Skip to main content

Magnetotactic Bacteria, Magnetosomes, and Nanotechnology

  • Chapter
  • First Online:
Nanomicrobiology

Abstract

Magnetotactic bacteria are motile, mostly aquatic, ubiquitous prokaryotes whose direction of swimming is profoundly influenced by the Earth’s and other magnetic fields. These microorganisms biomineralize magnetosomes which are intracellular, tens of nanometer sized, membrane-bounded magnetic crystals of the minerals magnetite (Fe3O4) and greigite (Fe3S4). Magnetosomes are anchored within the cell and cause it to passively align along magnetic field lines while it swims. Construction of the magnetosome chain is an elaborate biomineralization process that is under strict genetic and environmental control. Because of their unique magnetic and physical properties, magnetotactic bacteria and their unique organelles are useful in numerous scientific, commercial, and medical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abreu F, Martins JL, Silveira TS, Keim CN, Lins de Barros HGP, Filho FJG, Lins U (2007) ‘Candidatus Magnetoglobus multicellularis’, a multicellular, magnetotactic prokaryote from a hypersaline environment. Int J Syst Evol Micr 57:1318–1322

    CAS  Google Scholar 

  • Abreu F, Cantão ME, Nicolás MF, Barcellos FG, Morillo V, Almeida LG, do Nascimento FF, Lefèvre CT, Bazylinski DA, de Vasconcelos ATR, Lins U (2011) Common ancestry of iron oxide- and iron-sulfide-based biomineralization in magnetotactic bacteria. ISME J 5:1634–1640

    CAS  PubMed Central  PubMed  Google Scholar 

  • Alphandéry E, Faure S, Raison L, Duguet E, Howse PA, Bazylinski DA (2011a) Heat production by bacterial magnetosomes exposed to an oscillating magnetic field. J Phys Chem C 115:18–22

    Google Scholar 

  • Alphandéry E, Faure S, Seksek O, Guyot F, Chebbi I (2011b) Chains of magnetosomes extracted from AMB-1 magnetotactic bacteria for application in alternative magnetic field cancer therapy. ACS Nano 5:6279–6296

    Google Scholar 

  • Alphandéry E, Amor M, Guyot F, Chebbi I (2012a) The effect of iron-chelating agents on Magnetospirillum magneticum strain AMB-1: stimulated growth and magnetosome production and improved magnetosome heating properties. Appl Microbiol Biot 96:663–670

    Google Scholar 

  • Alphandéry E, Guyot F, Chebbi I (2012b) Preparation of chains of magnetosomes, isolated from Magnetospirillum magneticum strain AMB-1 magnetotactic bacteria, yielding efficient treatment of tumors using magnetic hyperthermia. Int J Pharm 434:444–452

    Google Scholar 

  • Alphandéry E, Chebbi I, Guyot F, Durand-Dubief M (2013) Use of bacterial magnetosomes in the magnetic hyperthermia treatment of tumours: a review. Int J Hyperther 29:801–809

    Google Scholar 

  • Amann R, Peplies J, Schüler D (2007) Diversity and taxonomy of magnetotactic bacteria. In: Schüler D (ed) Magnetoreception and magnetosomes in bacteria, microbiology monographs. Springer, Berlin, pp 25–36

    Google Scholar 

  • Arakaki A, Takeyama H, Tanaka T, Matsunaga T (2002) Cadmium recovery by a sulfate-reducing magnetotactic bacterium, Desulfovibrio magneticus RS-1, using magnetic separation. Appl Biochem Biotech 98:833–840

    Google Scholar 

  • Arakaki A, Webb J, Matsunaga T (2003) A novel protein tightly bound to bacterial magnetic particles in Magnetospirillum magneticum strain AMB-1. J Biol Chem 278:8745–8750

    CAS  PubMed  Google Scholar 

  • Bahaj AS, James PAB, Ellwood DC, Watson JHP (1993) Characterization and growth of magnetotactic bacteria: implications of clean up of environmental pollution. J Appl Phys 73:5394–5396

    CAS  Google Scholar 

  • Bahaj AS, Croudace IW, James PAB, Moeschler FD, Warwick PE (1998a) Continuous radionuclide recovery from wastewater using magnetotactic bacteria. J Magn Magn Mater 184:241–244

    CAS  Google Scholar 

  • Bahaj AS, James PAB, Moeschler FD (1998b) Low magnetic-field separation system for metal-loaded magnetotactic bacteria. J Magn Magn Mater 177:1453–1454

    Google Scholar 

  • Bahaj AS, James PAB, Moeschler FD (1998c) Wastewater treatment by bio-magnetic separation: a comparison of iron oxide and iron sulphide biomass recovery. Water Sci Technol 38:311–317

    CAS  Google Scholar 

  • Baumgartner J, Morin G, Menguy N, Perez Gonzalez T, Widdrat M, Cosmidis J, Faivre D (2013) Magnetotactic bacteria form magnetite from a phosphate-rich ferric hydroxide via nanometric ferric (oxyhydr)oxide intermediates. P Natl Acad Sci U S A 110:14883–14888

    CAS  Google Scholar 

  • Bazylinski DA, Blakemore RP (1983) Denitrification and assimilatory nitrate reduction in Aquaspirillum magnetotacticum. Appl Environ Microbiol 46:1118–1124

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bazylinski DA, Frankel RB (2003) Biologically controlled mineralization in prokaryotes. Rev Mineral 54:95–114

    Google Scholar 

  • Bazylinski DA, Frankel RB (2004) Magnetosome formation in prokaryotes. Nat Rev Microbiol 2:217–230

    CAS  PubMed  Google Scholar 

  • Bazylinski DA, Williams TJ (2007) Ecophysiology of magnetotactic bacteria. In: Schüler D (ed) Magnetoreception and magnetosomes in bacteria, microbiology monographs. Springer, Berlin, pp 37–75

    Google Scholar 

  • Bazylinski DA, Garratt-Reed AJ, Abedi A, Frankel RB (1993a) Copper association with iron sulfide magnetosomes in a magnetotactic bacterium. Arch Microbiol 160:35–42

    CAS  Google Scholar 

  • Bazylinski DA, Heywood BR, Mann S, Frankel RB (1993b) Fe3O4 and Fe3S4 in a bacterium. Nature 366:218

    Google Scholar 

  • Bazylinski DA, Garratt-Reed AJ, Frankel RB (1994) Electron microscopic studies of magnetosomes in magnetotactic bacteria. Microsc Res Techniq 27:389–401

    CAS  Google Scholar 

  • Bazylinski DA, Frankel RB, Heywood BR, Mann S, King JW, Donaghay PL, Hanson AK (1995) Controlled biomineralization of magnetite (Fe3O4) and greigite (Fe3S4) in a magnetotactic bacterium. Appl Environ Microbiol 61:3232–3239

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bazylinski DA, Dean AJ, Schüler D, Phillips EJP, Lovley DR (2000) N2-dependent growth and nitrogenase activity in the metal-metabolizing bacteria, Geobacter and Magnetospirillum species. Environ Microbiol 2:266–273

    CAS  PubMed  Google Scholar 

  • Bazylinski DA, Dean AJ, Williams TJ, Kimble-Long L, Middleton SL, Dubbels BL (2004) Chemolithoautotrophy in the marine, magnetotactic bacterial strains MV-1 and MV-2. Arch Microbiol 182:373–387

    CAS  PubMed  Google Scholar 

  • Bazylinski DA, Williams TJ, Lefèvre CT, Berg RJ, Zhang CL, Bowser SS, Dean AJ, Beveridge TJ (2013a) Magnetococcus marinus gen. nov., sp. nov., a marine, magnetotactic bacterium that represents a novel lineage (Magnetococcaceae fam. nov.; Magnetococcales ord. nov.) at the base of the Alphaproteobacteria. Int J Syst Evol Micr 63:801–808

    CAS  Google Scholar 

  • Bazylinski DA, Williams TJ, Lefèvre CT, Trubitsyn D, Fang J, Beveridge TJ, Moskowitz BM, Ward B, Schübbe S, Dubbels BL, Simpson B (2013b) Magnetovibrio blakemorei, gen. nov. sp. nov., a new magnetotactic bacterium (Alphaproteobacteria: Rhodospirillaceae) isolated from a salt marsh. Int J Syst Evol Micr 63:1824–1833

    CAS  Google Scholar 

  • Bellini S (2009a) On a unique behavior of freshwater bacteria. Chin J Oceanol Limn 27:3–5

