Skip to main content

S-layer Structure in Bacteria and Archaea

  • Chapter
  • First Online:
Nanomicrobiology

Abstract

In most archaeons and many bacteria, the cell surface is covered by a monomolecular and paracrystalline protein layer, called S-layer. S-layers serve as an outer protective shell and also act as molecular sieves and/or as cell-adhesion sites for exoenzymes. In bacteria, S-layers are associated either with peptidoglycan or with secondary cell wall polymers of the outer membrane. In archaea, the S-layer proteins (SLPs) are anchored to the cytoplasmic membrane and form the major cell wall component. A prominent feature of SLPs is their self-assembly into mono- or bilayers in solution or at interfaces. The unique self-assembling feature of S-layers provides the basis for a wide range of applications in biotechnology and nanobiology. This chapter covers the structural aspects of SLPs and S-layer assembly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Karadaghi S, Wang DN, Hovmoller S (1988) 3-Dimensional structure of the crystalline surface-layer from Aeromonas hydrophila. J Ultra Mol Struct R 101:92–97

    CAS  Google Scholar 

  • Albers SV, Meyer BH (2011) The archaeal cell envelope. Nat Rev Microbiol 9:414–426

    CAS  PubMed  Google Scholar 

  • Allred DB, Cheng A, Sarikaya M et al (2008) Three-dimensional architecture of inorganic nanoarrays electrodeposited through a surface-layer protein mask. Nano Lett 8:1434–1438

    CAS  PubMed  Google Scholar 

  • Altman E, Brisson JR, Messner P et al (1990) Chemical characterization of the regularly arranged surface layer glycoprotein of Clostridium thermosaccharolyticum D120–70. Eur J Biochem 188:73–82

    CAS  PubMed  Google Scholar 

  • Altman E, Schaffer C, Brisson JR et al (1996) Isolation and characterization of an amino sugar-rich glycopeptide from the surface layer glycoprotein of Thermoanaerobacterium thermosaccharolyticum E207–71. Carbohydr Res 295:245–253

    CAS  PubMed  Google Scholar 

  • Amat F, Comolli LR, Nomellini JF et al (2010) Analysis of the intact surface layer of caulobacter crescentus by cryo-electron tomography. J Bacteriol 192:5855–5865

    CAS  PubMed Central  PubMed  Google Scholar 

  • Anzengruber J, Pabst M, Neumann L et al (2013) Protein O-glucosylation in Lactobacillus buchneri. Glycoconj J 32:117–131

    Google Scholar 

  • Arbing MA, Chan S, Shin A et al (2012) Structure of the surface layer of the methanogenic archaean Methanosarcina acetivorans. Proc Natl Acad Sci U S A 109:11812–11817

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bahl H, Scholz H, Bayan N et al (1997) Molecular biology of S-layers. FEMS Microbiol Rev 20:47–98

    CAS  PubMed  Google Scholar 

  • Baranova E, Fronzes R, Garcia-Pino A et al (2012) SbsB structure and lattice reconstruction unveil Ca2+ triggered S-layer assembly. Nature 487:119–122

    CAS  PubMed  Google Scholar 

  • Bateman A, Coggill P, Finn RD (2010) DUFs: families in search of function. Acta Crystallogr F 66:1148–1152

    CAS  Google Scholar 

  • Baumeister W, Lembcke G (1992) Structural features of archaebacterial cell envelopes. J Bioenerg Biomembr 24:567–575

    CAS  PubMed  Google Scholar 

  • Baumeister W, Barth M, Hegerl R et al (1986) 3-dimensional structure of the regular surface-layer (Hpi Layer) of Deinococcus radiodurans. J Mol Biol 187:241–253

    CAS  PubMed  Google Scholar 

  • Beveridge TJ (1993) Current trends and future-prospects in prokaryotic envelope research—a microscopists view. J Appl Bacteriol 74:S143–S153

    Google Scholar 

  • Beveridge TJ, Stewart M, Doyle RJ et al (1985) Unusual stability of the Methanospirillum hungatei sheath. J Bacteriol 162:728–737

    CAS  PubMed Central  PubMed  Google Scholar 

  • Beveridge TJ, Koval SF, Sleytr UB et al (1993) Advances in bacterial paracrystalline surface-layers. Nato Adv Sci Inst Se 252:323–327

    Google Scholar 

  • Blackford BL, Xu W, Jericho MH et al (1994) Direct observation by scanning-tunneling-microscopy of the 2-dimensional lattice structure of the S-layer sheath of the archaeobacterium Methanospirillum hungatei Gp1. Scanning Microsc 8:507–512

    Google Scholar 

  • Boot HJ, Kolen CP, Pouwels PH (1995) Identification, cloning, and nucleotide sequence of a silent S-layer protein gene of Lactobacillus acidophilus ATCC 4356 which has extensive similarity with the S-layer protein gene of this species. J Bacteriol 177:7222–7230

    CAS  PubMed Central  PubMed  Google Scholar 

  • Breitwieser A, Kupcu S, Howorka S et al (1996) 2-D protein crystals as an immobilization matrix for producing reaction zones in dipstick-style immunoassays. BioTechniques 21:918–925

    CAS  PubMed  Google Scholar 

  • Brockl G, Behr M, Fabry S et al (1991) Analysis and nucleotide sequence of the genes encoding the surface-layer glycoproteins of the hyperthermophilic methanogens Methanothermus fervidus and Methanothermus sociabilis. Eur J Biochem 199:147–152

