Skip to main content

Impact of the Mouse IL-2Rγ Chain on Lymphoid Tissue Development and Human Reconstitution in Immunodeficient Mice

  • Chapter
  • First Online:
Book cover Humanized Mice for HIV Research

Abstract

Immunodeficient mouse strains with and without a functional mouse interleukin (IL)-2 receptor gamma chain (mouse IL-2Rγ chain) are used to generate humanized mice. Common strains for this purpose include nonobese diabetic (NOD)/severe combined immune deficiency (SCID) mice which have functional mouse IL-2Rγ chain as well as NOD/SCID IL-2Rγc knockout (NOG or NSG) mice and Rag2null IL-2Rγcnull (Rag2γc) mice which lack this molecule. Until recently, the role of the mouse IL-2Rγ chain in lymphoid tissue development and human reconstitution had been underappreciated in the field of humanized mouse research. The goals of this article are to consolidate information on this topic to aid researchers in choosing the most appropriate mouse strain for their specific application from the many strains of immunodeficient mice available. An example of the impact of a functional mouse IL-2Rγ chain on lymphoid tissue development and human reconstitution is the differential intestinal humanization between bone marrow-liver-thymus (BLT) mice generated using NOD/SCID or NSG mice. NOD/SCID-BLT mice, which have an intact mouse IL-2Rγ chain, exhibit significantly higher levels of intestinal humanization versus NSG-BLT mice. This distinction highlights how immunodeficient mouse strains that show improved systemic human engraftment due to the lack of a mouse IL-2Rγ chain may exhibit deficiencies in human engraftment in specific tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. King M, Pearson T, Rossini AA, Shultz LD, Greiner DL. Humanized mice for the study of type 1 diabetes and beta cell function. Ann N Y Acad Sci. 2008;1150:46–53.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Chang NH, Inman RD, Dick JE, Wither JE. Bone marrow-derived human hematopoietic stem cells engraft NOD/SCID mice and traffic appropriately to an inflammatory stimulus in the joint. J Rheumatol. 2010;37(3):496–502.

    Article  PubMed  Google Scholar 

  3. Kwant-Mitchell A, Ashkar AA, Rosenthal KL. Mucosal innate and adaptive immune responses against herpes simplex virus type 2 in a humanized mouse model. J Virol. 2009;83(20):10664–76.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Pedroza-Gonzalez A, Xu K, Wu T-C, Aspord C, Tindle S, Marches F, et al. Thymic stromal lymphopoietin fosters human breast tumor growth by promoting type 2 inflammation. J Exp Med. 2011;208(3):479–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Sellier-Leclerc AL, Duval A, Riveron S, Macher MA, Deschenes G, Loirat C, et al. A humanized mouse model of idiopathic nephrotic syndrome suggests a pathogenic role for immature cells. J Am Soc Nephrol. 2007;18(10):2732–9.

    Article  PubMed  Google Scholar 

  6. Islas-Ohlmayer M, Padgett-Thomas A, Domiati-Saad R, Melkus MW, Cravens PD, Martin Mdel P, et al. Experimental infection of NOD/SCID mice reconstituted with human CD34+ cells with Epstein–Barr virus. J Virol. 2004;78(24):13891–900.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Ma SD, Hegde S, Young KH, Sullivan R, Rajesh D, Zhou Y, et al. A new model of Epstein–Barr virus infection reveals an important role for early lytic viral protein expression in the development of lymphomas. J Virol. 2011;85(1):165–77.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Strowig T, Gurer C, Ploss A, Liu YF, Arrey F, Sashihara J, et al. Priming of protective T cell responses against virus-induced tumors in mice with human immune system components. J Exp Med. 2009;206(6):1423–34.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  9. Yajima M, Imadome K, Nakagawa A, Watanabe S, Terashima K, Nakamura H, et al. A new humanized mouse model of Epstein–Barr virus infection that reproduces persistent infection, lymphoproliferative disorder, and cell-mediated and humoral immune responses. J Infect Dis. 2008;198(5):673–82.