    Google Scholar 

  • Bellini S (2009b) Further studies on “magnetosensitive bacteria”. Chin J Oceanol Limn 27:6–12

    Google Scholar 

  • Benoit M, Mayer D, Barak Y, Chen IY, Hu W, Cheng Z, Wang SX, Spielman DM, Gambhir SS, Matin A (2009) Visualizing implanted tumors in mice with magnetic resonance imaging using magnetotactic bacteria. Clin Cancer Res 15:5170–5177

    CAS  PubMed Central  PubMed  Google Scholar 

  • Beuming T, Skrabanek L, Niv MY, Mukherjee P, Weinstein H (2005) PDZBase: a protein-protein interaction database for PDZ-domains. Bioinformatics 21:827–828

    CAS  PubMed  Google Scholar 

  • Blakemore RP (1975) Magnetotactic bacteria. Science 190:377–379

    CAS  PubMed  Google Scholar 

  • Blakemore RP (1982) Magnetotactic bacteria. Annu Rev Microbiol 36:217–238

    CAS  PubMed  Google Scholar 

  • Blakemore RP, Frankel RB, Kalmijn AJ (1980) South-seeking magnetotactic bacteria in the southern- hemisphere. Nature 286:384–385

    Google Scholar 

  • Blakemore RP, Short KA, Bazylinski DA, Rosenblatt C, Frankel RB (1985) Microaerobic conditions are required for magnetite synthesis within Aquaspirillum magnetotacticum. Geomicrobiol J 4:53–71

    CAS  Google Scholar 

  • Blum G, Ott M, Lischewski A, Ritter A, Imrich H, Tschäpe H, Hacker J (1994) Excision of large DNA regions termed pathogenicity islands from tRNA-specific loci in the chromosome of an Escherichia coli wild-type pathogen. Infect Immun 62:606–614

    CAS  PubMed Central  PubMed  Google Scholar 

  • Butler RF, Banerjee SK (1975) Theoretical single-domain grain size range in magnetite and titanomagnetite. J Geophys Res 80:4049–4058

    CAS  Google Scholar 

  • Calugay RJ, Miyashita H, Okamura Y, Matsunaga T (2003) Siderophore production by the magnetic bacterium Magnetospirillum magneticum AMB-1. FEMS Microbiol Lett 218:371–375

    CAS  PubMed  Google Scholar 

  • Cameotra SS, Dhanjal S (2010) Environmental nanotechnology: nanoparticles for bioremediation of toxic pollutants. In: Fulekar MH (ed) Bioremediation technology; recent advances. Springer, Dordrecht, pp. 348–374

    Google Scholar 

  • Chang Y-S, Savitha S, Sadhasivam S, Hsu C-K, Lin F-H (2011) Fabrication, characterization, and application of greigite nanoparticles for cancer hyperthermia. J Colloid Interf Sci 363:314–319

    CAS  Google Scholar 

  • Chertok B, David AE, Huang Y, Yang C (2007) Glioma selectivity of magnetically targeted nanoparticles: a role of abnormal tumor hydrodynamics. J Control Release 122:315–323

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ciofani G, Riggio C, Raffa V, Menciassi A, Cuschieri A (2009) A bi-modal approach against cancer: magnetic alginate nanoparticles for combined chemotherapy and hyperthermia. Med Hypotheses 73:80–82

    CAS  PubMed  Google Scholar 

  • Deng Q, Liu Y, Wang S, Xie M, Wu S, Chen A, Wu W (2013) Construction of a novel magnetic targeting anti-tumor drug delivery system: cytosine arabinoside-loaded bacterial magnetosome. Materials 6:3755–3763

    CAS  Google Scholar 

  • Diaz-Ricci JC, Kirschvink JL (1992) Magnetic domain state and coercivity predictions for biogenic greigite (Fe3S4): a comparison of theory with magnetosome observations. J Geophys Res 97:17309–17315

    Google Scholar 

  • Ding J, Li J, Liu J, Yang J, Jiang W, Tian J, Li Y, Pan Y, Li J (2010) Deletion of the ftsZ-like gene results in the production of superparamagnetic magnetite magnetosomes in Magnetospirillum gryphiswaldense. J Bacteriol 192:1097–1105

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dobrindt U, Hochhut B, Hentschel U, Hacker J (2004) Genomic islands in pathogenic and environmental microorganisms. Nat Rev Microbiol 2:414–424

    CAS  PubMed  Google Scholar 

  • Dubbels BL, DiSpirito AA, Morton JD, Semrau JD, Neto JNE, Bazylinski DA (2004) Evidence for a copper-dependent iron transport system in the marine, magnetotactic bacterium strain MV-1. Microbiology 150:2931–2945

    CAS  PubMed  Google Scholar 

  • Duguet E, Vasseur S, Mornet S, Devoisselle J-M (2006) Magnetic nanoparticles and their applications in medicine. Nanomedicine-UK 1:157–168

    CAS  Google Scholar 

  • Dutz S, Andrä W, Hergt R, Hilger I, Müller R, Töpfer J, Zeisberger M, Bellemann ME (2007a) Biomedical heating applications of magnetic iron oxide nanoparticles. In: Kim SI, Suh TS (eds) World congress on medical physics and biomedical engineering 2006, vol 14, parts 1–6. Springer, Berlin, pp. 271–274

    Google Scholar 

  • Dutz S, Hergt R, Muerbe J, Müller R, Zeisberger M, Andrä W, Töpfer J, Bellemann ME (2007b) Hysteresis losses of magnetic nanoparticle powders in the single domain size range. J Magn Magn Mater 308:305–312

    CAS  Google Scholar 

  • Errington J, Daniel RA, Scheffers DJ (2003) Cytokinesis in bacteria. Microbiol Mol Biol Rev 67:52–65

    CAS  PubMed Central  PubMed  Google Scholar 

  • Faivre D, Bottger LH, Matzanke BF, Schüler D (2007) Intracellular magnetite biomineralization in bacteria proceeds by a distinct pathway involving membrane-bound ferritin and an iron(II) species. Angew Chem Int Edit 46:8495–8499

    CAS  Google Scholar 

  • Fdez-Gubieda ML, Muela A, Alonso J, García-Prieto A, Olivi L, Fernández-Pacheco R, Barandiarán JM (2013) Magnetite biomineralization in Magnetospirillum gryphiswaldense: time-resolved magnetic and structural studies. ACS Nano 7:3297–3305

    CAS  PubMed  Google Scholar 

  • Felfoul O, Martel S (2013) Assessment of navigation control strategy for magnetotactic bacteria in microchannel: toward targeting solid tumors. Biomed Microdevices 15:1015–1024

    CAS  PubMed  Google Scholar 

  • Flies CB, Peplies J, Schüler D (2005) Combined approach for characterization of uncultivated magnetotactic bacteria from various aquatic environments. Appl Environ Microbiol 71:2723–2731

    CAS  PubMed Central  PubMed  Google Scholar 

  • Frankel RB, Blakemore RP (1980) Navigational compass in freshwater magnetotactic bacteria. J Magn Magn Mater 15–18:1562–1564

    Google Scholar 

  • Frankel RB, Moskowitz BM (2003) Biogenic magnets. In: Miller JS, Drillon M (eds) Magnetism: molecules to materials IV. Wiley, Weinheim, pp. 205–231

    Google Scholar 

  • Frankel RB, Blakemore RP, Wolfe R (1979) Magnetite in freshwater magnetotactic bacteria. Science 203:1355–1356

    CAS  PubMed  Google Scholar 

  • Frankel RB, Papaefthymiou GC, Blakemore RP, O’Brien W (1983) Fe3O4 precipitation in magnetotactic bacteria. Biochim Biophys Acta 763:147–159

    CAS  Google Scholar 

  • Frankel RB, Bazylinski DA, Johnson MS, Taylor BL (1997) Magneto-aerotaxis in marine coccoid bacteria. Biophys J 73:994–1000

    CAS  PubMed Central  PubMed  Google Scholar 

  • Frankel RB, Bazylinski DA, Schüler D (1998) Biomineralization of magnetic iron minerals in magnetotactic bacteria. Supramol Sci 5:383–390

    CAS  Google Scholar 

  • Frankel RB, Williams TJ, Bazylinski DA (2007) Magneto-aerotaxis. In: Schüler D (ed) Magnetoreception and magnetosomes in bacteria, microbiology monographs. Springer, Berlin, pp. 1–24