    CAS  PubMed  Google Scholar 

  • Calabi E, Ward S, Wren B et al (2001) Molecular characterization of the surface layer proteins from Clostridium difficile. Mol Microbiol 40:1187–1199

    CAS  PubMed  Google Scholar 

  • Calabi E, Calabi F, Phillips AD et al (2002) Binding of Clostridium difficile surface layer proteins to gastrointestinal tissues. Infect Immun 70:5770–5778

    CAS  PubMed Central  PubMed  Google Scholar 

  • Callegari ML, Riboli B, Sanders JW et al (1998) The S-layer gene of Lactobacillus helveticus CNRZ 892: cloning, sequence and heterologous expression. Microbiology 144(Part 3):719–726

    CAS  PubMed  Google Scholar 

  • Chami M, Bayan N, Peyret JL et al (1997) The S-layer protein of Corynebacterium glutamicum is anchored to the cell wall by its C-terminal hydrophobic domain. Mol Microbiol 23:483–492

    CAS  PubMed  Google Scholar 

  • Doig P, Emody L, Trust TJ (1992) Binding of laminin and fibronectin by the trypsin-resistant major structural domain of the crystalline virulence surface array protein of Aeromonas salmonicida. J Biol Chem 267:43–49

    CAS  PubMed  Google Scholar 

  • Dooley JSG, Trust TJ (1988) Surface protein-composition of Aeromonas hydrophila strains virulent for fish—identification of a surface array protein. J Bacteriol 170:499–506

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dooley JSG, Engelhardt H, Baumeister W et al (1989) 3-dimensional structure of an open form of the surface-layer from the fish pathogen Aeromonas salmonicida. J Bacteriol 171:190–197

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dufrene YF (2001) Application of atomic force microscopy to microbial surfaces: from reconstituted cell surface layers to living cells. Micron 32:153–165

    CAS  PubMed  Google Scholar 

  • Dworkin J, Blaser MJ (1997) Molecular mechanisms of Campylobacter fetus surface layer protein expression. Mol Microbiol 26:433–440

    CAS  PubMed  Google Scholar 

  • Egelseer E, Schocher I, Sara M et al (1995) The S-layer from Bacillus stearothermophilus DSM 2358 functions as an adhesion site for a high-molecular-weight amylase. J Bacteriol 177:1444–1451

    CAS  PubMed Central  PubMed  Google Scholar 

  • Egelseer EM, Schocher I, Sleytr UB et al (1996) Evidence that an N-terminal S-layer protein fragment triggers the release of a cell-associated high-molecular-weight amylase in Bacillus stearothermophilus ATCC 12980. J Bacteriol 178:5602–5609

    CAS  PubMed Central  PubMed  Google Scholar 

  • Egelseer EM, Leitner K, Jarosch M et al (1998) The S-layer proteins of two Bacillus stearothermophilus wild-type strains are bound via their N-terminal region to a secondary cell wall polymer of identical chemical composition. J Bacteriol 180:1488–1495

    CAS  PubMed Central  PubMed  Google Scholar 

  • Egelseer EM, Danhorn T, Pleschberger M et al (2001) Characterization of an S-layer glycoprotein produced in the course of S-layer variation of Bacillus stearothermophilus ATCC 12980 and sequencing and cloning of the sbsD gene encoding the protein moiety. Arch Microbiol 177:70–80

    CAS  PubMed  Google Scholar 

  • Eichler J, Adams MWW (2005) Posttranslational protein modification in Archaea. Microbiol Mol Biol R 69:393

    CAS  Google Scholar 

  • Engelhardt H (2007a) Are S-layers exoskeletons? The basic function of protein surface layers revisited. J Struct Biol 160:115–124

    CAS  Google Scholar 

  • Engelhardt H (2007b) Mechanism of osmoprotection by archaeal S-layers: a theoretical study. J Struct Biol 160:190–199

    CAS  Google Scholar 

  • Engelhardt H, Peters J (1998) Structural research on surface layers: a focus on stability, surface layer homology domains, and surface layer cell wall interactions. J Struct Biol 124:276–302

    CAS  PubMed  Google Scholar 

  • Ethordic A, Egelseer EM, Tesarz M et al (2012) Crystallization of domains involved in self-assembly of the S-layer protein SbsC. Acta Crystallogr F 68:1511–1514

    Google Scholar 

  • Etienne-Toumelin I, Sirard JC, Duflot E et al (1995) Characterization of the Bacillus anthracis S-layer: cloning and sequencing of the structural gene. J Bacteriol 177:614–620

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fagan RP, Fairweather NF (2014) Biogenesis and functions of bacterial S-layers. Nat Rev Microbiol 12:211–222

    CAS  PubMed  Google Scholar 

  • Fagan RP, Albesa-Jove D, Qazi O et al (2009) Structural insights into the molecular organization of the S-layer from Clostridium difficile. Mol Microbiol 71:1308–1322

    CAS  PubMed  Google Scholar 

  • Ferner-Ortner-Bleckmann J, Huber-Gries C, Pavkov T et al (2009) The high-molecular-mass amylase (HMMA) of Geobacillus stearothermophilus ATCC 12,980 interacts with the cell wall components by virtue of three specific binding regions. Mol Microbiol 72:1448–1461

    CAS  PubMed  Google Scholar 

  • Firtel M, Southam G, Harauz G et al (1994a) The organization of the paracrystalline multilayered spacer-plugs of Methanospirillum hungatei. J Struct Biol 112:160–171

    Google Scholar 

  • Firtel M, Xu W, Southam G et al (1994b) Tip-induced displacement and imaging of a multilayered bacterial structure by scanning-tunneling-microscopy. Ultramicroscopy 55:113–119

    Google Scholar 

  • Ford MJ, Nomellini JF, Smit J (2007) S-layer anchoring and localization of an S-layer-associated protease in Caulobacter crescentus. J Bacteriol 189:2226–2237

    CAS  PubMed Central  PubMed  Google Scholar 

  • Francoleon DR, Boontheung P, Yang Y et al (2009) S-layer, surface-accessible, and concanavalin A binding proteins of Methanosarcina acetivorans and Methanosarcina mazei. J Proteome Res 8:1972–1982

    CAS  PubMed Central  PubMed  Google Scholar 

  • Galagan JE, Nusbaum C, Roy A et al (2002) The genome of M. acetivorans reveals extensive metabolic and physiological diversity. Genome Res 12:532–542

    CAS  PubMed Central  PubMed  Google Scholar 

  • Garduno RA, Lee EJY, Kay WW (1992a) S-layer-mediated association of Aeromonas salmonicida with murine macrophages. Infect Immun 60:4373–4382

    CAS  Google Scholar 

  • Garduno RA, Phipps BM, Baumeister W et al (1992b) Novel structural patterns in divalent cation-depleted surface-layers of Aeromonas salmonicida. J Struct Biol 109:184–195

    CAS  Google Scholar 

  • Gilmour R, Messner P, Guffanti AA et al (2000) Two-dimensional gel electrophoresis analyses of pH-dependent protein expression in facultatively alkaliphilic Bacillus pseudofirmus OF4 lead to characterization of an S-layer protein with a role in alkaliphily. J Bacteriol 182:5969–5981

    CAS  PubMed Central  PubMed  Google Scholar 

  • Graham LL, Beveridge TJ (1994) Structural differentiation of the Bacillus subtilis 168 cell-wall. J Bacteriol 176:1413–1421

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gyorvary ES, Stein O, Pum D et al (2003) Self-assembly and recrystallization of bacterial S-layer proteins at silicon supports imaged in real time by atomic force microscopy. J Microsc 212:300–306

    CAS  PubMed  Google Scholar 

  • Horejs C, Pum D, Sleytr UB et al (2008) Structure prediction of an S-layer protein by the mean force method. J Chem Phys 128:065106

    CAS  PubMed  Google Scholar 

  • Horejs C, Pum D, Sleytr UB et al (2010) Surface layer protein characterization by small angle x-ray scattering and a fractal mean force concept: from protein structure to nanodisk assemblies. J Chem Phys 133:175102

    PubMed  Google Scholar 

  • Horejs C, Mitra MK, Pum D et al (2011) Monte Carlo study of the molecular mechanisms of surface-layer protein self-assembly. J Chem Phys 134:125103

    PubMed  Google Scholar 

  • Houwink AL (1953) A macromolecular mono-layer in the cell wall of Spirillum spec. Biochimica et Biophysica Acta 10:360–366

    CAS  PubMed  Google Scholar 

  • Houwink AL (1956) Flagella, gas vacuoles and cell-wall structure in Halobacterium halobium—an electron microscope study. J Gen Microbiol 15:146–150

    CAS  PubMed  Google Scholar 

  • Howorka S, Sara M, Wang Y et al (2000) Surface-accessible residues in the monomeric and assembled forms of a bacterial surface layer protein. J Biol Chem 275:37876–37886

    CAS  PubMed  Google Scholar 

  • Huber C, Ilk N, Runzler D et al (2005) The three S-layer-like homology motifs of the S-layer protein SbpA of Bacillus sphaericus CCM 2177 are not sufficient for binding to the pyruvylated secondary cell wall polymer. Mol Microbiol 55:197–205

    CAS  PubMed  Google Scholar 

  • Ilk N, Egelseer EM, Sleytr UB (2011) S-layer fusion proteins–construction principles and applications. Curr Opin Biotechnol 22:824–831

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jahn-Schmid B, Messner P, Unger FM et al (1996) Toward selective elicitation of TH1-controlled vaccination responses: vaccine applications of bacterial surface layer proteins. J Biotechnol 44:225–231

    CAS  PubMed  Google Scholar 

  • Jahn-Schmid B, Siemann U, Zenker A et al (1997) Bet v 1, the major birch pollen allergen, conjugated to crystalline bacterial cell surface proteins, expands allergen-specific T cells of the Th1/Th0 phenotype in vitro by induction of IL-12. Int Immunol 9:1867–1874

    CAS  PubMed  Google Scholar 

  • Janesch B, Koerdt A, Messner P et al (2013a) The S-layer homology domain-containing protein SlhA from Paenibacillus alvei CCM 2051(T) is important for swarming and biofilm formation. PloS One 8:e76566

    CAS  Google Scholar 

  • Janesch B, Messner P, Schaffer C (2013b) Are the surface layer homology domains essential for cell surface display and glycosylation of the S-layer protein from Paenibacillus alvei CCM 2051T? J Bacteriol 195:565–575

    CAS  Google Scholar 

  • Jarosch M, Egelseer EM, Mattanovich D et al (2000) S-layer gene sbsC of Bacillus stearothermophilus ATCC 12980: molecular characterization and heterologous expression in Escherichia coli. Microbiology 146(Part 2):273–281

    CAS  PubMed  Google Scholar 

  • Jarosch M, Egelseer EM, Huber C et al (2001) Analysis of the structure-function relationship of the S-layer protein SbsC of Bacillus stearothermophilus ATCC 12980 by producing truncated forms. Microbiology 147:1353–1363

