Skip to main content

Bacterial Organization at the Smallest Level: Molecular Motors, Nanowires, and Outer Membrane Vesicles

  • Chapter
  • First Online:
Nanomicrobiology
  • 919 Accesses

Abstract

Bacterial cells do not have many cytoplasmic structures but they do have several nanostructures that have considerable molecular organization. Associated with the plasma membrane of bacteria are the structures that drive the rotation of bacterial flagella and the synthesis of adenosine triphosphate (ATP). These nanostructures perform work for the cell and have been considered as nanomotors or molecular motors. In addition to these rotary nanomotors, bacteria also have linear molecular motors that produce biopolymers and secrete biomaterials across the plasma membrane. While a great deal is known about how these molecular motors work, there remains a lot to understand how bacteria convert chemical energy to mechanical translocation. Outside some bacterial cells there are conductive pili, nanowires, and outer membrane vesicles (OMV). It is clear that nanowires engage in the unique phenomenon of extracellular electron transport. OMV serve to transfer different types of biomaterials to host cells or modify the environment to afford a better area for bacterial growth. This review examines the current organization and activities of bacterial molecular motors, nanowires, and OMV.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alaniz RC, Deatherage BL, Lara JC, Cookston BT (2007) Membrane vesicles are immunogenic facsimiles of Salmonella typhimurium that potentially activate dendritic cells, prime B and Tcell responses and stimulate protective immunity in vivo. J Immunol 179:7692–7701

    CAS  PubMed  Google Scholar 

  • Alvarez-Martinez CE, Christie PJ (2009) Biological diversity of prokaryotic type IV secretion systems. Microbiol Mol Biol Rev 73:775–808

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ananiadou S, Sullivan D, Black W, Levow G-A, Gillespie JJ, Mao C, Pysalo S, Kollluru B, Tsujii J, Sobral B (2011) Named entry recognition for bacterial type IV secretion system. PLoS ONE 6:e14780. doi:10.1371/journal.pone0014780

    CAS  PubMed Central  PubMed  Google Scholar 

  • Armstrong CL, Toppozini L, Dies H, Faraone A, Nagao M, Rheinstädter MC (2013) Incoherent neutron spin-echo spectroscopy as an option to study long-range lipid diffusion. ISRN Biophys 2013(2013):9. Article ID 439758. http://dx.doi.org/10.1155/2013/439758

    Google Scholar 

  • Balsalobre C, Silvan JM, Berglund S, Mizunoe Y, Uhlin BE, Wai SN (2006) Release of type-I secreted alpha-hemolysin via outer membrane vesicles from Escherichia coli. Mol Microbiol 59:99–112

    CAS  PubMed  Google Scholar 

  • Balzani V, Credi A, Raymo FM, Stoddart JF (2000) Artificial molecular machines. Angew Chem Int Ed 39:3349–3391

    Google Scholar 

  • Bartolini E, Ianni E, Frigimelica E, Petracca R, Galli G, Scorza BF, Norais N, Laera D, Giusti F, Pierleoni A, Donati M, Cevenini R, Finco D, Grande G, Grifantini R (2013) Recombinant outer membrane vesicles carrying Chlamydia muridarum HtrA induce antibodies that neutralize chlamydial infection in vivo. J Extracell Vesicles 2:20181

    Google Scholar 

  • Barton LL (2005) Structural and functional relationships in prokaryotes. Springer, New York

    Google Scholar 

  • Bauman SJ, Kuehn MJ (2006) Purification of outer membrane vesicles from Pseudomonas aeruginosa and their activities of an IL-8 response. Microbes Infect 8:2400–2408

    CAS  PubMed Central  PubMed  Google Scholar 

  • Berg HC (1974) Dynamic properties of bacterial flagellar motors. Nature 249:77–79

    CAS  PubMed  Google Scholar 

  • Berg HC (1996) Symmetries in bacterial motility. Proc Natl Acad Sci U S A 93:14225–14228

