Skip to main content

Biology of Human Hematopoietic Stem Cell Xenotransplantation in Mice

  • Chapter
  • First Online:
Humanized Mice for HIV Research
  • 919 Accesses

Abstract

Xenotransplantation of human hematopoietic stem cells into immunodeficient mice is essential to create humanized mice with human hematopoietic and lymphoid cells. The failure of hematopoietic stem cell transplantation across species can be caused not only by immune rejection but also by the unfavorable hematopoietic microenvironment in a xenogeneic recipient. The use of currently available immunodeficient mice can prevent xenograft rejection by T, B, and natural killer cells; however, antibody-independent innate immune responses remain a significant hurdle for making humanized mice with all lineages of human blood cells. The species specificity of cytokines and adhesion molecules essential to hematopoiesis clearly presents obstacles to the engraftment and differentiation of human hematopoietic stem cells in mice. In this chapter, we discuss the biology of human hematopoietic stem cell xenotransplantation in immunodeficient mice and possible mechanisms causing poor reconstitution of human red blood cells and platelets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

HSC:

Hematopoietic stem cell

HHLS:

Human hematopoietic and lymphoid systems

SCID:

Severe combined immune deficiency

Prkdc:

DNA-dependent protein kinase, catalytic subunit

RAG:

Recombination activating gene

SIRPα:

Signaling regulatory protein alpha

EPO:

Erythropoietin

GM-CSF:

Granulocyte-macrophage colony-stimulating factor

M-CSF:

Macrophage colony stimulating

NOD:

Nonobese diabetic

NSG:

NOD/SCID IL2 receptor gamma chain knockout

TCD:

T cell-depleted

RBCs:

Red blood cells

TPO:

Thrombopoietin

WBCs:

White blood cells

References

  1. Rongvaux A, Takizawa H, Strowig T, Willinger T, Eynon EE, Flavell RA, et al. Human hemato-lymphoid system mice: current use and future potential for medicine. Ann Rev Immunol. 2013;31:635–74. (PubMed PMID: 23330956).

    Article  CAS  Google Scholar 

  2. Lan P, Tonomura N, Shimizu A, Wang S, Yang YG. Reconstitution of a functional human immune system in immunodeficient mice through combined human fetal thymus/liver and CD34+ cell transplantation. Blood. 2006;108(2):487–92.

    Article  CAS  PubMed  Google Scholar 

  3. Lan P, Wang L, Diouf B, Eguchi H, Su H, Bronson R, et al. Induction of human T-cell tolerance to porcine xenoantigens through mixed hematopoietic chimerism. Blood. 2004;103(10):3964–9.

    Article  CAS  PubMed  Google Scholar 

  4. Traggiai E, Chicha L, Mazzucchelli L, Bronz L, Piffaretti JC, Lanzavecchia A, et al. Development of a human adaptive immune system in cord blood cell-transplanted mice. Science. 2004;304(5667):104–7. (PubMed PMID: 15064419. Epub 2004/04/06. eng).

    Article  CAS  PubMed  Google Scholar 

  5. Yang YG, Sykes M. Xenotransplantation: current status and a perspective on the future. Nat Rev Immunol. 2007;7(7):519–31. (PubMed PMID: 17571072. Epub 2007/06/16. eng).

    Article  CAS  PubMed  Google Scholar 

  6. Wang H, Yang YG. Innate cellular immunity and xenotransplantation. Curr Opin Organ Transplant. 2012;17(2):162–7. (PubMed PMID: 22262106. Pubmed Central PMCID: 3324331. Epub 2012/01/21. eng).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Sugamura K, Asao H, Kondo M, Tanaka N, Ishii N, Ohbo K, et al. The interleukin-2 receptor gamma chain: its role in the multiple cytokine receptor complexes and T cell development in XSCID. Annu Rev Immunol. 1996;14:179–205. (PubMed PMID: 8717512. Epub 1996/01/01. eng).

    Article  CAS  PubMed  Google Scholar 

  8. Cao X, Shores EW, Hu-Li J, Anver MR, Kelsall BL, Russell SM, et al. Defective lymphoid development in mice lacking expression of the common cytokine receptor gamma chain. Immunity. 1995;2(3):223–38. (PubMed PMID: 7697543. Epub 1995/03/01. eng).

    Article  CAS  PubMed  Google Scholar 

  9. Ito M, Hiramatsu H, Kobayashi K, Suzue K, Kawahata M, Hioki K, et al. NOD/SCID/gamma(c)(null) mouse: an excellent recipient mouse model for engraftment of human cells. Blood. 2002;100(9):3175–82. (PubMed PMID: 12384415. Epub 2002/10/18. eng).

    Article  CAS  PubMed  Google Scholar 

  10. Takenaka K, Prasolava TK, Wang JC, Mortin-Toth SM, Khalouei S, Gan OI, et al. Polymorphism in Sirpa modulates engraftment of human hematopoietic stem cells. Nat Immunol. 2007;8(12):1313–23. (PubMed PMID: 17982459. Epub 2007/11/06. eng).

    Article  CAS  PubMed  Google Scholar 

  11. Orkin SH, Zon LI. Hematopoiesis: an evolving paradigm for stem cell biology. Cell. 2008;132(4):631–44. (PubMed PMID: 18295580. Pubmed Central PMCID: 2628169. Epub 2008/02/26. eng).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Giarratana MC, Kobari L, Lapillonne H, Chalmers D, Kiger L, Cynober T, et al. Ex vivo generation of fully mature human red blood cells from hematopoietic stem cells. Nat Biotechnol. 2005;23(1):69–74. (PubMed PMID: 15619619. Epub 2004/12/28. eng).

    Article  CAS  PubMed  Google Scholar 

  13. Mrozek E, Anderson P, Caligiuri MA. Role of interleukin-15 in the development of human CD56 + natural killer cells from CD34 + hematopoietic progenitor cells. Blood. 1996;87(7):2632–40. (PubMed PMID: 8639878. Epub 1996/04/01. eng).

    CAS  PubMed  Google Scholar 

  14. Rosenzwajg M, Canque B, Gluckman JC. Human dendritic cell differentiation pathway from CD34 + hematopoietic precursor cells. Blood. 1996;87(2):535–44. (PubMed PMID: 8555475. Epub 1996/01/15. eng).

    CAS  PubMed  Google Scholar 

  15. Stec M, Weglarczyk K, Baran J, Zuba E, Mytar B, Pryjma J, et al. Expansion and differentiation of CD14 + CD16(-) and CD14 + + CD16 + human monocyte subsets from cord blood CD34 + hematopoietic progenitors. J Leukoc Biol. 2007;82(3):594–602.( PubMed PMID: 17595380. