Skip to main content

Improvement of Human Multilineage Hematopoietic Engraftment by Cytokine Knock-in Replacement in Human‐Hemato‐Lymphoid System Mice

  • Chapter
  • First Online:
  • 898 Accesses

Abstract

Mice carrying a human hemato-lymphoid system (HHLS mice) represent a valuable tool to study human immunity, inflammation, and hematopoiesis in in vivo settings. However, in currently available models of HHLS mice, the development and/or function of many human immune cell types is suboptimal. This condition is mainly due to a reduced or absent cross-reactivity of cytokines produced by the mouse host on the human cells. Here, we describe the different methods by which human cytokines can be delivered in HHLS mice in order to support human hematopoiesis and immune function. In particular, we focus our discussion on genetically modified host mice in which mouse cytokines are replaced by their human counterparts.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Mestas J, Hughes CC. Of mice and not men: differences between mouse and human immunology. J Immunol (Baltimore, Md: 1950). 2004;172(5):2731–8. PubMed PMID: 14978070. Epub 2004/02/24. eng.

    Article  CAS  PubMed  Google Scholar 

  2. Rongvaux A, Takizawa H, Strowig T, Willinger T, Eynon EE, Flavell RA, et al. Human hemato‐lymphoid system mice: current use and future potential for medicine. Annu Rev Immunol. 2013;31:635–74. PubMed PMID: 23330956. Epub 2013/01/22. eng.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Shultz LD, Brehm MA, Garcia-Martinez JV, Greiner DL. Humanized mice for immune system investigation: progress, promise and challenges. Nat Rev Immunol. 2012;12(11):786–98. PubMed PMID: 23059428. Epub 2012/10/13. eng.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Mosier DE, Gulizia RJ, Baird SM, Wilson DB. Transfer of a functional human immune system to mice with severe combined immunodeficiency. Nature. 1988;335(6187):256–9. PubMed PMID: 2970594. Epub 1988/09/15. eng.

    Article  CAS  PubMed  Google Scholar 

  5. McCune JM, Namikawa R, Kaneshima H, Shultz LD, Lieberman M, Weissman IL. The SCID-hu mouse: murine model for the analysis of human hematolymphoid differentiation and function. Science (New York, NY). 1988;241(4873):1632–9. PubMed PMID: 2971269. Epub 1988/09/23. eng.

    Article  CAS  PubMed  Google Scholar 

  6. Kamel-Reid S, Dick JE. Engraftment of immune-deficient mice with human hematopoietic stem cells. Science (New York, NY). 1988;242(4886):1706–9. PubMed PMID: 2904703. Epub 1988/12/23. eng.

    Article  CAS  PubMed  Google Scholar 

  7. Legrand N, Weijer K, Spits H. Experimental models to study development and function of the human immune system in vivo. J Immunol (Baltimore, Md: 1950). 2006;176(4):2053–8. PubMed PMID: 16455958. Epub 2006/02/04. eng.

    Article  CAS  PubMed  Google Scholar 

  8. Shultz LD, Ishikawa F, Greiner DL. Humanized mice in translational biomedical research. Nat Rev Immunol. 2007;7(2):118–30. PubMed PMID: 17259968. Epub 2007/01/30. eng.

    Article  CAS  PubMed  Google Scholar 

  9. Mazurier F, Fontanellas A, Salesse S, Taine L, Landriau S, Moreau-Gaudry F, et al. A novel immunodeficient mouse model–RAG2 x common cytokine receptor gamma chain double mutants–requiring exogenous cytokine administration for human hematopoietic stem cell engraftment. J Interferon Cytokine Res. 1999;19(5):533–41. PubMed PMID: 10386866. Epub 1999/07/01. eng.

    Article  CAS  PubMed  Google Scholar 

  10. Shultz LD, Lang PA, Christianson SW, Gott B, Lyons B, Umeda S, et al. NOD/LtSz‐Rag1null mice: an immunodeficient and radioresistant model for engraftment of human hematolymphoid cells, HIV infection, and adoptive transfer of NOD mouse diabetogenic T cells. J Immunol (Baltimore, Md: 1950). 2000;164(5):2496–507. PubMed PMID: 10679087. Epub 2000/02/29. eng.