    CAS  PubMed Central  PubMed  Google Scholar 

  • Berg HC (2000) Constraints on models for the flagellar rotary motor. Phil Trans R Soc Lond B Biol Sci 355:491–501

    CAS  Google Scholar 

  • Berg HC (2003) The rotary motor of bacterial flagella. Ann Rev Biochem 72:19–54

    CAS  PubMed  Google Scholar 

  • Berg HC, Anderson RA (1973) Bacteria swim by rotating their flagellar filaments. Nature 245:380–382

    CAS  PubMed  Google Scholar 

  • Berry RM (2000) Theories of rotary motors. Philos Trans R Soc Lond B Biol Sci 355:503–509

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boesen T, Nielsen LP (2013) Molecular dissection of bacterial nanowires. mBio 4(3):e00270-13. doi:10.1128/mBio.00270-13

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bolhuis A (2004) The archaeal sec-dependent protein translocation pathway. Philos Trans R Soc Lond B Biol Sci 359:919–927

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bomberger JM, Maceachran DP, Coutermarsh BA, Ye S, O’Toole GA, Stanton BA (2009) Long distance delivery of bacterial virulence factors by Pseudomonal aeruginosa outer membrane vesicles. PLoS Pathog 5:e1000382

    PubMed Central  PubMed  Google Scholar 

  • Bustamante C, Chemla YR, Forde NR, Izhaky D (2004) Mechanical processes in biochemistry. Annu Rev Biochem 73:704–748

    Google Scholar 

  • Cabezon E, de la Cruz F (2006) TrwB: an F(1)-ATPase-like molecular motor envolved in DNA transport during bacterial conjugation. Rev Microbiol 157:299–305

    CAS  Google Scholar 

  • Chatterjee NS, Chaudhuri K (2012) Outer membrane vesicles of bacteria. SpringerBriefs in microbiology. Springer, New York

    Google Scholar 

  • Chen Y, Wang M, Mao C (2004) An autonomous DNA nanomotor powered by a DNA enzyme. Agnew Chem Int Ed 43:3554–3557

    CAS  Google Scholar 

  • Ciofu O, Beveridge TJ, Kadurugamuwa J, Walther-Rasmussen J, Hoiby N (2000) Chromosomal beta-lactamase is packaged into membrane vesicles and secreted from Pseudomonas aeruginosa. J Antimicrob Chemother 45:9–13

    CAS  PubMed  Google Scholar 

  • Collins BS (2011) Gram-negative outer membrane vesicles in vaccine development. Discov Med 12:7–15

    PubMed  Google Scholar 

  • Cologgi DL, Lampa-Pastirk S, Speers AM, Kelly SD, Reguera G (2011) Extracellular reduction of uranium via Geobacter conductive pili as a protective cellular mechanism. Proc Natl Acad Sci U S A 108:15248–15252

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cota-Gomez A, Vasil AL, Kadurugamuwa J, Beveridge TJ, Schweizer HP, Vasil ML (1997) PicR1 and PicR2 are putative calcium binding proteins required for secretion of the hemolytic phospholipase C of Pseudomonas aeruginosa. Infect Immun 65:2904–2913

    CAS  PubMed Central  PubMed  Google Scholar 

  • Darnton N, Turner L, Breuer K, Berg HC (2004) Moving fluid with bacterial carpets. Biophys J 86:1863–1870

    CAS  PubMed Central  PubMed  Google Scholar 

  • DePamphilis ML, Adler J (1971a) Purification of intact flagella from Escherichia coli and Bacillus subtilis. J Bacteriol 105:376–383

    CAS  Google Scholar 

  • DePamphilis ML, Adler J (1971b) Fine structure and isolation of the hook-basal body complex of flagella from Escherichia coli and Bacillus subtilis. J Bacteriol 105:384–395

    CAS  Google Scholar 

  • DePamphilis ML, Adler J (1971c) Attachment of flagellar basal bodies to the cell envelope: specific attachment to the outer, lipopolysaccharide membrane and the cytoplasmic membrane. J Bacteriol 105:396–407

