Skip to main content

BM Hematopoietic Niche Occupancy Defect of HSC in Scid Mice

  • Chapter
  • First Online:
Book cover Humanized Mice for HIV Research
  • 882 Accesses

Abstract

Humanized mice allow the development of human immune system in the host and facilitate in vivo human hematology and immunology research. Engraftment of human hematopoietic stem cell (HSC)/(HPC) into these host mice provides long-term multilineage hematopoiesis and generation of human immune responses against a variety of antigens including HIV.

Development of such mice has been mainly based on the recombination activating genes 1 and 2 (Rag1 and Rag2) deficient or severe combined immune deficiency (scid) mice, and the immunodeficiency had been considered responsible for the engraftment of human hematopoietic tissues. While some scid mice will spontaneously develop partial immune reactivity, display “leaky” phenotype, Rag1 or Rag2 deficient mice show a “nonleaky” phenotype. However, xenoengraftment of human hematopoietic tissue into the Rag1- or Rag2-based mice are not superior to scid-based mice. Furthermore, wild-type HSCs can significantly engraft into unconditioned scid mice, compared to Rag1 −/− mice, suggesting that immunodeficiency itself may not be the primary characteristic permitting engraftment in scid mice. We proposed that a defect in bone marrow (BM) hematopoietic niche occupancy of scid HSCs contributes to the conduciveness of engraftment by exogenous HSCs, including human HSCs.

In this chapter, we discuss the mechanism by which scid mice are more conductive to exogenous HSCs. We characterize the intrinsic properties of HSCs in scid mice and compare those with Rag1 −/− HSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Manz MG. Human-hemato-lymphoid-system mice: opportunities and challenges. Immunity. 2007;26(5):537–41.

    Article  CAS  PubMed  Google Scholar 

  2. Wilson A, Laurenti E, Trumpp A. Balancing dormant and self-renewing hematopoietic stem cells. Curr Opin Genet Dev. 2009;19(5):461–8.

    Article  CAS  PubMed  Google Scholar 

  3. Orford KW, Scadden DT. Deconstructing stem cell self-renewal: genetic insights into cell-cycle regulation. Nat Rev Genet. 2008;9(2):115–28.

    Article  CAS  PubMed  Google Scholar 

  4. Pietras EM, Warr MR, Passegue E. Cell cycle regulation in hematopoietic stem cells. J Cell Biol. 2011;195(5):709–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Rossi L, Lin KK, Boles NC, Yang L, King KY, Jeong M, et al. Less is more: unveiling the functional core of hematopoietic stem cells through knockout mice. Cell Stem Cell. 2012;11(3):302–17.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Yilmaz OH, Valdez R, Theisen BK, Guo W, Ferguson DO, Wu H, et al. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature. 2006;441(7092):475–82.

    Article  CAS  PubMed  Google Scholar 

  7. Yilmaz OH, Morrison SJ. The PI-3kinase pathway in hematopoietic stem cells and leukemia-initiating cells: a mechanistic difference between normal and cancer stem cells. Blood Cells Mol Dis. 2008;41(1):73–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Miyamoto K, Araki KY, Naka K, Arai F, Takubo K, Yamazaki S, et al. Foxo3a is essential for maintenance of the hematopoietic stem cell pool. Cell Stem Cell. 2007;1(1):101–12.

    Article  CAS  PubMed  Google Scholar 

  9. Yalcin S, Zhang X, Luciano JP, Mungamuri SK, Marinkovic D, Vercherat C, et al. Foxo3 is essential for the regulation of ataxia telangiectasia mutated and oxidative stress-mediated homeostasis of hematopoietic stem cells. J Biol Chem. 2008;283(37):25692–705.

    Article  CAS  PubMed  Google Scholar 

  10. Tothova Z, Kollipara R, Huntly BJ, Lee BH, Castrillon DH, Cullen DE, et al. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell. 2007;128(2):325–39.

    Article  CAS  PubMed  Google Scholar 

  11. Papayannopoulou T, Scadden DT. Stem-cell ecology and stem cells in motion. Blood. 2008;111(8):3923–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Wilson A, Trumpp A. Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol. 2006;6(2):93–106.

    Article  CAS  PubMed  Google Scholar 

  13. Ema H, Suda T. Two anatomically distinct niches regulate stem cell activity. Blood. 2012;120(11):2174–81.

    Article  CAS  PubMed  Google Scholar 

  14. Lo Celso C, Scadden DT. The haematopoietic stem cell niche at a glance. J Cell Sci. 2011;124(Pt 21):3529–35.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Arai F, Hirao A, Ohmura M, Sato H, Matsuoka S, Takubo K, et al. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell. 2004;118(2):149–61.