    Article  CAS  PubMed  Google Scholar 

  10. Washburn ML, Bility MT, Zhang L, Kovalev GI, Buntzman A, Frelinger JA, et al. A humanized mouse model to study Hepatitis C virus infection, immune response, and liver disease. Gastroenterology. 2011;140(4):1334–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Smith MS, Goldman DC, Bailey AS, Pfaffle DL, Kreklywich CN, Spencer DB, et al. Granulocyte-colony stimulating factor reactivates human cytomegalovirus in a latently infected humanized mouse model. Cell Host Microbe. 2010;8(3):284–91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Yu CI, Gallegos M, Marches F, Zurawski G, Ramilo O, Garcia-Sastre A, et al. Broad influenza-specific CD8+ T-cell responses in humanized mice vaccinated with influenza virus vaccines. Blood. 2008;112(9):3671–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Libby SJ, Brehm MA, Greiner DL, Shultz LD, McClelland M, Smith KD, et al. Humanized nonobese diabetic-scid IL2rgammanull mice are susceptible to lethal Salmonella typhi infection. Proc Natl Acad Sci U S A. 2010;107(35):15589–94.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Song J, Willinger T, Rongvaux A, Eynon EE, Stevens S, Manz MG, et al. A mouse model for the human pathogen Salmonella typhi. Cell Host Microbe. 2010;8(4):369–76.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Firoz Mian M, Pek EA, Chenoweth MJ, Ashkar AA. Humanized mice are susceptible to Salmonella typhi infection. Cell Mol Immunol. 2011;8(1):83–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Unsinger J, McDonough JS, Shultz LD, Ferguson TA, Hotchkiss RS. Sepsis-induced human lymphocyte apoptosis and cytokine production in “humanized” mice. J Leukoc Biol. 2009;86(2):219–27.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Bente DA, Melkus MW, Garcia JV, Rico-Hesse R. Dengue fever in humanized NOD/SCID mice. J Virol. 2005;79(21):13797–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Jaiswal S, Pearson T, Friberg H, Shultz LD, Greiner DL, Rothman AL, et al. Dengue virus infection and virus-specific HLA-A2 restricted immune responses in humanized NOD-scid IL2rgammanull mice. PLoS ONE. 2009;4(10):e7251.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Kuruvilla JG, Troyer RM, Devi S, Akkina R. Dengue virus infection and immune response in humanized RAG2(-/-)gamma(c)(-/-) (RAG-hu) mice. Virology. 2007;369(1):143–52.

    Article  CAS  PubMed  Google Scholar 

  20. Mota J, Rico-Hesse R. Humanized mice show clinical signs of dengue fever according to infecting virus genotype. J Virol. 2009;83(17):8638–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Subramanya S, Kim SS, Abraham S, Yao J, Kumar M, Kumar P, et al. Targeted delivery of small interfering RNA to human dendritic cells to suppress dengue virus infection and associated proinflammatory cytokine production. J Virol. 2010;84(5):2490–501.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Vasilakis N, Cardosa J, Diallo M, Sall AA, Holmes EC, Hanley KA, et al. Sylvatic dengue viruses share the pathogenic potential of urban/endemic dengue viruses. J Virol. 2010;84(7):3726-7 (author reply 7–8).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Denton PW, Garcia JV. Humanized mouse models of HIV infection. AIDS Rev. 2011;13(3):135–48.

    PubMed Central  PubMed  Google Scholar 

  24. Koyanagi Y, Tanaka Y, Tanaka R, Misawa N, Kawano Y, Tanaka T, et al. High levels of viremia in hu-PBL-NOD-scid mice with HIV-1 infection. Leukemia. 1997;11(Suppl 3):109–12.

    PubMed  Google Scholar 

  25. Shultz LD, Schweitzer PA, Christianson SW, Gott B, Schweitzer IB, Tennent B, et al. Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. J Immunol. 1995;154(1):180–91.

    CAS  PubMed  Google Scholar 

  26. Lowry PA, Shultz LD, Greiner DL, Hesselton RM, Kittler EL, Tiarks CY, et al. Improved engraftment of human cord blood stem cells in NOD/LtSz-scid/scid mice after irradiation or multiple-day injections into unirradiated recipients. Biol Blood Marrow Transplant. 1996 Feb;2(1):15–23.