    CAS  PubMed  Google Scholar 

  • Jing H, Takagi J, Liu JH et al (2002) Archaeal surface layer proteins contain beta propeller, PKD, and beta helix domains and are related to metazoan cell surface proteins. Structure 10:1453–1464

    CAS  PubMed  Google Scholar 

  • Kadurugamuwa JL, Mayer A, Messner P et al (1998) S-layered Aneurinibacillus and Bacillus spp. are susceptible to the lytic action of Pseudomonas aeruginosa membrane vesicles. J Bacteriol 180:2306–2311

    CAS  PubMed Central  PubMed  Google Scholar 

  • Karrasch S, Hegerl R, Hoh JH et al (1994) Atomic force microscopy produces faithful high-resolution images of protein surfaces in an aqueous environment. Proc Natl Acad Sci U S A 91:836–838

    CAS  PubMed Central  PubMed  Google Scholar 

  • Karrenberg FH, Wildhaber I, Baumeister W (1987) Surface-structure variants in Deinococcus radiodurans. Curr Microbiol 16:15–20

    CAS  Google Scholar 

  • Kern J, Schneewind O (2010) BslA, the S-layer adhesin of B. anthracis, is a virulence factor for anthrax pathogenesis. Mol Microbiol 75:324–332

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kern J, Wilton R, Zhang RG et al (2011) Structure of surface layer homology (SLH) domains from Bacillus anthracis surface array protein. J Biol Chem 286:26042–26049

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kinns H, Badelt-Lichtblau H, Egelseer EM et al (2010) Identifying assembly-inhibiting and assembly-tolerant sites in the SbsB S-layer protein from Geobacillus stearothermophilus. J Mol Biol 395:742–753

    CAS  PubMed  Google Scholar 

  • Konisky J, Lynn D, Hoppert M et al (1994) Identification of the Methanococcus voltae S-layer structural gene. J Bacteriol 176:1790–1792

    CAS  PubMed Central  PubMed  Google Scholar 

  • Koval SF (1988) Paracrystalline protein surface arrays on bacteria. Can J Microbiol 34:407–414

    CAS  Google Scholar 

  • Koval SF, Hynes SH (1991) Effect of paracrystalline protein surface-layers on predation by Bdellovibrio bacteriovorus. J Bacteriol 173:2244–2249

    CAS  PubMed Central  PubMed  Google Scholar 

  • Koval SF, Bayer ME (1997) Bacterial capsules: no barrier against Bdellovibrio. Microbiology (UK) 143:749–753

    CAS  Google Scholar 

  • Kuen B, Sleytr UB, Lubitz W (1994) Sequence analysis of the sbsA gene encoding the 130-kDa surface-layer protein of Bacillus stearothermophilus strain PV72. Gene 145:115–120

    CAS  PubMed  Google Scholar 

  • Kupcu Z, Marz L, Messner P et al (1984) Evidence for the glycoprotein nature of the crystalline cell wall surface layer of Bacillus stearothermophilus strain NRS2004/3a. FEBS Lett 173:185–190

    CAS  PubMed  Google Scholar 

  • Kupcu S, Sara M, Sleytr UB (1995) Liposomes coated with crystalline bacterial cells surface protein (S-layer) as immobilization structures for macromolecules. Biochimica et Biophysica Acta 1235:263–269

    CAS  PubMed  Google Scholar 

  • Kupcu S, Sleytr UB, Sara M (1996) Two-dimensional paracrystalline glycoprotein S-layers as a novel matrix for the immobilization of human IgG and their use as microparticles in immunoassays. J Immunol Methods 196:73–84

    CAS  PubMed  Google Scholar 

  • Kupcu S, Lohner K, Mader C et al (1998) Microcalorimetric study on the phase behaviour of S-layer coated liposomes. Mol Membr Biol 15:69–74

    CAS  PubMed  Google Scholar 

  • Lechner J, Sumper M (1987) The primary structure of a prokaryotic glycoprotein—cloning and sequencing of the cell-surface glycoprotein gene of Halobacteria. J Biol Chem 262:9724–9729

    CAS  PubMed  Google Scholar 

  • Lechner J, Wieland F, Sumper M (1986) Sulfated dolicholphosphate oligosaccharides are transiently methylated during biosynthesis of Halobacterial glycoproteins. Syst Appl Microbiol 7:286–292

    CAS  Google Scholar 

  • Leibovitz E, Ohayon H, Gounon P et al (1997) Characterization and subcellular localization of the Clostridium thermocellum scaffoldin dockerin binding protein SdbA. J Bacteriol 179:2519–2523

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lejardi A, Lopez AE, Sarasua JR et al (2013) Making novel bio-interfaces through bacterial protein recrystallization on biocompatible polylactide derivative films. J Chem Phys 139:121903

    PubMed  Google Scholar 

  • Lighezan L, Georgieva R, Neagu A (2012) A study of the thermal denaturation of the S-layer protein from Lactobacillus salivarius. Phys Scripta 86

    Google Scholar 

  • Lister TE, Pinhero PJ (2001) In vivo atomic force microscopy of surface proteins on Deinococcus radiodurans. Langmuir 17:2624–2628

    CAS  Google Scholar 

  • Liu SY, Gherardini FC, Matuschek M et al (1996) Cloning, sequencing, and expression of the gene encoding a large S-layer-associated endoxylanase from Thermoanaerobacterium sp strain JW/SL-YS 485 in Escherichia coli. J Bacteriol 178:1539–1547

    CAS  PubMed Central  PubMed  Google Scholar 

  • Luo Y, Frey EA, Pfuetzner RA et al (2000) Crystal structure of enteropathogenic Escherichia coli intimin-receptor complex. Nature 405:1073–1077