    Google Scholar 

  • Fukuda Y, Okamura Y, Takeyama H, Matsunaga T (2006) Dynamic analysis of a genomic island in Magnetospirillum sp. strain AMB-1 reveals how magnetosome synthesis developed. FEBS Lett 580:801–812

    CAS  PubMed  Google Scholar 

  • Funaki M, Sakai H, Matsunaga T (1989) Identification of the magnetic poles on strong magnetic grains from meteorites using magnetotactic bacteria. J Geomagn Geoelectr 41:77–87

    Google Scholar 

  • Funaki M, Sakai H, Matsunaga T, Hirose S (1992) The S-pole distribution on magnetic grains in pyroxenite determined by magnetotactic bacteria. Phys Earth Planet In 70:253–260

    Google Scholar 

  • Geelhoed JS, Kleerebezem R, Sorokin DY, Stams AJM, van Loosdrecht MCM (2010) Reduced inorganic sulfur oxidation supports autotrophic and mixotrophic growth of Magnetspirillum strain J10 and Magnetospirillum gryphiswaldense. Environ Microbiol 12:1031–1040

    CAS  PubMed  Google Scholar 

  • Ginet N, Pardoux R, Adryanczyk G, Garcia D, Brutesco C, Pignol D (2011) Single-step production of a recyclable nanobiocatalyst for organophosphate pesticides biodegradation using functionalized bacterial magnetosomes. PLoS One 6:e21442

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gloeckl G, Hergt R, Zeisberger M, Dutz S, Nagel S, Weitschies W (2006) The effect of field parameters, nanoparticle properties and immobilization on the specific heating power in magnetic particle hyperthermia. J Phys-Condens Mat 18:S2935–S2949

    CAS  Google Scholar 

  • Goldhawk DE, Rohani R, Sengupta A, Gelman N, Prato FS (2012) Using the magnetosome to model effective gene-based contrast for magnetic resonance imaging. WIREs Nanomed Nanobiotechnol 4:378–388

    CAS  Google Scholar 

  • Gorby YA, Beveridge TJ, Blakemore RP (1988) Characterization of the bacterial magnetosome membrane. J Bacteriol 170:834–841

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grass G, Otto M, Fricke B, Haney CJ, Rensing C, Nies DH, Munkhelt D (2005) FieF (YiiP) from Escherichia coli mediates decreased cellular accumulation of iron and relieves iron stress. Arch Microbiol 183:9–18

    CAS  PubMed  Google Scholar 

  • Grünberg K, Wawer C, Tebo BM, Schüler D (2001) A large gene cluster encoding several magnetosome proteins is conserved in different species of magnetotactic bacteria. Appl Environ Microbiol 67:4573–4582

    PubMed Central  PubMed  Google Scholar 

  • Grünberg K, Müller EC, Otto A, Reszka R, Linder D, Kube M, Reinhardt R, Schüler D (2004) Biochemical and proteomic analysis of the magnetosome membrane in Magnetospirillum gryphiswaldense. Appl Environ Microbiol 70:1040–1050

    PubMed Central  PubMed  Google Scholar 

  • Guerin WF, Blakemore RP (1992) Redox cycling of iron supports growth and magnetite synthesis by Aquaspirillum magnetotacticum. Appl Environ Microbiol 58:1102–1109

    CAS  PubMed Central  PubMed  Google Scholar 

  • Guo F, Liu Y, Chen Y, Tang T, Jiang W, Li Y, Li J (2011) A novel rapid and continuous procedure for large-scale purification of magnetosomes from Magnetospirillum gryphiswaldense. Appl Microbiol Biot 90:1277–1283

    CAS  Google Scholar 

  • Guo L, Huang J., Zheng L-M (2012a) Bifunctional bacterial magnetic nanoparticles for tumor targeting. Nanoscale 4:879–884

    CAS  Google Scholar 

  • Guo FF, Yang W, Jiang W, Geng S, Peng T, Li JL (2012b) Magnetosomes eliminate intracellular reactive oxygen species in Magnetospirillum gryphiswaldense MSR-1. Environ Microbiol 14:1722–1729

    CAS  Google Scholar 

  • Haney CJ, Grass G, Franke S, Rensing C (2005) New developments in the understanding of the cation diffusion facilitator family. J Ind Microbiol Biot 32:215–226

    CAS  Google Scholar 

  • Harasko G, Pfutzner H, Rapp E, Futschik K, Schüler D (1993) Determination of the concentration of magnetotactic bacteria by means of susceptibility measurements. Jpn J Appl Phys 32:252–260

    Google Scholar 

  • Harasko G, Pfutzner H, Futschik K (1995) Domain analysis by means of magnetotactic bacteria. IEEE T Magn 31:938–949

    CAS  Google Scholar 

  • Hartung A, Lisy R, Herrmann KH, Hilger I, Schüler D, Lang C, Bellemann ME, Kaiser WA, Reichenbach JR (2007) Labeling of macrophages using bacterial magnetosomes and their characterization by magnetic resonance imaging. J Magn Magn Mater 311:454–459

    CAS  Google Scholar 

  • Herborn C, Papanikolaou N, Reszka R, Grünberg K, Schüler D, Debatin JF (2003) Magnetosomen als biologisches modell der eisenbindung: messung der relaxivitat in der MRT. Fortschr Rontg Neuen 175:830–834

    CAS  Google Scholar 

  • Hergt R, Andrä W, d’Ambly GC, Hilger I, Kaiser WA, Richter U, Schmidt HG (1998) Physical limits of hyperthermia using magnetite fine particles. IEEE T Magn 34:3745–3754

    CAS  Google Scholar 

  • Hergt R, Hiergeist R, Zeisberger M, Schüler D, Heyen U, Hilger I, Kaiser WA (2005) Magnetic properties of bacterial magnetosomes as potential diagnostic and therapeutic tools. J Magn Magn Mater 293:80–86

    CAS  Google Scholar 

  • Hergt R, Dutz S, Müller R, Zeisberger M (2006) Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy. J Phys-Condens Mat 18:S2919–S2934

    CAS  Google Scholar 

  • Heyen U, Schüler D (2003) Growth and magnetosome formation by microaerophilic Magnetospirillum strains in an oxygen-controlled fermentor. Appl Microbiol Biot 61:536–544

    CAS  Google Scholar 

  • Hilger I, Kaiser WA (2006) Magnetic thermoablation. Eur Radiol 16:E47

    Google Scholar 

  • Hilger I, Andrä W, Hergt R, Hiergeist R, Schubert H, Kaiser WA (2001) Electromagnetic heating of breast tumors in interventional radiology: in vitro and in vivo studies in human cadavers and mice. Radiology 218:570–575

    CAS  PubMed  Google Scholar 

  • Hilger I, Hergt R, Kaiser WA (2005) Use of magnetic nanoparticle heating in the treatment of breast cancer. IEE P-Nanobiotechnol 152:33–39

    CAS  Google Scholar 

  • Ito A, Honda H, Kobayashi T (2006) Cancer immunotherapy based on intracellular hyperthermia using magnetite nanoparticles: a novel concept of ‘heat-controlled necrosis’ with heat shock protein expression. Cancer Immunol Immun 55:320–328

    CAS  Google Scholar 

  • Ji B, Zhang S-D, Arnoux P, Rouy Z, Alberto F, Philippe N, Murat D, Zhang W-J, Rioux J-B, Ginet N, Sabaty M, Mangenot S, Pradel N, Tian J, Yang J, Zhang L, Zhang W, Pan H, Henrissat B, Coutinho PM, Li Y, Xiao T, Médigue C, Barbe V, Pignol D, Talla E, Wu L-F (2014) Comparative genomic analysis provides insights into the evolution and niche adaptation of marine Magnetospira sp. QH-2 strain. Environ Microbiol 16:525–544

    CAS  PubMed  Google Scholar 

  • Jimenez-Lopez C, Romanek CS, Bazylinski DA (2010) Magnetite as a prokaryotic biomarker: a review. J Geophys Res-Biogeo 115:G00G03

    Google Scholar 

  • Jogler C, Schüler D (2009) Genomics, genetics, and cell biology of magnetosome formation. Annu Rev Microbiol 63:501–521

    CAS  PubMed  Google Scholar 

  • Jogler C, Kube M, Schübbe S, Ullrich S, Teeling H, Bazylinski DA, Reinhardt R, Schüler D (2009) Comparative analysis of magnetosome gene clusters in magnetotactic bacteria provides further evidence for horizontal gene transfer. Environ Microbiol 11:1267–1277