    CAS  Google Scholar 

  • Desai A, Mitchison TJ (1997) Microtubule polymerization dynamics. Annu Rev Cell Dev Biol 13:83–117. doi:10.1146/annurev.cellbio.13.1.83

    CAS  PubMed  Google Scholar 

  • de Keyzer J, van der Does C, Driessen AJ (2003) The bacterial translocase: a dynamic protein channel complex. Cell Mol Life Sci 60:2034–2052

    CAS  PubMed  Google Scholar 

  • De Vlaminck I, Dekker C (2012) Recent advances in magnetic tweezers. Annu Rev Biophys 41:453–472

    CAS  PubMed  Google Scholar 

  • Didenko VV (2001) DNA probes using fluorescence resonance energy transfer (FRET): designs and applications. Biotechniques 31:1106–1121

    CAS  PubMed Central  PubMed  Google Scholar 

  • Douzi B, Filloux A, Voulhoux R (2012) On the path to uncover the bacterial type II secretion system. Philos Trans R Soc B 367:1059–1072

    CAS  Google Scholar 

  • Dworkin J, Losick R (2002) Does RNA polymerase help drive chromosome segregation in bacteria? Proc Natl Acad Sci U S A 99:14089–14094

    CAS  PubMed Central  PubMed  Google Scholar 

  • El-Naggar M, Wanger G, Leung KM, Yuzvinsky TD, Southam G, Yang J, Lau WM, Nealson KH, Gorby YA (2011) Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1. Prod Natl Acad Sci U S A 107:18127–18131

    Google Scholar 

  • Elston TC, Oster G (1997) Protein turbines I: the bacterial flagellar motor. Biophys J 73:703–721

    CAS  PubMed Central  PubMed  Google Scholar 

  • Erickson HP (2007) Evolution of the cytoskeleton. Bioessays 29:668–677

    CAS  PubMed Central  PubMed  Google Scholar 

  • Frank AC, Alsmark CM, Thollesson M, Andersson SG (2005) Functional divergence and horrizontal transfer of type IV secretion systems. Mol Biol Evol 22:1325–1336

    CAS  PubMed  Google Scholar 

  • Gaspard P, Gerritsma E (2007) The stochastic chemomechanics of the F1–ATP ase molecular motor. J Theor Biol 247:672–686

    CAS  PubMed  Google Scholar 

  • Geng J, Fang H, Haque F, Zhang L, Guo P (2011) Three reversible and controllable discrete steps of channel gating of a viral DNA packaging motor. Biomaterials 32:8234–8242

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gorby YA, Yanina S, McLean JS, Rosso KM, Moyles D, Dohnalkova A, Beveridge TJ, Shang IS, Kim BH, Kim KS, Culley DE, Reed SB, Romine MF, Saffarini DA, Hill EA, Shi L, Elias DA, Kennedy DW, Pinchuk G, Wantanable K, Ishii S, Logan B, Nealson KH, Fredrickson JK (2006) Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc Natl Acad Sci U S A 103:11358–11363

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gorby Y, McLean J, Korenevsky A, Rosso K, El-Naggar MY, Beveridge TJ (2008) Redox active membrane vesicles produced by Shewanella. Geobiol 6:232–241

    CAS  Google Scholar 

  • Gujrati V, Kim S, Kim S-H, Min JJ, Choy HE, Kim SC, Jon S (2014) Bioengineered bacterial outer membrane vesicles as cell-specific drug-delivery vehicles for cancer therapy. ACS Nano 8:1525–1537

    CAS  PubMed  Google Scholar 

  • Guttman D, McCann H (2008) Evolution of the type III secretion system and its effectors in plant-microbe interactions. New Phytol 117:33–47