    CAS  PubMed  Google Scholar 

  • Lupas AN, Gruber M (2005) The structure of alpha-helical coiled coils. Adv Protein Chem 70:37–78

    CAS  PubMed  Google Scholar 

  • Mader C, Kupcu S, Sara M et al (1999) Stabilizing effect of an S-layer on liposomes towards thermal or mechanical stress. Biochimica et Biophysica Acta 1418:106–116

    CAS  PubMed  Google Scholar 

  • Mader C, Kupcu S, Sleytr UB et al (2000) S-layer-coated liposomes as a versatile system for entrapping and binding target molecules. Biochimica et Biophysica Acta 1463:142–150

    CAS  PubMed  Google Scholar 

  • Mader C, Huber C, Moll D et al (2004) Interaction of the crystalline bacterial cell surface layer protein SbsB and the secondary cell wall polymer of Geobacillus stearothermophilus PV72 assessed by real-time surface plasmon resonance biosensor technology. J Bacteriol 186:1758–1768

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mayerhofer LE, Macario AJL, Demacario EC (1992) Lamina, a novel multicellular form of Methanosarcina mazei S-6. J Bacteriol 174:309–314

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mescher MF, Strominger JL (1976) Purification and characterization of a prokaryotic glycoprotein from cell-envelope of Halobacterium salinarium. J Biol Chem 251:2005–2014

    CAS  PubMed  Google Scholar 

  • Mesnage S, Tosi-Couture E, Mock M et al (1997) Molecular characterization of the Bacillus anthracis main S-layer component: evidence that it is the major cell-associated antigen. Mol Microbiol 23:1147–1155

    CAS  PubMed  Google Scholar 

  • Mesnage S, Fontaine T, Mignot T et al (2000) Bacterial SLH domain proteins are non-covalently anchored to the cell surface via a conserved mechanism involving wall polysaccharide pyruvylation. EMBO J 19:4473–4484

    CAS  PubMed Central  PubMed  Google Scholar 

  • Messner P (1997) Bacterial glycoproteins. Glycoconj J 14:3–11

    CAS  PubMed  Google Scholar 

  • Messner P, Sleytr UB (1992) Crystalline bacterial cell-surface layers. Adv Microb Physiol 33:213–275

    CAS  PubMed  Google Scholar 

  • Messner P, Pum D, Sara M et al (1986a) Ultrastructure of the cell envelope of the archaebacteria Thermoproteus tenax and Thermoproteus neutrophilus. J Bacteriol 166:1046–1054

    CAS  Google Scholar 

  • Messner P, Pum D, Sleytr UB (1986b) Characterization of the ultrastructure and the self-assembly of the surface layer of Bacillus stearothermophilus strain NRS 2004/3a. J Ultra Mol Struct R 97:73–88

    CAS  Google Scholar 

  • Messner P, Allmaier G, Schaffer C et al (1997) Biochemistry of S-layers. FEMS Microbiol Rev 20:25–46

    CAS  PubMed  Google Scholar 

  • Messner P, Steiner K, Zarschler K et al (2008) S-layer nanoglycobiology of bacteria. Carbohydr Res 343:1934–1951

    CAS  PubMed  Google Scholar 

  • Moll D, Huber C, Schlegel B et al (2002) S-layer-streptavidin fusion proteins as template for nanopatterned molecular arrays. Proc Natl Acad Sci U S A 99:14646–14651

    CAS  PubMed Central  PubMed  Google Scholar 

  • Muller DJ, Baumeister W, Engel A (1996) Conformational change of the hexagonally packed intermediate layer of Deinococcus radiodurans monitored by atomic force microscopy. J Bacteriol 178:3025–3030

    CAS  PubMed Central  PubMed  Google Scholar 

  • Muller DJ, Baumeister W, Engel A (1999) Controlled unzipping of a bacterial surface layer with atomic force microscopy. Proc Natl Acad Sci U S A 96:13170–13174

    CAS  PubMed Central  PubMed  Google Scholar 

  • Murray RGE, Dooley JSG, Whippey PW et al (1988) Structure of an S-layer on a pathogenic strain of Aeromonas hydrophila. J Bacteriol 170:2625–2630

    CAS  PubMed Central  PubMed  Google Scholar 

  • Noonan B, Trust TJ (1995) Molecular analysis of an a-protein secretion mutant of Aeromonas salmonicida reveals a surface layer-specific protein secretion pathway. J Mol Biol 248:316–327

    CAS  PubMed  Google Scholar 

  • Norville JE, Kelly DF, Knight TF et al (2007) 7 angstrom projection map of the S-layer protein sbpA obtained with trehalose-embedded monolayer crystals. J Struct Biol 160:313–323

    CAS  PubMed Central  PubMed  Google Scholar 

  • Oh YJ, Sekot G, Duman M et al (2013) Characterizing the S-layer structure and anti-S-layer antibody recognition on intact Tannerella forsythia cells by scanning probe microscopy and small angle X-ray scattering. JMR 26:542–549

    CAS  PubMed  Google Scholar 

  • Ohnesorge F, Heckl WM, Haberle W et al (1992) Scanning force microscopy studies of the S-layers from Bacillus coagulans E38–66, Bacillus sphaericus CCM2177 and of an antibody binding process. Ultramicroscopy 42–44(Part B):1236–1242

    PubMed  Google Scholar 

  • Park TJ, Lee SJ, Park JP et al (2011) Characterization of a bacterial self-assembly surface layer protein and its application as an electrical nanobiosensor. J Nanosci Nanotechnol 11:402–407