    CAS  PubMed  Google Scholar 

  • Juhas M, van der Meer JR, Gaillard M, Harding RM, Hood DW, Crook DW (2009) Genomic islands: tools of bacterial horizontal gene transfer and evolution. FEMS Microbiol Rev 33:376–393

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kanetsuki Y, Tanaka M, Tanaka T, Matsunaga T, Yoshino T (2012) Effective expression of human proteins on bacterial magnetic particles in an anchor gene deletion mutant of Magnetospirillum magneticum AMB-1. Biochem Bioph Res Co 426:7–11

    CAS  Google Scholar 

  • Kanetsuki Y, Tanaka T, Matsunaga T, Yoshino T (2013) Enhanced heterologous protein display on bacterial magnetic particles using a lon protease gene deletion mutant in Magnetospirillum magneticum AMB-1. J Biosci Bioeng 116:65–70

    CAS  PubMed  Google Scholar 

  • Katzmann E, Scheffel A, Gruska M, Plitzko JM, Schüler D (2010) Loss of the actin-like protein MamK has pleiotropic effects on magnetosome formation and chain assembly in Magnetospirillum gryphiswaldense. Mol Microbiol 77:208–224

    CAS  PubMed  Google Scholar 

  • Katzmann E, Müller F, Lang C, Messerer M, Winklhofer M, Plitzko JM, Schüler D (2011) Magnetosome chains are recruited to cellular division sites and split by asymmetric septation. Mol Microbiol 82:1316–1329

    PubMed  Google Scholar 

  • Kolinko S, Jogler C, Katzmann E, Wanner G, Peplies J, Schüler D (2011) Single-cell analysis reveals a novel uncultivated magnetotactic bacterium within the candidate division OP3. Environ Microbiol 14:1709–1721

    PubMed  Google Scholar 

  • Kolinko I, Lohße A, Borg S, Raschdorf O, Jogler C, Tu Q, Pósfai M, Tompa E, Plitzko JM, Brachmann A, Wanner G, Müller R, Zhang Y, Schüler D (2014) Biosynthesis of magnetic nanostructures in a foreign organism by transfer of bacterial magnetosome gene clusters. Nat Nanotechnol 9:193–197

    CAS  PubMed  Google Scholar 

  • Komeili A (2012) Molecular mechanisms of compartmentalization and biomineralization in magnetotactic bacteria. FEMS Microbiol Rev 36:232–255

    CAS  PubMed Central  PubMed  Google Scholar 

  • Komeili A, Vali H, Beveridge TJ, Newman DK (2004) Magnetosome vesicles are present before magnetite formation, and MamA is required for their activation. P Natl Acad Sci U S A 101:3839–3844

    CAS  Google Scholar 

  • Komeili A, Li Z, Newman DK, Jensen GJ (2006) Magnetosomes are cell membrane invaginations organized by the actin-like protein MamK. Science 311:242–245

    CAS  PubMed  Google Scholar 

  • Kuhara M, Takeyama H, Tanaka T, Matsunaga T (2004) Magnetic cell separation using antibody binding with protein A expressed on bacterial magnetic particles. Anal Chem 76:6207–6213

    CAS  PubMed  Google Scholar 

  • Lang C, Schüler D (2006) Biogenic nanoparticles: production, characterization, and application of bacterial magnetosomes. J Phys-Condens Mat 18:S2815–S2828

    CAS  Google Scholar 

  • Lee J-H, Huh Y-M, Jun Y, Seo J, Jang J, Song H-T, Kim S, Cho EJ, Yoon HG, Suh JS, Cheon J (2007) Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat Med 13:95–99

    CAS  PubMed  Google Scholar 

  • Lefèvre CT, Bazylinski DA (2013) Magnetotactic bacteria: ecology, diversity and evolution. Microbiol Mol Biol R 77:497–526

    Google Scholar 

  • Lefèvre CT, Wu LF (2013) Evolution of the bacterial organelle responsible for magnetotaxis. Trends Microbiol 21:534–543

    PubMed  Google Scholar 

  • Lefèvre CT, Bernadac A, Yu-Zhang K, Pradel N, Wu L-F (2009) Isolation and characterization of a magnetotactic bacterial culture from the Mediterranean Sea. Environ Microbiol 11:1646–1657

    PubMed  Google Scholar 

  • Lefèvre CT, Abreu F, Schmidt ML, Lins U, Frankel RB, Hedlund BP, Bazylinski DA (2010) Moderately thermophilic magnetotactic bacteria from hot springs in Nevada USA. Appl Environ Microbiol 76:3740–3743

    PubMed Central  PubMed  Google Scholar 

  • Lefèvre CT, Frankel RB, Abreu F, Lins U, Bazylinski DA (2011a) Culture-independent characterization of a novel, uncultivated magnetotactic member of the Nitrospirae phylum. Environ Microbiol 13:538–549

    Google Scholar 

  • Lefèvre CT, Frankel RB, Pósfai M, Prozorov T, Bazylinski (2011b) Isolation of obligately alkaliphilic magnetotactic bacteria from extremely alkaline environments. Environ Microbiol 13:2342–2350

    Google Scholar 

  • Lefèvre CT, Menguy N, Abreu F, Lins U, Pósfai M, Prozorov T, Pignol D, Frankel RB, Bazylinski DA (2011c) A cultured greigite-producing magnetotactic bacterium in a novel group of sulfate-reducing bacteria. Science 334:1720–1723

    Google Scholar 

  • Lefèvre CT, Pósfai M, Abreu F, Lins U, Frankel RB, Bazylinski DA (2011d) Morphological features of elongated-anisotropic magnetosome crystals in magnetotactic bacteria of the Nitrospirae phylum and the Deltaproteobacteria class. Earth Planet Sci Lett 312:194–200

    Google Scholar 

  • Lefèvre CT, Viloria N, Schmidt ML, Pósfai M, Frankel RB, Bazylinski DA (2012) Novel magnetite-producing magnetotactic bacteria belonging to the Gammaproteobacteria. ISME J 6:440–450

    PubMed Central  PubMed  Google Scholar 

  • Lefèvre CT, Trubitsyn D, Abreu F, Kolinko S, de Almeida LGP, de Vasconcelos ATR, Lins U, Schüler D, Ginet N, Pignol D, Bazylinski DA (2013a) Monophyletic origin of magnetotaxis and the first magnetosomes. Environ Microbiol 15:2267–2274

    Google Scholar 

  • Lefèvre CT, Trubitsyn D, Abreu F, Kolinko S, Jogler C, de Almeida LGP, de Vasconcelos ATR, Kube M, Reinhardt R, Lins U, Pignol D, Schüler D, Bazylinski DA, Ginet N (2013b) Comparative genomic analysis of magnetotactic bacteria from the Deltaproteobacteria provides new insights into magnetite and greigite magnetosome genes required for magnetotaxis. Environ Microbiol 15:2712–2735

    Google Scholar 

  • Li Y, Katzmann E, Borg S, Schüler D (2012) The periplasmic nitrate reductase nap is required for anaerobic growth and involved in redox control of magnetite biomineralization in Magnetospirillum gryphiswaldense. J Bacteriol 194:4847–4856

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li Y, Bali S, Borg S, Katzmann E, Ferguson SJ, Schüler D (2013a) Cytochrome cd 1 nitrite reductase NirS is involved in anaerobic magnetite biomineralization in Magnetospirillum gryphiswaldense and requires NirN for proper d1 heme assembly. J Bacteriol 195:4297–4309

    CAS  Google Scholar 

  • Li X, Wang Q, Xue Y (2013b) On the change in bacterial growth and magnetosome formation for Magnetospirillum sp. strain AMB-1 under different concentrations of reducing agents. J Nanosci Nanotechno 13:1392–1398

    CAS  Google Scholar 

  • Li Y, Raschdorf O, Silva KT, Schüler D (2014) The terminal oxidase cbb3 functions in redox control of magnetite biomineralization in Magnetospirillum gryphiswaldense. J Bacteriol (in press). doi:10.1128/JB.01652–14

    Google Scholar 

  • Lin W, Jogler C, Schüler D, Pan Y (2011) Metagenomic analysis reveals unexpected subgenomic diversity of magnetotactic bacteria within the phylum Nitrospirae. Appl Environ Microbiol 77:323–326