    Google Scholar 

  • Harold FM, Maloney PC (1996) Energy transduction by ion currents. In: Neidhardt FC, Curtiss R, Ingraham JL, Lin ECC, Low KB, Magasanik B, Rezenikoff WS, Riley M, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella: cellular and molecular biology, vol 1. American Society for Microbiology, Washington, pp 283–306

    Google Scholar 

  • Haustein E, Schwille P (2007) Fluorescence correlation spectroscopy: novel variations of an established technique. Annu Rev Biophys Biomol Struct 36:151–169. doi:10.1146/annurev.biophys.36.040306.132612

    CAS  PubMed  Google Scholar 

  • Haynes TS, Klemm DJ, Rucco JJ, Barton LL (1995) Formate hedydrogenase activity in cells and outer membrane blebs of Desulfobvibrio gigas. Anaerobe 1:175–182

    CAS  PubMed  Google Scholar 

  • Henderson IR, Navarro-Garcia F, Desvaux M, Fernandez RC, Ala’Aldeen D (2004) Type V protein secretion pathway: the autotransporter store. Microbiol Mol Biol Rev 68:692–744

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hinshaw JE (2000) Dynamin and its role in membrane fission. Annu Rev Cell Dev Biol 16:483–519

    CAS  PubMed  Google Scholar 

  • Hiratsuka Y, Miyata M, Tada T (2006) A microrotary motor powered by bacteria. Proc Natl Acad Sci U S A 103:13613–13623

    Google Scholar 

  • Holland IB, Schmitt L, Young J (2005) Type I protein secretion in bacteria, the ABC-transporter dependent pathway. Mol Membr Biol 22:29–39 (review)

    CAS  PubMed  Google Scholar 

  • Hong Y, Xu M, Guo J, Xu Z, Chen X, Sum G (2006) Respiration and growth of Shewanella decolorationis S12 with an azo compound as the sole electrón aceptor. Appl Environ Microbiol 73:64–72

    PubMed Central  PubMed  Google Scholar 

  • Horstman AL, Kuehn MJ (2000) Enterotoxogenic Ecsherichia coli secretes active heat-labile enterotoxin via outer membrane vesicles. J Biol Chem 274:12489–12496

    Google Scholar 

  • Hubscher U, Maga G, Spadari S (2002) Eukaryotic DNA polymerases. Annu Rev Biochem 71:133–163

    CAS  PubMed  Google Scholar 

  • Hueck CJ (1998) Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev 62:379–435

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kadurugamuwa JL, Beveridge TJ (1998) Delivery of the non-membrane-permeative antibiotic gentamicin into mamalian cells by using Shigella flexneri membrane vesicles. Antimicrob Agents Chemother 42:1476–1483

    CAS  PubMed Central  PubMed  Google Scholar 

  • Khan S, Berg HC (1983) Isotope and thermal effects in chemiosmotic coupling to the flagellar motor of Streptococcus. Cell 32:913–919

    CAS  PubMed  Google Scholar 

  • Kleutsch B, Laüger P (1990) Coupling of proton flow and rotation in the bacterial flagella motor: stochastic simulation of a microscopic model. Eur Biophys J 18:175–191

    CAS  Google Scholar 

  • Kolling GL, Matthews KR (1999) Export of virulence genes and shiga toxin by membrane vesicles of Escherichia coli O157:H7. Appl Environ Microbiol 65:1843–1848

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kolomeisky RK, Fisher ME (2007) Molecular motors: a theorist’s perspective. Annu Rev Phys Chem 58:675–695

    CAS  PubMed  Google Scholar 

  • Kuehn MJ, Kesty NC (2005) Bacterial outer membrane vesicles and the host-pathogen interaction. Genes Dev 19:2645–2655

    CAS  PubMed  Google Scholar 

  • Kulp A, Kuehn MJ (2010) Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu Rev Microbiol 64:163–184

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lawley TD, Klimke WA, Gubbins MJ, Frost LS (2003) F factor conjugation is a true type IV secretion system. FEMS Microbiol Lett 224:1–15