    Google Scholar 

  11. Traggiai E, Chicha L, Mazzucchelli L, Bronz L, Piffaretti JC, Lanzavecchia A, et al. Development of a human adaptive immune system in cord blood cell-transplanted mice. Science (New York, NY). 2004;304(5667):104–7. PubMed PMID: 15064419. Epub 2004/04/06. eng.

    Article  CAS  PubMed  Google Scholar 

  12. Ito M, Hiramatsu H, Kobayashi K, Suzue K, Kawahata M, Hioki K, et al. NOD/SCID/gamma(c)(null) mouse: an excellent recipient mouse model for engraftment of human cells. Blood. 2002;100(9):3175–82. PubMed PMID: 12384415. Epub 2002/10/18. eng.

    Article  CAS  PubMed  Google Scholar 

  13. Ishikawa F, Yasukawa M, Lyons B, Yoshida S, Miyamoto T, Yoshimoto G, et al. Development of functional human blood and immune systems in NOD/SCID/IL2 receptor {gamma} chain(null) mice. Blood. 2005;106(5):1565–73. PubMed PMID: 15920010. Pubmed Central PMCID: 1895228. Epub 2005/05/28. eng.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Takenaka K, Prasolava TK, Wang JC, Mortin-Toth SM, Khalouei S, Gan OI, et al. Polymorphism in Sirpa modulates engraftment of human hematopoietic stem cells. Nat Immunol. 2007;8(12):1313–23. PubMed PMID: 17982459. Epub 2007/11/06. eng.

    Article  CAS  PubMed  Google Scholar 

  15. Takizawa H, Manz MG. Macrophage tolerance: CD47‐SIRP-alpha-mediated signals matter. Nat Immunol. 2007;8(12):1287–9. PubMed PMID: 18026079. Epub 2007/11/21. eng.

    Article  CAS  PubMed  Google Scholar 

  16. Legrand N, Huntington ND, Nagasawa M, Bakker AQ, Schotte R, Strick-Marchand H, et al. Functional CD47/signal regulatory protein alpha (SIRP(alpha)) interaction is required for optimal human T- and natural killer- (NK) cell homeostasis in vivo. Proc Natl Acad Sci U S A. 2011;108(32):13224–9. PubMed PMID: 21788504. Pubmed Central PMCID: 3156191. Epub 2011/07/27. eng.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Strowig T, Rongvaux A, Rathinam C, Takizawa H, Borsotti C, Philbrick W, et al. Transgenic expression of human signal regulatory protein alpha in Rag2−/−gamma(c)−/− mice improves engraftment of human hematopoietic cells in humanized mice. Proc Natl Acad Sci U S A. 2011;108(32):13218–23. PubMed PMID: 21788509. Pubmed Central PMCID: 3156175. Epub 2011/07/27. eng.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Manz MG. Human‐hemato‐lymphoid‐system mice: opportunities and challenges. Immunity. 2007;26(5):537–41. PubMed PMID: 17521579. Epub 2007/05/25. eng.

    Article  CAS  PubMed  Google Scholar 

  19. Willinger T, Rongvaux A, Strowig T, Manz MG, Flavell RA. Improving human hemato‐lymphoid‐system mice by cytokine knock‐in gene replacement. Trends Immunol. 2011;32(7):321–7. PubMed PMID: 21697012. Epub 2011/06/24. eng.

    Article  CAS  PubMed  Google Scholar 

  20. Lapidot T, Pflumio F, Doedens M, Murdoch B, Williams DE, Dick JE. Cytokine stimulation of multilineage hematopoiesis from immature human cells engrafted in SCID mice. Science (New York, NY). 1992;255(5048):1137–41. PubMed PMID: 1372131. Epub 1992/02/28. eng.

    Article  CAS  PubMed  Google Scholar 

  21. van Lent AU, Dontje W, Nagasawa M, Siamari R, Bakker AQ, Pouw SM, et al. IL‐7 enhances thymic human T cell development in “human immune system” Rag2−/−IL-2Rgammac−/− mice without affecting peripheral T cell homeostasis. J Immunol (Baltimore, Md: 1950). 2009;183(12):7645–55. PubMed PMID: 19923447. Epub 2009/11/20. eng.