    CAS  PubMed  Google Scholar 

  27. Larochelle A, Vormoor J, Hanenberg H, Wang JC, Bhatia M, Lapidot T, et al. Identification of primitive human hematopoietic cells capable of repopulating NOD/SCID mouse bone marrow: implications for gene therapy. Nat Med. 1996;2(12):1329–37.

    Article  CAS  PubMed  Google Scholar 

  28. Cravens PD, Melkus MW, Padgett-Thomas A, Islas-Ohlmayer M, Del P MM, Garcia JV. Development and activation of human dendritic cells in vivo in a xenograft model of human hematopoiesis. Stem Cells. 2005;23(2):264–78.

    Article  PubMed  Google Scholar 

  29. Greiner DL, Hesselton RA, Shultz LD. SCID Mouse models of human stem cell engraftment. Stem Cells. 1998;16(3):166–77.

    Article  CAS  PubMed  Google Scholar 

  30. Lan P, Tonomura N, Shimizu A, Wang S, Yang YG. Reconstitution of a functional human immune system in immunodeficient mice through combined human fetal thymus/liver and CD34+ cell transplantation. Blood. 2006;108(2):487–92.

    Article  CAS  PubMed  Google Scholar 

  31. Melkus MW, Estes JD, Padgett-Thomas A, Gatlin J, Denton PW, Othieno FA, et al. Humanized mice mount specific adaptive and innate immune responses to EBV and TSST-1. Nat Med. 2006;12(11):1316–22.

    Article  CAS  PubMed  Google Scholar 

  32. McCune JM, Namikawa R, Kaneshima H, Shultz LD, Lieberman M, Weissman IL. The SCID-hu mouse: murine model for the analysis of human hematolymphoid differentiation and function. Science. 1988;241(4873):1632–9.

    Article  CAS  PubMed  Google Scholar 

  33. Namikawa R, Weilbaecher KN, Kaneshima H, Yee EJ, McCune JM. Long-term human hematopoiesis in the SCID-hu mouse. J Exp Med. 1990;172(4):1055–63.

    Article  CAS  PubMed  Google Scholar 

  34. Brainard DM, Seung E, Frahm N, Cariappa A, Bailey CC, Hart WK, et al. Induction of robust cellular and humoral virus-specific adaptive immune responses in human immunodeficiency virus-infected humanized BLT mice. J Virol. 2009;83(14):7305–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Leonard WJ. Cytokines and immunodeficiency diseases. Nat Rev Immunol. 2001;1(3):200–8.

    Article  CAS  PubMed  Google Scholar 

  36. Ito M, Hiramatsu H, Kobayashi K, Suzue K, Kawahata M, Hioki K, et al. NOD/SCID/gamma(c)(null) mouse: an excellent recipient mouse model for engraftment of human cells. Blood. 2002;100(9):3175–82.

    Article  CAS  PubMed  Google Scholar 

  37. Shultz LD, Lyons BL, Burzenski LM, Gott B, Chen X, Chaleff S, et al. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. J Immunol. 2005;174(10):6477–89.

    Article  CAS  PubMed  Google Scholar 

  38. Goldman JP, Blundell MP, Lopes L, Kinnon C, Di Santo JP, Thrasher AJ. Enhanced human cell engraftment in mice deficient in RAG2 and the common cytokine receptor gamma chain. Br J Haematol. 1998;103(2):335–42 (130(5):662–70).

    Article  CAS  PubMed  Google Scholar 

  39. Mazurier F, Fontanellas A, Salesse S, Taine L, Landriau S, Moreau-Gaudry F, et al. A novel immunodeficient mouse model-RAG2 x common cytokine receptor gamma chain double mutants-requiring exogenous cytokine administration for human hematopoietic stem cell engraftment. J Interferon Cytokine Res. 1999;19(5):533–41.

    Article  CAS  PubMed  Google Scholar 

  40. Gimeno R, Weijer K, Voordouw A, Uittenbogaart CH, Legrand N, Alves NL, et al. Monitoring the effect of gene silencing by RNA interference in human CD34+ cells injected into newborn RAG2-/- gammac-/- mice: functional inactivation of p53 in developing T cells. Blood. 2004;104(13):3886–93.