    CAS  PubMed  Google Scholar 

  • Leang C, Qian X, Mester T, Lovley DR (2010) Alignment of the c-type cytochrome OmcS along pili of Geobacter sulfurreducens. Appl Environ Microbiol 76:4080–4084

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liang F-C, Bageshwar UK, Musser SM (2009) Bacterial sec protein transport is rate-limited by precursor length: a single turnover. Mol Biol Cell 20:4256–4266

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li Z, Clarke AJ, Beveridge TJ (1998) Gram-negative bacteria produce membrane vesicles which are capable of killing other bacteria. J Bacteriol 180:5478–5483

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu S, Chistol G, Hetherington CL, Tafoya S, Aathavan K, Schnitzbauer J, Grimes S, Jardine PJ, Bustamante C (2014) A viral packaging motor varies its DNA rotation and step size to preserve subunit coordination as the capsid fills. Cell 157:702–713

    CAS  PubMed  Google Scholar 

  • Lodish H, Berk A, Zipursky SL et al (2000) Molecular cell biology, 4th edn. W. H. Freeman, New York. http://www.ncbi.nlm.nih.gov/books/NBK21724/

    Google Scholar 

  • Lycklama A Nijeholt JA, Driessen AJM (2012) The bacterial sec-translocase: structure and mechanism. Phylos Trans R Soc B Biol Sci 367:1016–1028

    Google Scholar 

  • MacDonald IA, Kuehn MJ (2013) Stress-induced outer membrane vesicle production by Pseudomonas aeruginosa. J Bacteriol 195:2971–2981

    CAS  PubMed Central  PubMed  Google Scholar 

  • MacEachran DP, Ye S, Bomberger JM, Hogan DA, atecka-Urban A, Stanton BA, O’Toole GA (2007) The Pseudomonas aeruginosa secreted protein PA2934 decreases apical membrane expression of the cystic fibrosis transmembrane conductance regulator. Infect Immun 75:3902–3912

    CAS  PubMed Central  PubMed  Google Scholar 

  • Macnab RM (1987) Flagella. In: Neidhardt FC, Ingraham JL, Low KB, Magasanik B, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella: cellular and molecular biology, vol 1. American Society for Microbiology, Washington, pp 70–83

    Google Scholar 

  • Macnab RM (1992) Genetics and biogenesis of bacterial flagella. Annu Rev Genet 26:131–158. doi:10.1016/j.tim.2004.09.002

    CAS  PubMed  Google Scholar 

  • Macnab RM (2003) How bacteria assemble flagella. Annu Rev Microbiol 57:77–100

    CAS  PubMed  Google Scholar 

  • Macnab RM, Aizawa S-I (1984) Bacterial motility and the bacterial flagellar motor. Annu Rev Biophys Bioeng 13:51–83

    CAS  PubMed  Google Scholar 

  • Magnuson TS (2011) How the xap locus put electrical “zap” in Geobacter sulfurreducens biofilms. J Bacteriol 193:1021–1022

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mahadevan L, Matsudaira P (2000) Motility powered by supramolecular springs and ratchets. Science 288:95–99

    CAS  PubMed  Google Scholar 

  • Mashburn LM, Whiteley M (2005) Membrane vesicles traffic signals and facilitate group activites in prokaryotes. Nature 437:422–435

    CAS  PubMed  Google Scholar 

  • Mattheyses AL, Simon SM, Rappoport JZ (2010) Imaging with total internal reflection fluorescence microscopy for the cell biologist. J Cell Sci 123:3621–3628

    CAS  PubMed Central  PubMed  Google Scholar 

  • Medini D, Covacci A, Donati C (2006) Protein homology network families reveals step-wise diversification of type III and type IV secretion systems. PloS Comput Biol 2:1543–1551

    CAS  Google Scholar 

  • Minamino T, Imada K, Namba K (2008) Molecular motors of the bacterial flagella. Curr Opin Struct Biol 18:693–701