    CAS  PubMed  Google Scholar 

  • Pavkov T, Oberer M, Egelseer EM et al (2003) Crystallization and preliminary structure determination of the C-terminal truncated domain of the S-layer protein SbsC. Acta Crystallogr D 59:1466–1468

    PubMed  Google Scholar 

  • Pavkov T, Egelseer EM, Tesarz M et al (2008) The structure and binding behavior of the bacterial cell surface layer protein SbsC. Structure 16:1226–1237

    CAS  PubMed  Google Scholar 

  • Pavkov T, Howorka S, Keller W (2011) The structure of bacterial S-layer proteins. In Howorka S (ed) Progress in molecular biology and translational science, vol 103. Academic Press, Burlington, pp 73–130

    Google Scholar 

  • Peters J, Peters M, Lottspeich F et al (1987) Nucleotide-sequence analysis of the gene encoding the Deinococcus radiodurans surface protein, derived amino-acid-sequence, and complementary protein chemical studies. J Bacteriol 169:5216–5223

    CAS  PubMed Central  PubMed  Google Scholar 

  • Peters J, Nitsch M, Kuhlmorgen B et al (1995) Tetrabrachion: a filamentous archaebacterial surface protein assembly of unusual structure and extreme stability. J Mol Biol 245:385–401

    CAS  PubMed  Google Scholar 

  • Peters J, Baumeister W, Lupas A (1996) Hyperthermostable surface layer protein tetrabrachion from the archaebacterium Staphylothermus marinus: evidence for the presence of a right-handed coiled coil derived from the primary structure. J Mol Biol 257:1031–1041

    CAS  PubMed  Google Scholar 

  • Petersen BO, Sara M, Mader C et al (2008) Structural characterization of the acid-degraded secondary cell wall polymer of Geobacillus stearothermophilus PV72/p2. Carbohydr Res 343:1346–1358

    CAS  PubMed  Google Scholar 

  • Peyfoon E, Meyer B, Hitchen PG et al (2010) The S-layer glycoprotein of the crenarchaeote Sulfolobus acidocaldarius is glycosylated at multiple sites with chitobiose-linked N-glycans. Archaea

    Google Scholar 

  • Peyret JL, Bayan N, Joliff G et al (1993) Characterization of the cspB gene encoding PS2, an ordered surface-layer protein in Corynebacterium glutamicum. Mol Microbiol 9:97–109

    CAS  PubMed  Google Scholar 

  • Posch G, Pabst M, Brecker L et al (2011) Characterization and scope of S-layer protein O-glycosylation in Tannerella forsythia. J Biol Chem 286:38714–38724

    CAS  PubMed Central  PubMed  Google Scholar 

  • Posch G, Andrukhov O, Vinogradov E et al (2013) Structure and immunogenicity of the rough-type lipopolysaccharide from the periodontal pathogen Tannerella forsythia. CVI 20:945–953

    CAS  PubMed Central  PubMed  Google Scholar 

  • Poxton IR, Mccoubrey J, Blair G (2001) The pathogenicity of Clostridium difficile. Clin Microbiol Infect 7:421–427

    CAS  PubMed  Google Scholar 

  • Pum D, Sara M, Sleytr UB (1989) Structure, surface charge, and self-assembly of the S-layer lattice from Bacillus coagulans E38–66. J Bacteriol 171:5296–5303

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pum D, Messner P, Sleytr UB (1991) Role of the S layer in morphogenesis and cell division of the archaebacterium Methanocorpusculum sinense. J Bacteriol 173:6865–6873

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pum D, Toca-Herrera JL, Sleytr UB (2013) S-layer protein self-assembly. Int J Mol Sci 14:2484–2501

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rachel R, Jakubowski U, Tietz H et al (1986) Projected structure of the surface protein of Deinococcus radiodurans determined to 8 a resolution by cryomicroscopy. Ultramicroscopy 20:305–316

    CAS  Google Scholar 

  • Runzler D, Huber C, Moll D et al (2004) Biophysical characterization of the entire bacterial surface layer protein SbsB and its two distinct functional domains. J Biol Chem 279:5207–5215

    PubMed  Google Scholar 

  • Sakakibara J, Nagano K, Murakami Y et al (2007) Loss of adherence ability to human gingival epithelial cells in S-layer protein-deficient mutants of Tannerella forsythensis. Microbiology 153:866–876

    CAS  PubMed  Google Scholar 

  • Sara M, Sleytr UB (1996) Biotechnology and biomimetic with crystalline bacterial cell surface layers (S-layers). Micron 27:141–156

    CAS  PubMed  Google Scholar 

  • Sara M, Sleytr UB (2000) S-Layer proteins. J Bacteriol 182:859–868

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sara M, Kalsner I, Sleytr UB (1988) Surface properties from the S-layer of Clostridium thermosaccharolyticum D120–70 and Clostridium thermohydrosulfuricum L111–69. Arch Microbiol 149:527–533

    CAS  PubMed  Google Scholar 

  • Sara M, Pum D, Sleytr UB (1992) Permeability and charge-dependent adsorption properties of the S-layer lattice from Bacillus coagulans E38–66. J Bacteriol 174:3487–3493

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sara M, Dekitsch C, Mayer HF et al (1998) Influence of the secondary cell wall polymer on the reassembly, recrystallization, and stability properties of the S-layer protein from Bacillus stearothermophilus PV72/p2. J Bacteriol 180:4146–4153

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schaffer C, Messner P (2004) Surface-layer glycoproteins: an example for the diversity of bacterial glycosylation with promising impacts on nanobiotechnology. Glycobiology 14:31R–42R