    Article  CAS  PubMed  Google Scholar 

  41. Hiramatsu H, Nishikomori R, Heike T, Ito M, Kobayashi K, Katamura K, et al. Complete reconstitution of human lymphocytes from cord blood CD34+ cells using the NOD/SCID/gammacnull mice model. Blood. 2003;102(3):873–80.

    Article  CAS  PubMed  Google Scholar 

  42. Traggiai E, Chicha L, Mazzucchelli L, Bronz L, Piffaretti JC, Lanzavecchia A, et al. Development of a human adaptive immune system in cord blood cell-transplanted mice. Science. 2004;304(5667):104–7.

    Article  CAS  PubMed  Google Scholar 

  43. Ishikawa F, Yasukawa M, Lyons B, Yoshida S, Miyamoto T, Yoshimoto G, et al. Development of functional human blood and immune systems in NOD/SCID/IL2 receptor {gamma} chain(null) mice. Blood. 2005;106:1565–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Akkina R. New generation humanized mice for virus research: comparative aspects and future prospects. Virology. 2013;435(1):14–28.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Shultz LD, Brehm MA, Garcia-Martinez JV, Greiner DL. Humanized mice for immune system investigation: progress, promise and challenges. Nat Rev Immunol. 2012;12(11):786–98.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Denton PW, Nochi T, Lim A, Krisko JF, Martinez-Torres F, Choudhary SK, et al. IL-2 receptor gamma-chain molecule is critical for intestinal T-cell reconstitution in humanized mice. Mucosal Immunol. 2012;5(5):555–66.

    PubMed Central  CAS  PubMed  Google Scholar 

  47. McDermott SP, Eppert K, Lechman ER, Doedens M, Dick JE. Comparison of human cord blood engraftment between immunocompromised mouse strains. Blood. 2010;116(2):193–200.

    Article  CAS  PubMed  Google Scholar 

  48. Cao X, Shores EW, Hu-Li J, Anver MR, Kelsall BL, Russell SM, et al. Defective lymphoid development in mice lacking expression of the common cytokine receptor gamma chain. Immunity. 1995;2(3):223–38.

    Article  CAS  PubMed  Google Scholar 

  49. Chateau ML, Denton PW, Swanson MD, McGowan I, Garcia JV. Rectal transmission of Transmitted/Founder HIV-1 is efficiently prevented by topical 1 % tenofovir in BLT humanized mice. PLoS ONE. 2013;8(3):e60024.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Sato K, Nie C, Misawa N, Tanaka Y, Ito M, Koyanagi Y. Dynamics of memory and naive CD8+ T lymphocytes in humanized NOD/SCID/IL-2Rgammanull mice infected with CCR5-tropic HIV-1. Vaccine. 2010;28(Suppl 2):B32–7.

    Article  CAS  PubMed  Google Scholar 

  51. Onoe T, Kalscheuer H, Danzl N, Chittenden M, Zhao G, Yang YG, et al. Human natural regulatory T cell development, suppressive function, and postthymic maturation in a humanized mouse model. J Immunol. 2011;187(7):3895–903.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Dash PK, Gendelman HE, Roy U, Balkundi S, Alnouti Y, Mosley RL, et al. Long-acting NanoART elicits potent antiretroviral and neuroprotective responses in HIV-1 infected humanized mice. AIDS. 2012;26(17):2135-44

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Watanabe S, Terashima K, Ohta S, Horibata S, Yajima M, Shiozawa Y, et al. Hematopoietic stem cell-engrafted NOD/SCID/IL2Rgamma null mice develop human lymphoid systems and induce long-lasting HIV-1 infection with specific humoral immune responses. Blood. 2007;109(1):212–8.