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lin W, Li J, Pan Y (2012) Newly isolated but uncultivated magnetotactic bacterium of the phylum Nitrospirae from Beijing, China. Appl Environ Microbiol 78:668–675

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lins U, Keim CN, Evans FF, Farina M, Buseck PR (2007) Magnetite (Fe3O4) and greigite (Fe3S4) crystals in multicellular magnetotactic prokaryotes. Geomicrobiol J 24:43–50

    CAS  Google Scholar 

  • Lisy MR, Hartung A, Lang C, Schüler D, Richter W, Reichenbach JR, Kaiser WA, Hilger I (2007) Fluorescent bacterial magnetic nanoparticles as bimodal contrast agents. Invest Radiol 42:235–241

    CAS  PubMed  Google Scholar 

  • Liu R, Liu J, Tong J, Tang T, Kong W-C, Wang X, Li Y, Tang J (2012) Heating effect and biocompatibility of bacterial magnetosomes as potential materials used in magnetic fluid hyperthermia. Prog Nat Sci 22:31–39

    CAS  Google Scholar 

  • Liu Y, Li GR, Guo FF, Jiang W, Li Y, Li LJ (2010) Large-scale production of magnetosomes by chemostat culture of Magnetospirillum gryphiswaldense at high cell density. Microb Cell Fact 9:99

    PubMed Central  PubMed  Google Scholar 

  • Lohße A, Ullrich S, Katzmann E, Borg S, Wanner G, Richter M, Voigt B, Schweder T, Schüler D (2011) Functional analysis of the magnetosome island in Magnetospirillum gryphiswaldense: the mamAB operon is sufficient for magnetite biomineralization. PLoS ONE 6:e25561

    PubMed Central  PubMed  Google Scholar 

  • Lower BH, Bazylinski DA (2013) The bacterial magnetosome, a unique prokaryotic organelle. J Mol Microbiol Biotechnol 23:63–80

    CAS  PubMed  Google Scholar 

  • Ma Q, Chen C, Wei S, Chen C, Wu L-F, Song T (2012) Construction and operation of a microrobot based on magnetotactic bacteria in a microfluidic chip. Biomicrofluidics 6:24107–24112

    PubMed  Google Scholar 

  • Mahillon J, Chandler M (1998) Insertion sequences. Microbiol Mol Biol Rev 62:725–774

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mahillon J, Leonard C, Chandler M (1999) IS elements as constituents of bacterial genomes. Res Microbiol 150:675–687

    CAS  PubMed  Google Scholar 

  • Mann S, Frankel RB (1989) Magnetite biomineralization in unicellular organisms. In: Mann S, Webb J, Williams RJP (eds) Biomineralization: chemical and biochemical perspectives. VCH, Weinheim, pp. 389–426

    Google Scholar 

  • Martel S (2008) Nanorobots for microfactories to operations in the human body and robots propelled by bacteria. Facta Univ Ser Mech Automat Control Robot 7:1–8

    Google Scholar 

  • Martel S (2012) Bacterial microsystems and microrobots. Biomed Microdevices 14:1033–1045

    PubMed  Google Scholar 

  • Martinez-Boubeta C, Simeonidis K, Makridis A, Angelakeris M, Iglesias O, Guardia P, Cabot A, Yedra L, Estradé S, Peiró F, Saghi Z, Midgley PA, Conde-Leborán I, Serantes D, Baldomir D (2013) Learning from nature to improve the heat generation of iron-oxide nanoparticles for magnetic hyperthermia applications. Sci Rep 3:1652

    PubMed Central  PubMed  Google Scholar 

  • Maruyama K, Takeyama H, Nemoto E, Tanaka T, Yoda K, Matsunaga T (2004) Single nucleotide polymorphism detection in aldehyde dehydrogenase 2 (ALDH2) gene using bacterial magnetic particles based on dissociation curve analysis. Biotechnol Bioeng 87:687–694

    CAS  PubMed  Google Scholar 

  • Matsunaga T (1991) Applications of bacterial magnets. Trends Biotechnol 9:91–95

    CAS  PubMed  Google Scholar 

  • Matsunaga T, Arakaki A (2007) Molecular bioengineering of bacterial magnetic particles for biotechnological applications. In: Schüler D (ed) Magnetoreception and magnetosomes in bacteria, microbiology monographs. Springer, Berlin/Heidelberg, pp. 227–254

    Google Scholar 

  • Matsunaga T, Kamiya S (1987) Use of magnetic particles isolated from magnetotactic bacteria for enzyme immobilization. Appl Microbiol Biot 26:328–332

    CAS  Google Scholar 

  • Matsunaga T, Takeyama H (1998) Biomagnetic nanoparticle formation and application. Supramol Sci 5:391–394

    CAS  Google Scholar 

  • Matsunaga T, Hashimoto K, Nakamura N, Nakamura K, Hashimoto S (1989) Phagocytosis of bacterial magnetite by leukocytes. Appl Microbiol Biot 31:401–405

    Google Scholar 

  • Matsunaga T, Tadokoro F, Nakamura N (1990) Mass culture of magnetic bacteria and their application to flow type immunoassays. IEEE T Magn 26:1557–1559

    CAS  Google Scholar 

  • Matsunaga T, Nakamura C, Burgess JG, Sode K (1992) Gene-transfer in magnetic bacteria: transposon mutagenesis and cloning of genomic DNA fragments required for magnetosome synthesis. J Bacteriol 174:2748–2753

    CAS  PubMed Central  PubMed  Google Scholar 

  • Matsunaga T, Tsujimura N, Kamiya S (1996) Enhancement of magnetic particle production by nitrate and succinate fed-batch culture of Magnetospirillum sp. AMB-1. Biotechnol Tech 10:495–500

    CAS  Google Scholar 

  • Matsunaga T, Togo H, Kikuchi T, Tanaka T (2000) Production of luciferase-magnetic particle complex by recombinant Magnetospirillum sp. AMB-1. Biotechnol Bioeng 70:704–709

    CAS  PubMed  Google Scholar 

  • Matsunaga T, Arakaki A, Takahoko M (2002) Preparation of luciferase-bacterial magnetic particle complex by artificial integration of MagA-luciferase fusion protein into the bacterial magnetic particle membrane. Biotechnol Bioeng 77:614–618

    CAS  PubMed  Google Scholar 

  • Matsunaga T, Okamura Y, Fukuda Y, Wahyudi AT, Murase Y, Takeyama T (2005) Complete genome sequence of the facultative anaerobic magnetotactic bacterium Magnetospirillum sp. strain AMB-1. DNA Res 12:157–166

    CAS  PubMed  Google Scholar 

  • McAteer MA, Sibson NR, von zur Muhlen C, Schneider JE, Lowe AS, Warrick N, Channon KM, Anthony DC, Choudhury RP (2007) In vivo magnetic resonance imaging of acute brain inflammation using microparticles of iron oxide. Nat Med 13:1253–1258

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moskowitz BM, Bazylinski DA, Egli R, Frankel RB, Edwards KJ (2008) Magnetic properties of marine magnetotactic bacteria in a seasonally stratified coastal pond (Salt Pond, MA, USA). Geophys J Int 174:75–92

    CAS  Google Scholar 

  • Müller FD, Raschdorf O, Nudelman H, Messerer M, Katzmann E, Plitzko JM, Zarivach R, Schüler D (2014) The FtsZ-like protein FtsZm of Magnetospirillum gryphiswaldense likely interacts with its generic homolog and is required for biomineralization under nitrate deprivation. J Bacteriol 196:650–659

    PubMed Central  PubMed  Google Scholar 

  • Murat D, Quinlan A, Vali H, Komeili A (2010) Comprehensive genetic dissection of the magnetosome gene island reveals the step-wise assembly of a prokaryotic organelle. P Natl Acad Sci U S A 107:5593–5598

    CAS  Google Scholar 

  • Musarrat J, Dwivedi S, Singh BR, Saquib Q, Al-Khedhairy AA (2011) Microbially synthesized nanoparticles: scope and applications. In: Ahmad I, Ahmad F, Pichtel R (eds) Microbes and microbial technology: agricultural and environmental ppplications. Springer, New York, pp. 101–126

    Google Scholar 

  • Nakamura N, Matsunaga T (1993) Highly sensitive detection of allergen using bacterial magnetic particles. Anal Chim Acta 281:585–589

