

    Google Scholar 

  • Villalobos M, Lanson B, Manceau A, Toner B, Sposito G. 2006. Structural model for the biogenic Mn oxide produced by Pseudomonas putida. Amer Mineralogist 91:489–502

    CAS  Google Scholar 

  • Wade R, DiChristiana TJ (2000) Isolation of U(VI) reduction-deficient mutants of Shewanella putrefaciens. FEBS Microbiol Lett 184:143–148

    CAS  Google Scholar 

  • Wall JD, Krumholz LR (2006) Uranium reduction. Ann Rev Microbiol 60:149–166

    CAS  Google Scholar 

  • Watson JHP, Ellwood DC, Soper AK, Chamock SJ (1999) Nanosized strongly-magnetic bacterially-produced iron sulphide materials. J Magn Magn Mater 203:69–72

    CAS  Google Scholar 

  • Webb SM, Dick GJ, Bargat JR, Tebo BM (2005) Evidence for the presence of Mn(III) intermediates in the bacterial oxidation of Mn(II). Proc Natl Acad Sci U S A 102:5558–5563

    CAS  PubMed Central  PubMed  Google Scholar 

  • Woolfolk CA, Whiteley HR (1962) Reduction of inorganic compounds with molecular hydrogen by Micrococcus lactilyticus. 1. Stoichiometry with compounds of arsenic, selenium, tellurium, transition and other metals. J Bacteriol 84:647–658

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xie YF, Li XD, Li FD (2009) Property analysis of nanosized iron sulfide producing sulfate-reducing bacterium and its application in the treatment of wastewater containing high concentration of Cr(VI). Huan Jing KeXue 30:1060–1065

    CAS  Google Scholar 

  • Xu H, Barton LL (2013) Se-bearing colloidal particles produced by sulfate-reducing bacteria and sulfide-oxidizing bacteria: TEM study. Adv Microbiol 3:205–211

    Google Scholar 

  • Xu X-H N, Brownlow W, Kyriacou S, Wan Q, Viola JJ (2004) Real-time probing of membrane transport in living microbial cells using single nanoparticle optics and living cell imaging. Biochemistry 43:10400–10413

    CAS  PubMed  Google Scholar 

  • Yanke LJ, Bryant RD, Laishley EJ (1995) Hydrogenase of Clostridium pasteurianum functions as a novel selenite reductase. Anaerobe 1:61–67

    CAS  PubMed  Google Scholar 

  • Zhan G, Li D, Zhang L (2012) Aerobic bioreduction of nickel(II) to elemental nickel with concomitant biomineralization. Appl Microbiol Biotechnol 96:273–281

    CAS  PubMed  Google Scholar 

  • Zhang L, Li D, Gao P (2012) Expulsion of selenium/protein nanoparticles through vesicle-like structures by Saccharomyces cerevisiae under microaerophilic environment. World J Microbiol Biotechnol, pp 1–6. doi:10.1007/s11274–01201150-y

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larry L. Barton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Barton, L., Tomei-Torres, F., Xu, H., Zocco, T. (2014). Nanoparticles Formed by Microbial Metabolism of Metals and Minerals. In: Barton, L., Bazylinski, D., Xu, H. (eds) Nanomicrobiology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1667-2_7

Download citation

Publish with us

Policies and ethics