    Article  PubMed  Google Scholar 

  22. Huntington ND, Legrand N, Alves NL, Jaron B, Weijer K, Plet A, et al. IL‐15 trans-presentation promotes human NK cell development and differentiation in vivo. J Exp Med. 2009;206(1):25–34. PubMed PMID: 19103877. Pubmed Central PMCID: 2626663. Epub 2008/12/24. eng.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Hu Z, Van Rooijen N, Yang YG. Macrophages prevent human red blood cell reconstitution in immunodeficient mice. Blood. 2011;118(22):5938–46. PubMed PMID: 21926352. Pubmed Central PMCID: 3228505. Epub 2011/09/20. eng.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. O’Connell RM, Balazs AB, Rao DS, Kivork C, Yang L, Baltimore D. Lentiviral vector delivery of human interleukin‐7 (hIL‐7) to human immune system (HIS) mice expands T lymphocyte populations. PloS One. 2010;5(8):e12009. PubMed PMID: 20700454. Pubmed Central PMCID: 2917362. Epub 2010/08/12. eng.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Chen Q, Khoury M, Chen J. Expression of human cytokines dramatically improves reconstitution of specific human-blood lineage cells in humanized mice. Proc Natl Acad Sci U S A. 2009;106(51):21783–8. PubMed PMID: 19966223. Pubmed Central PMCID: 2789167. Epub 2009/12/08. eng.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Nicolini FE, Cashman JD, Hogge DE, Humphries RK, Eaves CJ. NOD/SCID mice engineered to express human IL-3, GM‐CSF and Steel factor constitutively mobilize engrafted human progenitors and compromise human stem cell regeneration. Leukemia. 2004;18(2):341–7. PubMed PMID: 14628073. Epub 2003/11/25. eng.

    Article  CAS  PubMed  Google Scholar 

  27. Brehm MA, Racki WJ, Leif J, Burzenski L, Hosur V, Wetmore A, et al. Engraftment of human HSCs in nonirradiated newborn NOD-scid IL2rgamma null mice is enhanced by transgenic expression of membrane-bound human SCF. Blood. 2012;119(12):2778–88. PubMed PMID: 22246028. Pubmed Central PMCID: 3327456. Epub 2012/01/17. eng.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Takagi S, Saito Y, Hijikata A, Tanaka S, Watanabe T, Hasegawa T, et al. Membrane‐bound human SCF/KL promotes in vivo human hematopoietic engraftment and myeloid differentiation. Blood. 2012;119(12):2768–77. PubMed PMID: 22279057. Pubmed Central PMCID: 3327455. Epub 2012/01/27. eng.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Valenzuela DM, Murphy AJ, Frendewey D, Gale NW, Economides AN, Auerbach W, et al. High‐throughput engineering of the mouse genome coupled with high-resolution expression analysis. Nat Biotechnol. 2003;21(6):652–9. PubMed PMID: 12730667. Epub 2003/05/06. eng.

    Article  CAS  PubMed  Google Scholar 

  30. Rongvaux A, Willinger T, Takizawa H, Rathinam C, Auerbach W, Murphy AJ, et al. Human thrombopoietin knockin mice efficiently support human hematopoiesis in vivo. Proc Natl Acad Sci U S A. 2011;108(6):2378–83. PubMed PMID: 21262827. Pubmed Central PMCID: 3038726. Epub 2011/01/26. eng.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Willinger T, Rongvaux A, Takizawa H, Yancopoulos GD, Valenzuela DM, Murphy AJ, et al. Human IL‐3/GM‐CSF knock‐in mice support human alveolar macrophage development and human immune responses in the lung. Proc Natl Acad Sci U S A. 2011;108(6):2390–5. PubMed PMID: 21262803. Pubmed Central PMCID: 3038773. Epub 2011/01/26. eng.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Rathinam C, Poueymirou WT, Rojas J, Murphy AJ, Valenzuela DM, Yancopoulos GD, et al. Efficient differentiation and function of human macrophages in humanized CSF‐1 mice. Blood. 2011;118(11):3119–28. PubMed PMID: 21791433. Epub 2011/07/28. eng.