    PubMed  Google Scholar 

  • Schaffer C, Messner P (2005) The structure of secondary cell wall polymers: how Gram-positive bacteria stick their cell walls together. Microbiology 151:643–651

    PubMed  Google Scholar 

  • Schaffer C, Kahlig H, Christian R et al (1999) The diacetamidodideoxyuronic-acid-containing glycan chain of Bacillus stearothermophilus NRS 2004/3a represents the secondary cell-wall polymer of wild-type B. stearothermophilus strains. Microbiology 145(Part 7):1575–1583

    CAS  PubMed  Google Scholar 

  • Schaffer C, Wugeditsch T, Kahlig H et al (2002) The surface layer (S-layer) glycoprotein of Geobacillus stearothermophilus NRS 2004/3a. Analysis of its glycosylation. J Biol Chem 277:6230–6239

    CAS  PubMed  Google Scholar 

  • Scheuring S, Stahlberg H, Chami M et al (2002) Charting and unzipping the surface layer of Corynebacterium glutamicum with the atomic force microscope. Mol Microbiol 44:675–684

    CAS  PubMed  Google Scholar 

  • Scholz HC, Riedmann E, Witte A et al (2001) S-layer variation in Bacillus stearothermophilus PV72 is based on DNA rearrangements between the chromosome and the naturally occurring megaplasmids. J Bacteriol 183:1672–1679

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schultzelam S, Beveridge TJ (1994a) Nucleation of celestite and strontianite on a cyanobacterial S-layer. Appl Environ Microbiol 60:447–453

    CAS  Google Scholar 

  • Schultzelam S, Beveridge TJ (1994b) Physicochemical characteristics of the mineral-forming S-layer from the Cyanobacterium synechococcus strain Gl24. Can J Microbiol 40:216–223

    CAS  Google Scholar 

  • Schuster B, Gufler PC, Pum D et al (2004) S-layer proteins as supporting scaffoldings for functional lipid membranes. IEEE T Nanobiosci 3:16–21

    Google Scholar 

  • Sekot G, Posch G, Messner P et al (2011) Potential of the Tannerella forsythia S-layer to delay the immune response. J Dent Res 90:109–114

    CAS  PubMed  Google Scholar 

  • Sekot G, Posch G, Oh YJ et al (2012) Analysis of the cell surface layer ultrastructure of the oral pathogen Tannerella forsythia. Arch Microbiol 194:525–539

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sekot G, Schuster D, Messner P et al (2013) Small-angle X-ray scattering for imaging of surface layers on intact bacteria in the native environment. J Bacteriol 195:2408–2414

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shenton W, Pum D, Sleytr UB et al (1997) Synthesis of cadmium sulphide superlattices using self-assembled bacterial S-layers. Nature 389:585–587

    CAS  Google Scholar 

  • Shin SH, Comolli LR, Tscheliessnig R et al (2013) Self-assembly of “S-bilayers”, a step toward expanding the dimensionality of S-layer assemblies. ACS Nano 7:4946–4953

    CAS  PubMed  Google Scholar 

  • Simon P, Lichte H, Wahl R et al (2004) Electron holography of non-stained bacterial surface layer proteins. Bba-Biomembranes 1663:178–187

    CAS  PubMed  Google Scholar 

  • Sleytr UB, Thorne KJ (1976) Chemical characterization of the regularly arranged surface layers of Clostridium thermosaccharolyticum and Clostridium thermohydrosulfuricum. J Bacteriol 126:377–383

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sleytr UB, Beveridge TJ (1999) Bacterial S-layers. Trends Microbiol 7:253–260

    CAS  PubMed  Google Scholar 

  • Sleytr UB, Kocur M, Glauert AM et al (1973) A study by freeze-etching of the fine structure of Micrococcus radiodurans. Arch Mikrobiol 94:77–87

    CAS  PubMed  Google Scholar 

  • Sleytr UB, Sara M, Kupcu Z et al (1986) Structural and chemical characterization of S-layers of selected strains of Bacillus stearothermophilus and Desulfotomaculum nigrificans. Arch Microbiol 146:19–24

    CAS  PubMed  Google Scholar 

  • Sleytr UB, Messner P, Pum D et al (1993) Crystalline bacterial cell surface layers. Mol Microbiol 10:911–916

    CAS  PubMed  Google Scholar 

  • Sleytr UB, Pum D, Sara M (1997) Advances in S-layer nanotechnology and biomimetics. Adv Biophys 34:71–79

    CAS  PubMed  Google Scholar 

  • Sleytr UB, Messner P, Pum D et al (1999) Crystalline bacterial cell surface layers (S layers): from supramolecular cell structure to biomimetics and nanotechnology. Angew Chem Int Edit 38:1035–1054

    Google Scholar 

  • Smit J, Engelhardt H, Volker S et al (1992) The S-layer of Caulobacter crescentus: three-dimensional image reconstruction and structure analysis by electron microscopy. J Bacteriol 174:6527–6538

    CAS  PubMed Central  PubMed  Google Scholar 

  • Smith RH, Messner P, Lamontagne LR et al (1993) Induction of T-cell immunity to oligosaccharide antigens immobilized on crystalline bacterial surface layers (S-layers). Vaccine 11:919–924

    CAS  PubMed  Google Scholar 

  • Sowers KR, Boone JE, Gunsalus RP (1993a) Disaggregation of Methanosarcina spp. and growth as single cells at elevated osmolarity. Appl Environ Microbiol 59:3832–3839