    Article  CAS  PubMed  Google Scholar 

  54. Sango K, Joseph A, Patel M, Osiecki K, Dutta M, Goldstein H. Highly active antiretroviral therapy potently suppresses HIV infection in humanized Rag2-/-gammac-/- mice. AIDS Res Hum Retroviruses. 2010;26(7):735–46.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Tonomura N, Habiro K, Shimizu A, Sykes M, Yang YG. Antigen-specific human T-cell responses and T cell-dependent production of human antibodies in a humanized mouse model. Blood. 2008;111(8):4293–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Watanabe S, Ohta S, Yajima M, Terashima K, Ito M, Mugishima H, et al. Humanized NOD/SCID/IL2R {gamma}null Mice Transplanted with hematopoietic stem cells under nonmyeloablative conditions show prolonged life spans and allow detailed analysis of human immunodeficiency virus type 1 pathogenesis. J Virol. 2007;81(23):13259–64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Lang J, Kelly M, Freed BM, McCarter MD, Kedl RM, Torres RM, et al. Studies of lymphocyte reconstitution in a humanized mouse model reveal a requirement of T cells for human B cell maturation. J Immunol. 2013;190(5):2090–101.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Joo SY, Chung YS, Choi B, Kim M, Kim JH, Jun TG, et al. Systemic human T cell developmental processes in humanized mice cotransplanted with human fetal thymus/liver tissue and hematopoietic stem cells. Transplantation. 2012;94(11):1095–102.

    Article  CAS  PubMed  Google Scholar 

  59. Hur EM, Patel SN, Shimizu S, Rao DS, Gnanapragasam PN, An DS, et al. Inhibitory effect of HIV-specific neutralizing IgA on mucosal transmission of HIV in humanized mice. Blood. 2012;120(23):4571–82.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Zou W, Denton PW, Watkins RL, Krisko JF, Nochi T, Foster JL, et al. Nef functions in BLT mice to enhance HIV-1 replication and deplete CD4+ CD8+ thymocytes. Retrovirology. 2012;9(1):44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Denton PW, Estes JD, Sun Z, Othieno FA, Wei BL, Wege AK, et al. Antiretroviral pre-exposure prophylaxis prevents vaginal transmission of HIV-1 in humanized BLT mice. PLoS Med. 2008;5(1):e16.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  62. Denton PW, Olesen R, Choudhary SK, Archin NM, Wahl A, Swanson MD, et al. Generation of HIV latency in BLT humanized mice. J Virol. 2012;86(1):630–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Denton PW, Othieno F, Martinez-Torres F, Zou W, Krisko JF, Fleming E, et al. One percent tenofovir applied topically to humanized BLT mice and used according to the CAPRISA 004 experimental design demonstrates partial protection from vaginal HIV infection, validating the BLT model for evaluation of new microbicide candidates. J Virol. 2011;85(15):7582–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Chateau M, Swanson MD, Garcia JV. Inefficient vaginal transmission of tenofovir resistant HIV-1. J Virol. 2013;87(2):1274–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Pek EA, Chan T, Reid S, Ashkar AA. Characterization and IL-15 dependence of NK cells in humanized mice. Immunobiology. 2010;216(1–2):218–24.

    PubMed  Google Scholar 

  66. Ma SD, Yu X, Mertz JE, Gumperz JE, Reinheim E, Zhou Y, et al. An Epstein–Barr virus (EBV) mutant with enhanced BZLF1 expression causes lymphomas with abortive lytic EBV infection in a humanized mouse model. J Virol. 2012;86(15):7976–87.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Heuts F, Gavier-Widen D, Carow B, Juarez J, Wigzell H, Rottenberg ME. CD4+ cell-dependent granuloma formation in humanized mice infected with mycobacteria. Proc Natl Acad Sci U S A. 2013;110(16):6482–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Scheeren FA, Nagasawa M, Weijer K, Cupedo T, Kirberg J, Legrand N, et al. T cell-independent development and induction of somatic hypermutation in human IgM+ IgD+ CD27+ B cells. J Exp Med. 2008;205(9):2033–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Berges BK, Wheat WH, Palmer BE, Connick E, Akkina R. HIV-1 infection and CD4 T cell depletion in the humanized Rag2-/-gamma c-/- (RAG-hu) mouse model. Retrovirology. 2006;3:76.

    Article  PubMed Central  PubMed  Google Scholar 

  70. Choudhary SK, Archin NM, Cheema M, Dahl NP, Garcia JV, Margolis DM. Latent HIV-1 infection of resting CD4(+) T cells in the humanized Rag2(-)/(-) gammac(-)/(-) mouse. J Virol. 2012;86(1):114–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Berges BK, Akkina SR, Remling L, Akkina R. Humanized Rag2(-/-) gammac(-/-) (RAG-hu) mice can sustain long-term chronic HIV-1 infection lasting more than a year. Virology. 2010;397(1):100–3.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Kalscheuer H, Danzl N, Onoe T, Faust T, Winchester R, Goland R, et al. A model for personalized in vivo analysis of human immune responsiveness. Sci Transl Med. 2012;4(125):125ra30.