    Article  CAS  PubMed  Google Scholar 

  33. Kondo M, Wagers AJ, Manz MG, Prohaska SS, Scherer DC, Beilhack GF, et al. Biology of hematopoietic stem cells and progenitors: implications for clinical application. Annu Rev Immunol. 2003;21:759–806. PubMed PMID: 12615892. Epub 2003/03/05. eng.

    Article  CAS  PubMed  Google Scholar 

  34. Doulatov S, Notta F, Laurenti E, Dick JE. Hematopoiesis: a human perspective. Cell Stem Cell. 2012;10(2):120–36. PubMed PMID: 22305562. Epub 2012/02/07. eng.

    Article  CAS  PubMed  Google Scholar 

  35. Fox N, Priestley G, Papayannopoulou T, Kaushansky K. Thrombopoietin expands hematopoietic stem cells after transplantation. J Clin Invest. 2002;110(3):389–94. PubMed PMID: 12163458. Pubmed Central PMCID: 151089. Epub 2002/08/07. eng.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Kirito K, Fox N, Kaushansky K. Thrombopoietin stimulates Hoxb4 expression: an explanation for the favorable effects of TPO on hematopoietic stem cells. Blood. 2003;102(9):3172–8. PubMed PMID: 12855555. Epub 2003/07/12. eng.

    Article  PubMed  Google Scholar 

  37. Qian H, Buza-Vidas N, Hyland CD, Jensen CT, Antonchuk J, Mansson R, et al. Critical role of thrombopoietin in maintaining adult quiescent hematopoietic stem cells. Cell Stem Cell. 2007;1(6):671–84. PubMed PMID: 18371408. Epub 2008/03/29. eng.

    Article  CAS  PubMed  Google Scholar 

  38. Yoshihara H, Arai F, Hosokawa K, Hagiwara T, Takubo K, Nakamura Y, et al. Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche. Cell Stem Cell. 2007;1(6):685–97. PubMed PMID: 18371409. Epub 2008/03/29. eng.

    Article  CAS  PubMed  Google Scholar 

  39. Scotti C, Piccinini E, Takizawa H, Todorov A, Bourgine P, Papadimitropoulos A, et al. Engineering of a functional bone organ through endochondral ossification. Proc Natl Acad Sci U S A. 2013;110(10):3997–4002. PubMed PMID: 23401508. Pubmed Central PMCID: PMC3593845. Epub 2013/02/13. eng.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Dranoff G, Crawford AD, Sadelain M, Ream B, Rashid A, Bronson RT, et al. Involvement of granulocyte‐macrophage colony-stimulating factor in pulmonary homeostasis. Science (New York, NY). 1994;264(5159):713–6. PubMed PMID: 8171324. Epub 1994/04/29. eng.

    Article  CAS  PubMed  Google Scholar 

  41. Stanley E, Lieschke GJ, Grail D, Metcalf D, Hodgson G, Gall JA, et al. Granulocyte/macrophage colony‐stimulating factor-deficient mice show no major perturbation of hematopoiesis but develop a characteristic pulmonary pathology. Proc Natl Acad Sci U S A. 1994;91(12):5592–6. PubMed PMID: 8202532. Pubmed Central PMCID: 44042. Epub 1994/06/07. eng.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Auffray C, Sieweke MH, Geissmann F. Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annu Rev Immunol. 2009;27:669–92. PubMed PMID: 19132917. Epub 2009/01/10. eng.

    Article  CAS  PubMed  Google Scholar 

  43. Chow A, Brown BD, Merad M. Studying the mononuclear phagocyte system in the molecular age. Nat Rev Immunol. 2011;11(11):788–98. PubMed PMID: 22025056. Epub 2011/10/26. eng.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard A. Flavell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rongvaux, A., Manz, M., Flavell, R. (2014). Improvement of Human Multilineage Hematopoietic Engraftment by Cytokine Knock-in Replacement in Human‐Hemato‐Lymphoid System Mice. In: Poluektova, L., Garcia, J., Koyanagi, Y., Manz, M., Tager, A. (eds) Humanized Mice for HIV Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1655-9_8

Download citation

Publish with us

Policies and ethics