    CAS  Google Scholar 

  • Sowers KR, Thai TT, Gunsalus RP (1993b) Transcriptional regulation of the carbon monoxide dehydrogenase gene (cdhA) in Methanosarcina thermophila. J Biol Chem 268:23172–23178

    CAS  Google Scholar 

  • Steindl C, Schaffer C, Wugeditsch T et al (2002) The first biantennary bacterial secondary cell wall polymer and its influence on S-layer glycoprotein assembly. Biochem J 368:483–494

    CAS  PubMed Central  PubMed  Google Scholar 

  • Steiner K, Pohlentz G, Dreisewerd K et al (2006) New insights into the glycosylation of the surface layer protein SgsE from Geobacillus stearothermophilus NRS 2004/3a. J Bacteriol 188:7914–7921

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stetefeld J, Jenny M, Schulthess T et al (2000) Crystal structure of a naturally occurring parallel right-handed coiled coil tetramer. Nat Struct Biol 7:772–776

    CAS  PubMed  Google Scholar 

  • Stewart M, Beveridge TJ, Sprott GD (1985) Crystalline order to high resolution in the sheath of Methanospirillum hungatei: a cross-beta structure. J Mol Biol 183:509–515

    CAS  PubMed  Google Scholar 

  • Stewart M, Beveridge TJ, Trust TJ (1986) 2 Patterns in the Aeromonas salmonicida a-layer may reflect a structural transformation that alters permeability. J Bacteriol 166:120–127

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sumper M, Berg E, Mengele R et al (1990) Primary structure and glycosylation of the S-layer protein of Haloferax volcanii. J Bacteriol 172:7111–7118

    CAS  PubMed Central  PubMed  Google Scholar 

  • Takeoka A, Takumi K, Koga T et al (1991) Purification and characterization of S-layer proteins from Clostridium difficile Gai-0714. J Gen Microbiol 137:261–267

    CAS  PubMed  Google Scholar 

  • Tang J, Ebner A, Badelt-Lichtblau H et al (2008) Recognition imaging and highly ordered molecular templating of bacterial S-layer nanoarrays containing affinity-tags. Nano Letters 8:4312–4319

    CAS  PubMed  Google Scholar 

  • Thompson SA, Shedd OL, Ray KC et al (1998) Campylobacter fetus surface layer proteins are transported by a type I secretion system. J Bacteriol 180:6450–6458

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thornley MJ, Glauert AM, Sleytr UB (1973) Isolation of outer membranes with an ordered array of surface subunits from Acinetobacter. J Bacteriol 114:1294–1308

    CAS  PubMed Central  PubMed  Google Scholar 

  • Toca-Herrera JL, Moreno-Flores S, Friedmann J et al (2004) Chemical and thermal denaturation of crystalline bacterial S-layer proteins: an atomic force microscopy study. Microsc Res Tech 65:226–234

    CAS  PubMed  Google Scholar 

  • Trust TJ, Kostrzynska M, Emody L et al (1993) High-affinity binding of the basement-membrane protein collagen type-IV to the crystalline virulence surface protein array of Aeromonas salmonicida. Mol Microbiol 7:593–600

    CAS  PubMed  Google Scholar 

  • Tsuboi A, Uchihi R, Tabata R et al (1986) Characterization of the genes-coding for 2 major cell-wall proteins from protein-producing Bacillus brevis 47—complete nucleotide-sequence of the outer wall protein gene. J Bacteriol 168:365–373

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weigert S, Sara M (1995) Surface modification of an ultrafiltration membrane with crystalline-structure and studies on interactions with selected protein molecules. J Membrane Sci 106:147–159

    CAS  Google Scholar 

  • Weigert S, Sara M (1996) Ultrafiltration membranes prepared from crystalline bacterial cell surface layers as model systems for studying the influence of surface properties on protein adsorption. J Membrane Sci 121:185–196

    CAS  Google Scholar 

  • Weiner C, Sara M, Dasgupta G et al (1994a) Affinity cross-flow filtration: purification of IgG with a novel protein a affinity matrix prepared from two-dimensional protein crystals. Biotechnol Bioeng 44:55–65

    CAS  Google Scholar 

  • Weiner C, Sara M, Sleytr UB (1994b) Novel protein a affinity matrix prepared from two-dimensional protein crystals. Biotechnol Bioeng 43:321–330

    CAS  Google Scholar 

  • Wiegrabe W, Nonnenmacher M, Guckenberger R et al (1991) Atomic force microscopy of a hydrated bacterial surface protein. J Microsc (Oxf) 163:79–84

    CAS  Google Scholar 

  • Wugeditsch T, Zachara NE, Puchberger M et al (1999) Structural heterogeneity in the core oligosaccharide of the S-layer glycoprotein from Aneurinibacillus thermoaerophilus DSM 10155. Glycobiology 9:787–795

    CAS  PubMed  Google Scholar 

  • Zhao GS, Ali E, Sakka M et al (2006) Binding of S-layer homology modules from Clostridium thermocellum SdbA to peptidoglycans. Appl Microbiol Biotechnol 70:464–469

    CAS  PubMed  Google Scholar 

  • Zuber B, Chami M, Houssin C et al (2008) Direct visualization of the outer membrane of mycobacteria and corynebacteria in their native state. J Bacteriol 190:5672–5680

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Remaut .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Madhurantakam, C., Howorka, S., Remaut, H. (2014). S-layer Structure in Bacteria and Archaea. In: Barton, L., Bazylinski, D., Xu, H. (eds) Nanomicrobiology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1667-2_2

Download citation

Publish with us

Policies and ethics