    Article  PubMed Central  PubMed  Google Scholar 

  73. Sun Z, Denton PW, Estes JD, Othieno FA, Wei BL, Wege AK, et al. Intrarectal transmission, systemic infection, and CD4+ T cell depletion in humanized mice infected with HIV-1. J Exp Med. 2007;204(4):705–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Gorantla S, Makarov E, Finke-Dwyer J, Gebhart CL, Domm W, Dewhurst S, et al. CD8+ cell depletion accelerates HIV-1 immunopathology in humanized mice. J Immunol. 2010;184(12):7082–91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Gorantla S, Sneller H, Walters L, Sharp JG, Pirruccello SJ, West JT, et al. Human immunodeficiency virus type 1 pathobiology studied in humanized BALB/c-Rag2-/-gammac-/- mice. J Virol. 2007;81(6):2700–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Legrand N, Huntington ND, Nagasawa M, Bakker AQ, Schotte R, Strick-Marchand H, et al. Functional CD47/signal regulatory protein alpha (SIRP(alpha)) interaction is required for optimal human T- and natural killer- (NK) cell homeostasis in vivo. Proc Natl Acad Sci U S A. 2011;108(32):13224–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Wahl A, Swanson MD, Nochi T, Olesen R, Denton PW, Chateau M, et al. Human breast milk and antiretrovirals dramatically reduce oral HIV-1 transmission in BLT humanized mice. PLoS Pathog. 2012;8(6):e1002732.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Denton PW, Krisko JF, Powell DA, Mathias M, Kwak YT, Martinez-Torres F, et al. Systemic administration of antiretrovirals prior to exposure prevents rectal and intravenous HIV-1 transmission in humanized BLT mice. PLoS ONE. 2010;5(1):e8829.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  79. Murooka TT, Deruaz M, Marangoni F, Vrbanac VD, Seung E, von Andrian UH, et al. HIV-infected T cells are migratory vehicles for viral dissemination. Nature. 2012;490(7419):283–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Ippolito GC, Hoi KH, Reddy ST, Carroll SM, Ge X, Rogosch T, et al. Antibody repertoires in humanized NOD-scid-IL2Rgamma(null) mice and human B cells reveals human-like diversification and tolerance checkpoints in the mouse. PLoS ONE. 2012;7(4):e35497.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Chang H, Biswas S, Tallarico AS, Sarkis PT, Geng S, Panditrao MM, et al. Human B-cell ontogeny in humanized NOD/SCID gammac(null) mice generates a diverse yet auto/poly- and HIV-1-reactive antibody repertoire. Genes Immun. 2012;13(5):399–410.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Becker PD, Legrand N, van Geelen CM, Noerder M, Huntington ND, Lim A, et al. Generation of human antigen-specific monoclonal IgM antibodies using vaccinated “Human Immune System” mice. PLoS ONE. 2010;5(10):e13137.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  83. Marodon G, Desjardins D, Mercey L, Baillou C, Parent P, Manuel M, et al. High diversity of the immune repertoire in humanized NOD.SCID.gamma c-/- mice. Eur J Immunol. 2009;39(8):2136–45.

    Article  CAS  PubMed  Google Scholar 

  84. Jaiswal S, Pazoles P, Woda M, Shultz LD, Greiner DL, Brehm MA, et al. Enhanced humoral and HLA-A2-restricted dengue virus-specific T-cell responses in humanized BLT NSG mice. Immunology. 2012;136(3):334–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Biswas S, Chang H, Sarkis PT, Fikrig E, Zhu Q, Marasco WA. Humoral immune responses in humanized BLT mice immunized with West Nile virus and HIV-1 envelope proteins are largely mediated via human CD5(+) B cells. Immunology. 2011;134(4):419–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Watanabe Y, Takahashi T, Okajima A, Shiokawa M, Ishii N, Katano I, et al. The analysis of the functions of human B and T cells in humanized NOD/shi-scid/gammac(null) (NOG) mice (hu-HSC NOG mice). Int Immunol. 2009;21(7):843–58.