    CAS  Google Scholar 

  • Nakamura N, Hashimoto K, Matsunaga T (1991) Immunoassay method for the determination of immunoglobulin G using bacterial magnetic particles. Anal Chem 63:268–272

    CAS  PubMed  Google Scholar 

  • Nakamura N, Burgess JG, Yagiuda K, Kudo S, Sakaguchi T, Matsunaga T (1993) Detection and removal of Escherichia coli using fluorescein isothiocyanate conjugated monoclonal antibody immobilized on bacterial magnetic particles. Anal Chem 65:2036–2039

    CAS  PubMed  Google Scholar 

  • Nakamura C, Burgess JG, Sode K, Matsunaga T (1995) An iron-regulated gene, MagA, encoding an iron transport protein of Magnetospirillum sp. strain AMB-1. J Biol Chem 270:28392–28396

    CAS  PubMed  Google Scholar 

  • Nakayama N, Arakaki A, Maruyama K, Takeyama H, Matsunaga T (2003) Single-nucleotide polymorphism analysis using fluorescence resonance energy transfer between DNA-labeling fluorophore, fluorescein isothiocyanate, and DNA intercalator, POPO-3, on bacterial magnetic particles. Biotechnol Bioeng 84:96–102

    CAS  PubMed  Google Scholar 

  • Nakazawa H, Arakaki A, Narita-Yamada S, Yashiro I, Jinno K, Aoki A, Tsuruyama A, Okamura Y, Tanikawa S, Fujita N, Takeyama H, Matsunaga T (2009) Whole genome sequence of Desulfovibrio magneticus strain RS-1 revealed common gene clusters in magnetotactic bacteria. Genome Res 19:1801–1808

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nash C (2008) Mechanisms and evolution of magnetotactic bacteria. Ph.D. thesis, California Institute of Technology

    Google Scholar 

  • Neilands JB (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270:26723–26726

    CAS  PubMed  Google Scholar 

  • Ohuchi S, Schüler D (2009) In vivo display of a multisubunit enzyme complex on biogenic magnetic nanoparticles. Appl Environ Microbiol 75:7734–7738

    CAS  PubMed Central  PubMed  Google Scholar 

  • Okuda Y, Denda K, Fukumori Y (1996) Cloning and sequencing of a gene encoding a new member of the tetratricopeptide protein family from magnetosomes of Magnetospirillum magnetotacticum. Gene 171:99–102

    CAS  PubMed  Google Scholar 

  • Ota H, Takeyama H, Nakayama H, Katoh T, Matsunaga T (2003) SNP detection in transforming growth factor-beta 1 gene using bacterial magnetic particles. Biosens Bioelectron 18:683–687

    CAS  PubMed  Google Scholar 

  • Palache C, Berman H, Frondel C (1944) Dana’s system of mineralogy. Wiley, New York

    Google Scholar 

  • Paoletti LC, Blakemore RP (1986) Hydroxamate production by Aquaspirillum magnetotacticum. J Bacteriol 167:73–76

    CAS  PubMed Central  PubMed  Google Scholar 

  • Paulsen IT, Park JH, Choi PS Jr, Saier HH (1997) A family of Gram-negative bacterial outer membrane factors that function in the export of proteins, carbohydrates, drugs and heavy metals from Gram-negative bacteria. FEMS Microbiol Lett 156:1–8

    CAS  PubMed  Google Scholar 

  • Pečová M, Šebela M, Marková Z, Poláková Z, Čuda J, Šafářová K, Zbořil R (2013) Thermostable trypsin conjugates immobilized to biogenic magnetite show a high operational stability and remarkable reusability for protein digestion. Nanotechnology 24:125102

    PubMed  Google Scholar 

  • Pikuta EV, Hoover RB, Bej AK, Marsic D, Whitman WB, Cleland D, Krader P (2003) Desulfonatronum thiodismutans sp. nov., a novel alkaliphilic, sulfate-reducing bacterium capable of lithoautotrophic growth. Int J Syst Evol Micr 53:1327–1332

    CAS  Google Scholar 

  • Pollithy A, Romer T, Lang C, Müller FD, Helma F, Leonhardt H, Rothbauer U, Schüler D (2011) Magnetosome expression of functional camelid antibody fragments (nanobodies) in Magnetospirillum gryphiswaldense. Appl Environ Microbiol 77:6165–6171

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ponting CCP, Phillips C (1996) Rapsyn’s knobs and holes: eight tetratrico peptide repeats. Biochem J 314:1053–1054

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pósfai M, Buseck PR, Bazylinski DA, Frankel RB (1998a). Reaction sequence of iron sulfide minerals in bacteria and their use as biomarkers. Science 280:880–883

    Google Scholar 

  • Pósfai M, Buseck PR, Bazylinski DA, Frankel RB (1998b) Iron sulfides from magnetotactic bacteria: structure, compositions, and phase transitions. Am Mineral 83:1469–1481

    Google Scholar 

  • Prozorov T, Mallapragada SK, Narasimhan B, Wang L, Palo P, Nilsen-Hamilton M, Williams TJ, Bazylinski DA, Prozorov R, Canfield PC (2007) Protein-mediated synthesis of uniform superparamagnetic magnetite nanocrystals. Adv Funct Mater 17:951–957

    CAS  Google Scholar 

  • Qi L, Li J, Zhang W, Liu J, Rong C, Li Y, Wu L-F (2012) Fur in Magnetospirillum gryphiswaldense influences magnetosomes formation and directly regulates the genes involved in iron and oxygen metabolism. PLoS ONE 7:e29572

    CAS  PubMed Central  PubMed  Google Scholar 

  • Quinlan A, Murat D, Vali H, Komeili A (2011) The HtrA/DegP family protease MamE is a bifunctional protein with roles in magnetosome protein localization and magnetite biomineralization. Mol Microbiol 80:1075–1087

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ramanujan RV (2009) Magnetic particles for biomedical applications. In: Narayan R (ed) Biomedical materials. Springer, New York, pp. 477–491

    Google Scholar 

  • Raschdorf O, Müller FD, Pósfai M, Plitzko JM, Schüler D (2013) The magnetosome proteins MamX, MamZ and MamH are involved in redox control of magnetite biomineralization in Magnetospirillum gryphiswaldense. Mol Microbiol 89:872–886

    CAS  PubMed  Google Scholar 

  • Reiter W-D, Palm P (1990) Identification and characterization of a defective SSV1 genome integrated into a tRNA gene in the archaebacterium Sulfolobus sp. B12. Mol Gen Genet 221:65–71

    CAS  PubMed  Google Scholar 

  • Reiter W-D, Palm P, Yeats S (1989) Transfer RNA genes frequently serve as integration sites for prokaryotic genetic elements. Nucleic Acids Res 17:1907–1914

    CAS  PubMed Central  PubMed  Google Scholar 

  • Richter M, Kube M, Bazylinski DA, Lombardot T, Glöckner FO, Reinhardt R, Schüler D (2007) Comparative genome analysis of four magnetotactic bacteria reveals a complex set of group-specific genes implicated in magnetosome biomineralization and function. J Bacteriol 189:4899–4910

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rong C, Huang Y, Zhang W, Jiang W, Li Y, Li J (2008) Ferrous iron transport protein B gene (feoB1) plays an accessory role in magnetosome formation in Magnetospirillum gryphiswaldense strain MSR-1. Res Microbiol 159:530–536

    CAS  PubMed  Google Scholar 

  • Rong C, Zhang C, Zhang Y, Qi L, Yang J, Guan G, Li Y, Li J (2012) FeoB2 functions in magnetosome formation and oxidative stress protection in Magnetospirillum gryphiswaldense strain MSR-1. J Bacteriol 194:3972–3976

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sakaguchi T, Arakaki A, Matsunaga T (2002) Desulfovibrio magneticus sp. nov., a novel sulfate-reducing bacterium that produces intracellular single-domain-sized magnetite particles. Int J Syst Evol Micr 52:215–221

    CAS  Google Scholar 

  • Scheffel A, Gärdes A, Grünberg K, Wanner G, Schüler D (2008) The major magnetosome proteins MamGFDC are not essential for magnetite biomineralization in Magnetospirillum gryphiswaldense but regulate the size of magnetosome crystals. J Bacteriol 190:377–386

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schübbe S, Williams TJ, Xie G, Kiss HE, Brettin TS, Martinez D, Ross CA, Schüler D, Cox BL, Nealson KH, Bazylinski DA (2009) Complete genome sequence of the chemolithoautotrophic marine magnetotactic coccus strain MC-1. Appl Environ Microbiol 75:4835–4852