    Article  CAS  PubMed  Google Scholar 

  16. Broxmeyer HE. Chemokines in hematopoiesis. Curr Opin Hematol. 2008;15(1):49–58.

    Article  CAS  PubMed  Google Scholar 

  17. Lapidot T, Dar A, Kollet O. How do stem cells find their way home? Blood. 2005;106(6):1901–10.

    Article  CAS  PubMed  Google Scholar 

  18. Nie Y, Han YC, Zou YR. CXCR4 is required for the quiescence of primitive hematopoietic cells. J Exp Med. 2008;205(4):777–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Sugiyama T, Kohara H, Noda M, Nagasawa T. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity. 2006;25(6):977–88.

    Article  CAS  PubMed  Google Scholar 

  20. Thoren LA, Liuba K, Bryder D, Nygren JM, Jensen CT, Qian H, et al. Kit regulates maintenance of quiescent hematopoietic stem cells. J Immunol. 2008;180(4):2045–53.

    Article  CAS  PubMed  Google Scholar 

  21. Geissler EN, Russell ES. Analysis of the hematopoietic effects of new dominant spotting (W) mutations of the mouse. I. Influence upon hematopoietic stem cells. Exp Hematol. 1983;11(6):452–60.

    CAS  PubMed  Google Scholar 

  22. Sharma Y, Astle CM, Harrison DE. Heterozygous kit mutants with little or no apparent anemia exhibit large defects in overall hematopoietic stem cell function. Exp Hematol. 2007;35(2):214–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Bhattacharya D, Rossi DJ, Bryder D, Weissman IL. Purified hematopoietic stem cell engraftment of rare niches corrects severe lymphoid deficiencies without host conditioning. J Exp Med. 2006;203(1):73–85.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Czechowicz A, Kraft D, Weissman IL, Bhattacharya D. Efficient transplantation via antibody-based clearance of hematopoietic stem cell niches. Science. 2007;318(5854):1296–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Xue X, Pech NK, Shelley WC, Srour EF, Yoder MC, Dinauer MC. Antibody targeting KIT as pretransplantation conditioning in immunocompetent mice. Blood. 2010;116(24):5419–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Migliaccio AR, Carta C, Migliaccio G. In vivo expansion of purified hematopoietic stem cells transplanted in nonablated W/Wv mice. Exp Hematol. 1999;27(11):1655–66.

    Article  CAS  PubMed  Google Scholar 

  27. Fleischman RA. From white spots to stem cells: the role of the Kit receptor in mammalian development. Trends Genet. 1993;9(8):285–90.

    Article  CAS  PubMed  Google Scholar 

  28. Russell ES. Hereditary anemias of the mouse: a review for geneticists. Adv Genet. 1979;20:357–459.

    Article  CAS  PubMed  Google Scholar 

  29. Lo Celso C, Fleming HE, Wu JW, Zhao CX, Miake-Lye S, Fujisaki J, et al. Live-animal tracking of individual haematopoietic stem/progenitor cells in their niche. Nature. 2009;457(7225):92–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Xie Y, Yin T, Wiegraebe W, He XC, Miller D, Stark D, et al. Detection of functional haematopoietic stem cell niche using real-time imaging. Nature. 2009;457(7225):97–101.

    Article  CAS  PubMed  Google Scholar 

  31. Qing Y, Lin Y, Gerson SL. An intrinsic BM hematopoietic niche occupancy defect of HSC in scid mice facilitates exogenous HSC engraftment. Blood. 2012;119(7):1768–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Lieber MR. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem. 2010;79:181–211.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Antonchuk J, Hyland CD, Hilton DJ, Alexander WS. Synergistic effects on erythropoiesis, thrombopoiesis, and stem cell competitiveness in mice deficient in thrombopoietin and steel factor receptors. Blood. 2004;104(5):1306–13.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanton L. Gerson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Qing, Y., Gerson, S. (2014). BM Hematopoietic Niche Occupancy Defect of HSC in Scid Mice. In: Poluektova, L., Garcia, J., Koyanagi, Y., Manz, M., Tager, A. (eds) Humanized Mice for HIV Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1655-9_7

Download citation

Publish with us

Policies and ethics