    CAS  PubMed  Google Scholar 

  • Mingorance J, Rivas G, Vélez M, Gómez-Puertas P, Vicente M (2011) Strong FtsZ is with the force: mechanisms to constrict bacteria. Trends Microbiol 18:348–356

    Google Scholar 

  • Mitchell P (1956) Hypothetical thermokinetic and electrokinetic mechanisms of locomotion in micro-organisms. Proc R Phys Soc Edinb 25:32–34

    Google Scholar 

  • Mitchell P (1972) Self-electrophoretic locomotion in micro-organisms: bacterial flagella as giant ionophores. FEBS Lett 28:1–4

    CAS  PubMed  Google Scholar 

  • Mizushima S, Tokuda H (1990) In vivo translocation of bacterial secretory proteins and energy requirements. J Bioenerg Biomembr 22:389–399

    CAS  PubMed  Google Scholar 

  • Mougous JD, Cuff ME, Raunser S, Shen A, Zhou M, Gifford CA, Goodman AL, Joachimiak G, Ordoñez CL, Lory S, Walz T, Joachimiak A, Mekalanos JJ (2006) A virulence locus pf Pseudomonas aeruginosa encodes a protein secretion apparatus. Science 312:1526–1530

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nakao R, Takashiba S, Kosono S, Yoshida M, Watanabe H, Ohnishi M, Senpuku H (2014) Effect of Porphyromonas gingivalis outer membrane vesicles on gingipain-mediated detachment of cultured oral epithelial cells and immune response. Microbes Infect 16:6–16

    CAS  PubMed  Google Scholar 

  • Natale P, Brüser T, Drissen AJM (2008) Sec- and tat-mediated protein secretion across the bacterial cytoplasmic membrane—distinct translocases and mechanisms. Biochem Biophys Acta Biomembr 1778:1735–1756

    CAS  Google Scholar 

  • Nelson P, Radosavljievic M, Bromberg S (2013) Biological physics. W. H. Freeman, New York

    Google Scholar 

  • Noller HF, Nomura M (1987) Ribosomes. In: Neidhardt FC, Ingraham JL, Low KB, Magasanik B, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella: cellular and molecular biology, vol 1. American Society for Microbiology, Washington, pp 104–125

    Google Scholar 

  • Oosawa F, Hayashi S (1986) Coupling between flagellar motor rotation and proton flux in bacteria. J Physiol Soc Jpn 52:4019–4028

    Google Scholar 

  • Osawa M, Anderson DE, Erickson HP (2009) Reconstruction of contractile FtsZ rings in liposomes. Science 320:792–794

    Google Scholar 

  • Patrick S, McKenna JP, O’Hagan S, Dermott E (1996) A comparison of the haemogglutinating and enzyme activities of Bacteroides fragilis whole cells and outer membrane vesicles. Microb Pathog 20:191–202

    CAS  PubMed  Google Scholar 

  • Peña A, Arechaga I (2013) Molecular motors in bacterial secretion. J Mol Microbiol Biotechnol 23:357–369

    PubMed  Google Scholar 

  • Pérez-Cruz C, Carrión O, Delgado L, Martinez G, López-Iglesias C, Mercade E (2013) New type of outer membrana vesicle produced by the gram-negative bacterium Shewanella vesículosa M7T: implications for DNA content. Appl Environ Microbiol 79:1874–1881

    PubMed Central  PubMed  Google Scholar 

  • Pierobon P (2009) Traffic of molecular motors: from theory to experiments. In Appert-Rolland C, Chevoir F, Gondret P, Lassarres S, Lebacque J-P, Schreckenberg M (eds) Traffic and granular flow ’07, Springer, Berlin-Heidelberg, pp 379–388

    Google Scholar 

  • Pukatzki S, Ma AT, Sturtevant D, Krasins B, Sarracino D, Nelson WC, Heidelberg JF, Mekalanos JJ (2006) Identification of a conserved bacterial protein secretion system in Vibrio cholera using the Dictostelium host model system. Proc Natl Acad Sci U S A 103:1528–1533