    Article  CAS  PubMed  Google Scholar 

  87. Shultz LD, Saito Y, Najima Y, Tanaka S, Ochi T, Tomizawa M, et al. Generation of functional human T-cell subsets with HLA-restricted immune responses in HLA class I expressing NOD/SCID/IL2r gamma(null) humanized mice. Proc Natl Acad Sci U S A. 2010;107(29):13022–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Choi B, Chun E, Kim M, Kim ST, Yoon K, Lee KY, et al. Human B cell development and antibody production in humanized NOD/SCID/IL-2Rgamma(null) (NSG) mice conditioned by busulfan. J Clin Immunol. 2011;31(2):253–64.

    Article  CAS  PubMed  Google Scholar 

  89. Pearson T, Shultz LD, Miller D, King M, Laning J, Fodor W, et al. Non-obese diabetic-recombination activating gene-1 (NOD-Rag1 null) interleukin (IL)-2 receptor common gamma chain (IL2r gamma null) null mice: a radioresistant model for human lymphohaematopoietic engraftment. Clin Exp Immunol. 2008;154(2):270–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. White RE, Ramer PC, Naresh KN, Meixlsperger S, Pinaud L, Rooney C, et al. EBNA3B-deficient EBV promotes B cell lymphomagenesis in humanized mice and is found in human tumors. J Clin Invest. 2012;122(4):1487–502.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Waldron-Lynch F, Henegariu O, Deng S, Preston-Hurlburt P, Tooley J, Flavell R, et al. Teplizumab induces human gut-tropic regulatory cells in humanized mice and patients. Sci Transl Med. 2012;4(118):118ra12.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  92. Hofer U, Baenziger S, Heikenwalder M, Schlaepfer E, Gehre N, Regenass S, et al. RAG2-/- gamma(c)-/- mice transplanted with CD34 + cells from human cord blood show low levels of intestinal engraftment and are resistant to rectal transmission of human immunodeficiency virus. J Virol. 2008;82(24):12145–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  93. Holt N, Wang J, Kim K, Friedman G, Wang X, Taupin V, et al. Human hematopoietic stem/progenitor cells modified by zinc-finger nucleases targeted to CCR5 control HIV-1 in vivo. Nat Biotechnol. 2010;28(8):839–47.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Berges BK, Akkina SR, Folkvord JM, Connick E, Akkina R. Mucosal transmission of R5 and X4 tropic HIV-1 via vaginal and rectal routes in humanized Rag2-/- gammac -/- (RAG-hu) mice. Virology. 2008;373(2):342–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. Ringpis GE, Shimizu S, Arokium H, Camba-Colon J, Carroll MV, Cortado R, et al. Engineering HIV-1-resistant T-cells from short-hairpin RNA-expressing hematopoietic stem/progenitor cells in humanized BLT mice. PLoS ONE. 2012;7(12):e53492.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  96. Shimizu S, Hong P, Arumugam B, Pokomo L, Boyer J, Koizumi N, et al. A highly efficient short hairpin RNA potently down-regulates CCR5 expression in systemic lymphoid organs in the hu-BLT mouse model. Blood. 2010;115(8):1534–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  97. Cimbro R, Vassena L, Arthos J, Cicala C, Kehrl JH, Park C, et al. IL-7 induces expression and activation of integrin alpha4beta7 promoting naive T-cell homing to the intestinal mucosa. Blood. 2012;120(13):2610–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Mebius RE. Organogenesis of lymphoid tissues. Nat Rev Immunol. 2003;3(4):292–303.

    Article  CAS  PubMed  Google Scholar 

  99. van de Pavert SA, Mebius RE. New insights into the development of lymphoid tissues. Nat Rev Immunol. 2010;10(9):664–74.

    Article  CAS  PubMed  Google Scholar 

  100. Eberl G, Littman DR. Thymic origin of intestinal alphabeta T cells revealed by fate mapping of RORgammat + cells. Science. 2004;305(5681):248–51.

    Article  CAS  PubMed  Google Scholar 

  101. Eberl G. Inducible lymphoid tissues in the adult gut: recapitulation of a fetal developmental pathway?. Nat Rev Immunol. 2005;5(5):413–20.