    PubMed Central  PubMed  Google Scholar 

  • Schüler D (2008) Genetics and cell biology of magnetosome formation in magnetotactic bacteria. FEMS Microbiol Rev 32:654–672

    PubMed  Google Scholar 

  • Schüler D, Baeuerlein E (1996) Iron-limited growth and kinetics of iron uptake in Magnetospirillum gryphiswaldense. Arch Microbiol 166:301–307

    PubMed  Google Scholar 

  • Schüler D, Baeuerlein E (1997) Iron transport and magnetite crystal formation of the magnetic bacterium Magnetospirillum gryphiswaldense. J Phys IV 7:647–650

    Google Scholar 

  • Schüler D, Baeuerlein E (1998) Dynamics of iron uptake and Fe3O4 biomineralization during aerobic and microaerobic growth of Magnetospirillum gryphiswaldense. J Bacteriol 180:159–162

    PubMed Central  PubMed  Google Scholar 

  • Schultheiss D, Schüler D (2003) Development of a genetic system for Magnetospirillum gryphiswaldense. Arch Microbiol 179:89–94

    CAS  PubMed  Google Scholar 

  • Schultheiss D, Kube M, Schüler D (2004) Inactivation of the flagellin gene flaA in Magnetospirillum gryphiswaldense results in nonmagnetotactic mutants lacking flagellar filaments. Appl Environ Microbiol 70:3624–3631

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shapiro OH, Hatzenpichler R, Buckley DH, Zinder SH, Orphan VJ (2011) Multicellular photomagnetotactic bacteria. Environ Microbiol Rep 3:233–238

    PubMed  Google Scholar 

  • Silva KT, Leão PE, Abreu F, López JA, Gutarra ML, Farina M, Bazylinski DA, Freire DMG, Lins U (2013) Optimized magnetosome production and growth by the magnetotactic vibrio Magnetovibrio blakemorei strain MV-1 using statistical experimental design. Appl Environ Microbiol 79:2823–2827

    CAS  PubMed Central  PubMed  Google Scholar 

  • Simmons SL, Sievert SM, Frankel RB, Bazylinski DA, Edwards KJ (2004) Spatiotemporal distribution of marine magnetotactic bacteria in a seasonally stratified coastal salt pond. Appl Environ Microbiol 70:6230–6239

    CAS  PubMed Central  PubMed  Google Scholar 

  • Simmons SL, Bazylinski DA, Edwards KJ (2006) South seeking magnetotactic bacteria in the Northern Hemisphere. Science 311:371–374

    CAS  PubMed  Google Scholar 

  • Siponen MI, Adryanczyk G, Ginet N, Arnoux P, Pignol D (2012) Magnetochrome: a c-type cytochrome domain specific to magnetotatic bacteria. Biochem Soc T 40:1319–1323

    CAS  Google Scholar 

  • Siponen, MI, Legrand P, Widdrat M, Jones SR, Zhang W-J, Chang MCY, Faivre D, Arnoux P, Pignol D (2013) Structural insight into magnetochrome-mediated magnetite biomineralization. Nature 30:681–684

    Google Scholar 

  • Sode K, Kudo S, Sakaguchi T, Nakamura N, Matsunaga T (1993) Application of bacterial magnetic particles for highly selective messenger-RNA recovery-system. Biotechnol Tech 7:688–694

    CAS  Google Scholar 

  • Sugamata Y, Uchiyama R, Honda T, Tanaka T, Matsunaga T, Yoshino T (2013) Functional expression of thyroid-stimulating hormone receptor on nano-sized bacterial magnetic particles in Magnetospirillum magneticum AMB-1. Int J Mol Sci 14:14426–14438

    PubMed Central  PubMed  Google Scholar 

  • Sun J-B, Duan J-H, Dai S-L, Reri J, Zhang Y-D, Tian J-S, Li Y (2007) In vitro and in vivo antitumor effects of doxorubicin loaded with bacterial magnetosomes (DBMs) on H22 cells: the magnetic bionanoparticles as drug carriers. Cancer Lett 258:109–117

    CAS  PubMed  Google Scholar 

  • Sun J-B, Zhao F, Tang T, Jiang W, Tian J, Li Y, Li LJ (2008) High-yield growth and magnetosome formation by Magnetospirillum gryphiswaldense MSR-1 in an oxygen-controlled fermentor supplied solely with air. Appl Microbiol Biot 79:389–397

    CAS  Google Scholar 

  • Sun X, Wu L, Ji J, Jiang D, Zhang Y, Li Z, Zhang G, Zhang H (2013) Longitudinal surface plasmon resonance assay enhanced by magnetosomes for simultaneous detection of Pefloxacin and Microcystin-LR in seafoods. Biosens Bioelectron 47:318–323

    CAS  PubMed  Google Scholar 

  • Suzuki T, Okamura Y, Calugay RJ, Takeyama H, Matsunaga T (2006) Global gene expression analysis of iron-inducible genes in Magnetospirillum magneticum AMB-1. J Bacteriol 188:2275–2279

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tanaka M, Okamura Y, Arakaki A, Tanaka T, Takeyama H, Matsunaga T (2006) Origin of magnetosome membrane: proteomic analysis of magnetosome membrane and comparison with cytoplasmic membrane. Proteomics 6:5234–5247

    CAS  PubMed  Google Scholar 

  • Tanaka T, Maruyama K, Yoda K, Nemoto E, Udagawa Y, Nakayama H, Takeyama H, Matsunaga T (2003) Development and evaluation of an automated workstation for single nucleotide polymorphism discrimination using bacterial magnetic particles. Biosens Bioelectron 19:325–330

    CAS  PubMed  Google Scholar 

  • Tang T, Zhang L, Gao R, Dai Y, Meng F, Li Y (2012b) Fluorescence imaging and targeted distribution of bacterial magnetic particles in nude mice. Appl Microbiol Biot 94:495–503

    CAS  Google Scholar 

  • Tang Y-S, Wang D, Zhou C, Ma W, Zhang Y-Q, Liu B, Zhang S (2012a) Bacterial magnetic particles as a novel and efficient gene vaccine delivery system. Gene Ther 19:1187–1195

    CAS  Google Scholar 

  • Taoka A, Asada R, Sasaki H, Anzawa K, Wu L-F, Fukumori Y (2006) Spatial localizations of Mam22 and Mam12 in the magnetosomes of Magnetospirillum magnetotacticum. J Bacteriol 188:3805–3812

    CAS  PubMed Central  PubMed  Google Scholar 

  • Theil E (1987) Ferritin—structure, gene-regulation, and cellular function in animals, plants, and microorganisms. Annu Rev Biochem 56:289–315

    CAS  PubMed  Google Scholar 

  • Thomas-Keprta KL, Bazylinski DA, Kirschvink JL, Clemett SJ, McKay DS, Wentworth SJ, Vali H, Gibson EK Jr, Romanek CS (2000) Elongated prismatic magnetite crystals in ALH84001 carbonate globules: potential Martian magnetofossils. Geochim Cosmochim Acta 64:4049–4081

    CAS  PubMed  Google Scholar 

  • Thomas-Keprta KL, Bazylinski DA, Kirschvink JL, Clemett SJ, McKay DS, Wentworth SJ, Vali H, Gibson EK Jr, McKay MF, Romanek CS (2001) Truncated hexa-octahedral magnetite crystals in ALH84001: presumptive biosignatures. P Natl Acad Sci U S A 98:2164–2169

    CAS  Google Scholar 

  • Thomas-Keprta KL, Clemett SJ, Bazylinski DA, Kirschvink JL, McKay DS, Wentworth SJ, Vali H, Gibson EK Jr, Romanek CS (2002) Magnetofossils from ancient Mars: a robust biosignature in the Martian meteorite ALH84001. Appl Environ Microbiol 68:3663–3672

    CAS  PubMed Central  PubMed  Google Scholar 

  • Towe KM, Moench TT (1981) Electron-optical characterization of bacterial magnetite. Earth Planet Sci Lett 52:213–220

    CAS  Google Scholar 

  • Trahms L (2009) Biomedical applications of magnetic nanoparticles. Lect Notes Phys 763:327–358