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rabaey K, Rozendal RA (2010) Microbial electrosynthesis—revisiting the electrical route for microbial production. Nat Rev Microbiol 8:706–716

    CAS  PubMed  Google Scholar 

  • Rastogi VK, Girvin ME (1999) Structural changes linked to proton translocation by subunit c of the ATP synthase. Nature 402:263–268

    CAS  PubMed  Google Scholar 

  • Reguera G, McCarthy K, Mehta T, Nicoll JS, Tuominen MT, Lovley DR (2005) Extracellular electron transfer via microbial nanowires. Nature 435:1098–1101

    CAS  PubMed  Google Scholar 

  • Reguera G, Nevin KP, Nicoll JS, Covalla SF, Woodard TL, Lovley DR (2006) Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Appl Environ Microbiol 72:7345–7348

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reid T (2008) Optical tweezers: gold standard. Nature Nanotechnol 3:321. doi:10.1038/nnano.2008.137

    CAS  Google Scholar 

  • Ripoll-Rozada J, Zunzunegut S, de la Cruz F, Arechaga I, Cabezón E (2013) Functional interactions of virB11 traffic ATPases with virB4 and virD4 molecular motors in type IV secretion systems. J Bacteriol 195:4195–4201

    CAS  PubMed Central  PubMed  Google Scholar 

  • Roberts AJ, Kon T, Knight PJ, Sutoh K, Burgess SA (2013) Functions and mechanics of dynein motor proteins. Nat Rev Mol Cell Bio 14:713–726. doi:10.1038/nrm3667

    CAS  Google Scholar 

  • Romberg L, Levin PA (2003) Assembly dynamics of the bacterial cell division protein FTSZ: poised at the edge of stability. Annu Rev Microbiol 57:125–154

    CAS  PubMed  Google Scholar 

  • Saier M (2004) Evolution of bacterial type III protein secretion systems. Trends Microbiol 12:113–115

    CAS  PubMed  Google Scholar 

  • Saier M (2013) Microcompartments and protein machines in prokaryotes. J Mol Microbiol Biotechnol 23:243–269

    CAS  PubMed  Google Scholar 

  • Scherizer JW, Whiteley M (2012) A bilayer-couple model of bacterial outer membrane vesicle biogenesis. mBio 3:e00297–11

    Google Scholar 

  • Scherizer JW, Whiteley M (2013) Bacterial outer membrane vesicles in trafficking, communication and the host-pathogen interaction. J Mol Microbiol Biotechnol 23:118–130

    Google Scholar 

  • Schwartz C, DeDonatis GM, Fang H, Guo P (2013) Revolution rather than rotation of AAA+ hexameric phi29 nanomotor for viral dsDNA packaging without coiling. Virology 443:28–39

    CAS  PubMed  Google Scholar 

  • Shao PP, Comolli LR, Bernier-Latmani R (2014) Membrane vesicles as a novel strategy for shedding encrusted cell surfaces. Minerals 4:74–88

    CAS  Google Scholar 

  • Shetty A, Hickey WJ (2014) Effects of outer membrane vesicle formation, surface-layer production and nanopod development on themetabolism of phenanthrene by Delftia acidovorand Cs1–4. PLos ONE 9:e92143. doi:10.1471/journal.pone009214

    PubMed Central  PubMed  Google Scholar 

  • Shetty A, Chen S, Tocheva EL, Jensen GJ, Hickey WJ (2011) Nanopods: a new bacterial structure and mechanism for development of outer membrane vesicles. PLoS ONE 6:e20725. doi:10.1371/journal.pone.0020725

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sikora AE (2013) Proteins secreted via the type II secretion system: smart strategies of Vibrio cholera to maintain fitness in different ecological niches. PLOS Pathog 9(2):e1003126. doi:10.1371/journal.ppat.1003126

    CAS  PubMed Central  PubMed  Google Scholar 

  • Silverman M, Simon M (1974) Flagellar rotation and the mechanism of bacterial motility Nature 249:73–74