    Article  CAS  PubMed  Google Scholar 

  102. Lorenz RG, Chaplin DD, McDonald KG, McDonough JS, Newberry RD. Isolated lymphoid follicle formation is inducible and dependent upon lymphotoxin-sufficient B lymphocytes, lymphotoxin beta receptor, and TNF receptor I function. J Immunol. 2003;170(11):5475–82.

    Article  CAS  PubMed  Google Scholar 

  103. Ivanov II, Diehl GE, Littman DR. Lymphoid tissue inducer cells in intestinal immunity. Curr Top Microbiol Immunol. 2006;308:59–82.

    CAS  PubMed  Google Scholar 

  104. Hamada H, Hiroi T, Nishiyama Y, Takahashi H, Masunaga Y, Hachimura S, et al. Identification of multiple isolated lymphoid follicles on the antimesenteric wall of the mouse small intestine. J Immunol. 2002;168(1):57–64.

    Article  CAS  PubMed  Google Scholar 

  105. Chen Q, Khoury M, Chen J. Expression of human cytokines dramatically improves reconstitution of specific human-blood lineage cells in humanized mice. Proc Natl Acad Sci U S A. 2009;106(51):21783–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  106. Huntington ND, Legrand N, Alves NL, Jaron B, Weijer K, Plet A, et al. IL-15 trans-presentation promotes human NK cell development and differentiation in vivo. J Exp Med. 2009;206(1):25–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  107. van Lent AU, Dontje W, Pouw SM, Nagasawa M, Siamari R, Bakker AQ, Pouw SM, et al. IL-7 enhances thymic human T cell development in “human immune system” Rag2-/-IL-2Rgammac-/- mice without affecting peripheral T cell homeostasis. J Immunol. 2009;183(12):7645–55.

    Article  PubMed  CAS  Google Scholar 

  108. Willinger T, Rongvaux A, Strowig T, Manz MG, Flavell RA. Improving human hemato-lymphoid-system mice by cytokine knock-in gene replacement. Trends Immunol. 2011;32(7):321–7.

    Article  CAS  PubMed  Google Scholar 

  109. Ito R, Takahashi T, Katano I, Ito M. Current advances in humanized mouse models. Cell Mol Immunol. 2012;9(3):208–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  110. Rongvaux A, Willinger T, Takizawa H, Rathinam C, Auerbach W, Murphy AJ, et al. Human thrombopoietin knockin mice efficiently support human hematopoiesis in vivo. Proc Natl Acad Sci U S A. 2011;108(6):2378–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  111. Billerbeck E, Barry WT, Mu K, Dorner M, Rice CM, Ploss A. Development of human CD4+ FoxP3+ regulatory T cells in human stem cell factor, GM-CSF and interleukin 3 expressing NOD SCID IL2R{gamma}NULL humanized mice. Blood. 2011;117(11):3076–86.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  112. Manz MG. Human-hemato-lymphoid-system mice: opportunities and challenges. Immunity. 2007;26(5):537–41.

    Article  CAS  PubMed  Google Scholar 

  113. Kyoizumi S, Baum CM, Kaneshima H, McCune JM, Yee EJ, Namikawa R. Implantation and maintenance of functional human bone marrow in SCID-hu mice. Blood. 1992;79(7):1704–11.

    CAS  PubMed  Google Scholar 

  114. Zhang Z, Jin L, Champion G, Seydel KB, Stanley SL Jr. Shigella infection in a SCID mouse-human intestinal xenograft model: role for neutrophils in containing bacterial dissemination in human intestine. Infect Immun. 2001;69(5):3240–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the University of North Carolina (UNC) Center for AIDS Research grant P30 AI50410; by National Institute of Health grants AI096113 and AI08263 (J.V.G.); and by a Research Fellowship of the Japan Society for the Promotion of Science (T.N.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul W. Denton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Denton, P., Nochi, T., Garcia, J. (2014). Impact of the Mouse IL-2Rγ Chain on Lymphoid Tissue Development and Human Reconstitution in Immunodeficient Mice. In: Poluektova, L., Garcia, J., Koyanagi, Y., Manz, M., Tager, A. (eds) Humanized Mice for HIV Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1655-9_6

Download citation

Publish with us

Policies and ethics