    CAS  Google Scholar 

  • Uebe R, Voigt B, Schweder T, Albrecht D, Katzmann E, Lang C, Böttger L, Matzanke B, Schüler D (2010) Deletion of a fur-like gene affects iron homeostasis and magnetosome formation in Magnetospirillum gryphiswaldense. J Bacteriol 192:4192–4204

    CAS  PubMed Central  PubMed  Google Scholar 

  • Uebe R, Junge K, Henn V, Poxleitner G, Katzmann E, Plitzko JM, Zarivach R, Kasama T, Wanner G, Pósfai M, Böttger L, Matzanke B, Schüler D (2011) The cation diffusion facilitator proteins MamB and MamM of Magnetospirillum gryphiswaldense have distinct and complex functions, and are involved in magnetite biomineralization and magnetosome membrane assembly. Mol Microbiol 82:818–835

    CAS  PubMed  Google Scholar 

  • Uebe R, Henn V, Schüler D (2012) The MagA protein of magnetospirilla is not involved in bacterial magnetite biomineralization. J Bacteriol 194:1018–1023

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ullrich S, Schüler D (2010) Cre-lox-based method for generation of large deletions within the genomic magnetosome island of Magnetospirillum gryphiswaldense. Appl Environ Microbiol 76:2439–2444

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ullrich S, Kube M, Schübbe S, Reinhardt R, Schüler D (2005) A hypervariable 130-kilobase genomic region of Magnetospirillum gryphiswaldense comprises a magnetosome island which undergoes frequent rearrangements during stationary growth. J Bacteriol 187:7176–7184

    CAS  PubMed Central  PubMed  Google Scholar 

  • Valverde-Tercedor C, Abadía-Molina F, Martinez-Bueno M, Pineda-Molina E, Chen L, Oestreicher Z, Lower BH, Lower SK, Bazylinski DA, Jimenez-Lopez C (2014) Subcellular localization of the magnetosome protein MamC in the marine magnetotactic bacterium Magnetococcus marinus strain MC-1 using immunoelectron microscopy. Arch Microbiol (in press). doi:10.1007/s00203–014-0984–0

    Google Scholar 

  • Williams TJ, Zhang CL, Scott JH, Bazylinski DA (2006) Evidence for autotrophy via the reverse tricarboxylic acid cycle in the marine magnetotactic coccus strain MC-1. Appl Environ Microbiol 72:1322–1329

    CAS  PubMed Central  PubMed  Google Scholar 

  • Williams TJ, Lefèvre CT, Zhao W, Beveridge TJ, Bazylinski DA (2012) Magnetospira thiophila, gen. nov. sp. nov., a new marine magnetotactic bacterium that represents a novel lineage within the Rhodospirillaceae (Alphaproteobacteria). Int J Syst Evol Micr 62:2443–2450

    CAS  Google Scholar 

  • Wu L, Gao B, Zhang F, Sun X, Zhang Y, Li Z (2013) A novel electrochemical immunosensor based on magnetosomes for detection of staphylococcal enterotoxin B in milk. Talara 106:360–366

    CAS  Google Scholar 

  • Xiang L, Wei J, Jianbo S, Guili W, Feng G, Ying L (2007) Purified and sterilized magnetosomes from Magnetospirillum gryphiswaldense MSR-1 were not toxic to mouse fibroblasts in vitro. Lett Appl Microbiol 45:75–81

    CAS  PubMed  Google Scholar 

  • Yamamoto D, Taoka A, Uchihashi T, Sasaki H, Watanabe H, Ando T, Fukumori Y (2010) Visualization and structural analysis of the bacterial magnetic organelle magnetosome using atomic force microscopy. P Natl Acad Sci U S A 107:9382–9387

    CAS  Google Scholar 

  • Yang CD, Takeyama H, Tanaka T, Hasegawa A, Matsunaga T (2001a) Synthesis of bacterial magnetic particles during cell cycle of Magnetospirillum magneticum AMB-1. Appl Biochem Biotech 91–93:155–160

    Google Scholar 

  • Yang CD, Takeyama H, Tanaka T, Matsunaga T (2001b) Effects of growth medium composition, iron sources and atmospheric oxygen concentrations on production of luciferase-bacterial magnetic particle complex by a recombinant Magnetospirillum magneticum AMB-1. Enzyme Microb Tech 29:13–19

    CAS  Google Scholar 

  • Yang Y, Li S, Huang X, Li J, Li L, Pan Y, Li Y (2013) MamX encoded by the mamXY operon is involved in control of magnetosome maturation in Magnetospirillum gryphiswaldense MSR-1. BMC Microbiol 13:203

    PubMed Central  PubMed  Google Scholar 

  • Yoshino T, Matsunaga T (2005) Development of efficient expression system for protein display on bacterial magnetic particles. Biochem Bioph Res Co 338:1678–1681

    CAS  Google Scholar 

  • Yoshino T, Matsunaga T (2006) Efficient and stable display of functional proteins on bacterial magnetic particles using Mms13 as a novel anchor molecule. Appl Environ Microbiol 72:465–471

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yoshino T, Tanaka T, Takeyama H, Matsunaga T (2003) Single nucleotide polymorphism genotyping of aldehyde dehydrogenase 2 gene using a single bacterial magnetic particle. Biosens Bioelectron 18:661–666

    CAS  PubMed  Google Scholar 

  • Yoza B, Matsumoto M, Matsunaga T (2002) DNA extraction using modified bacterial magnetic particles in the presence of amino silane compound. J Biotechnol 94:217–224

    CAS  PubMed  Google Scholar 

  • Yoza B, Arakaki A, Maruyama K, Takeyama H, Matsunaga T (2003a) Fully automated DNA extraction from blood using magnetic particles modified with a hyperbranched polyamidoamine dendrimer. J Biosci Bioeng 95:21–26

    CAS  Google Scholar 

  • Yoza B, Arakaki A, Matsunaga T (2003b) DNA extraction using bacterial magnetic particles modified with hyperbranched polyamidoamine dendrimer. J Biotechnol 101:219–228

    CAS  Google Scholar 

  • Zeytuni N, Ozyamak E, Ben-Harush K, Davidov G, Levin M, Gat Y, Moyal T, Brik A, Komeili A, Zarivach R (2011) Self-recognition mechanism of MamA, a magnetosome-associated TPR-containing protein, promotes complex assembly. P Natl Acad Sci U S A 108:E480–E487

    CAS  Google Scholar 

  • Zeytuni N, Baran D, Davidov D, Zarivach R (2012) Inter-phylum structural conservation of the magnetosome-associated TPR-containing protein, MamA. J Struct Biol 180:479–487

    CAS  PubMed  Google Scholar 

  • Zhang C, Meng X, Li N, Wang W, Sun Y, Jiang W, Guan G, Li Y (2013) Two bifunctional enzymes with ferric reduction ability play complementary roles during magnetosome synthesis in Magnetospirillum gryphiswaldense MSR-1. J Bacteriol 195:876–885

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao M, Liang C, Li A, Chang J, Wang H, Yan R, Zhang J, Tai J (2010) Magnetic paclitaxel nanoparticles inhibit glioma growth and improve the survival of rats bearing glioma xenografts. Anticancer Res 30:2217–2223

    CAS  PubMed  Google Scholar 

  • Zhao G, Sanchez S, Schmidt OG, Pumera M (2012) Micromotors with built-in compasses. Chem Commun 48:10090–10092

    CAS  Google Scholar 

  • Zhou W, Zhang Y, Ding X, Liu Y, Shen F, Zhang X, Deng S, Xiao H, Yang G, Peng H (2012) Magnetotactic bacteria: promising biosorbents for heavy metals. Appl Microbiol Biot 95:1097–1104

    CAS  Google Scholar 

Download references

Acknowledgments

We thank F. Abreu, D. Faivre, R. B. Frankel U. Lins, and D. Schüler for continual collaboration and extensive discussions. We have been supported by US National Science Foundation (NSF) Grants EAR-0920718 and EAR-0920299. DAB is currently supported by subcontract SC-12–384 from US Department of Energy contract DE-AC02–07CH11358 to the Ames Laboratory at Iowa State University. CTL is supported by the French national research agency ANR on the call-for-project P2 N (project MEFISTO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis A. Bazylinski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bazylinski, D., Lefèvre, C., Lower, B. (2014). Magnetotactic Bacteria, Magnetosomes, and Nanotechnology. In: Barton, L., Bazylinski, D., Xu, H. (eds) Nanomicrobiology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1667-2_3

Download citation

Publish with us

Policies and ethics