    CAS  PubMed  Google Scholar 

  • Silverman JM, Brunet YR, Cascales E, Mougous JD (2012) Structure and regulation of the type VI secretion system. Annu Rev Microbiol 66:453–472

    CAS  PubMed Central  PubMed  Google Scholar 

  • Smith DE, Tans SJ, Smith SB, Grimes S, Anderson DL, Bustamante C (2001) The bacteriophage straight phi29 portal motor can package DNA against a large internal force. Nature 413:748–752

    CAS  PubMed  Google Scholar 

  • Tseng TT (2009) Protein secretion systems in bacterial-host associations. BMC Microbiol 9(Suppl):S2. doi:10.1186/1471-2180-9-S1-S2

    PubMed Central  PubMed  Google Scholar 

  • Tsunoda SP, Aggler R, Toshida M, Capaldi RA (2001) Rotation of the c subunit oligomer in fully functional F1F0 ATP synthase. Proc Natl Acad Sci U S A 98:898–902

    CAS  PubMed Central  PubMed  Google Scholar 

  • Uenoyama A, Miyata M (2006) Gliding ghosts of Mycoplasma mobile. Proc Natl Acad Sci U S A 102:12754–12758

    Google Scholar 

  • Vale RD, Milligan RA (2000) The way things move: looking under the hood of molecular motor proteins. Science 288:88–95

    CAS  PubMed  Google Scholar 

  • Vargas M, Malvankar NS, Tremblay P-L, Leang C, Smith JA, Patel P, Snoeyenbos-West O, Kevin KP, Lovley DR (2013) Aromatic amino acids required for pili conductivity and long-range extracellular electron transport in Geobacter sulfurreducens. mBio 4(2):e00210-13

    Google Scholar 

  • Verhey KJ, Dishinger J, Kee HL (2011) Kinesin motors and primary cilia. Biochem Soc Trans 39:1120–1125. doi:10.1042/BST0391120

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wai SN, Lindmark B, Soderblom T, Takade A, Westermark M, Jass J, Mizunoe Y, Uhlin BE (2003) Vesicle-mediated export and assembly of pore-forming oligomers of the enterobacterial ClyA cytotoxin. Cell 115:25–35

    CAS  PubMed  Google Scholar 

  • Wang MD, Schnitzer MJ, Yin H, Landick R, Gelles J, Block SM (1998) Force and velocity measured for single molecules of RNA polymerase. Science 282:902–907

    CAS  PubMed  Google Scholar 

  • Weber J, Senior AE (2003) ATP synthesis driven by proton transport in F1F0-ATP synthase. FEBS Lett 545:61–70

    CAS  PubMed  Google Scholar 

  • Weibel DB, Garstecki P, Ryan D, DoLuzio WR, Mayer M, Seto J, Whitesides GM (2005) Microoxen: microorganisms to move microscale loads. Proc Natl Acad Sci U S A 102:11963–11967

    CAS  PubMed Central  PubMed  Google Scholar 

  • Willey JM, Sherwood LM, Woolverton CJ (2014) Prescott’s microbiology. McGraw-Hill, New York

    Google Scholar 

  • Yokoyama K, Hori T, Yamashino T, Hashikawa S, Barua S et al (2000) Production of shiga toxin by Escherichia coli measured with reference to the membrane vesicle-associated toxins. FEMS Microbiol Lett 192:139–144

    CAS  PubMed  Google Scholar 

  • Yoshida M, Muneyuki E, Hisabori T (2001) ATP synthase—a marvelous rotary engine of the cell. Nature Rev Mol Cell Biol 2:669–677

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larry L. Barton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Barton, L. (2014). Bacterial Organization at the Smallest Level: Molecular Motors, Nanowires, and Outer Membrane Vesicles. In: Barton, L., Bazylinski, D., Xu, H. (eds) Nanomicrobiology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1667-2_5

Download citation

Publish with us

Policies and ethics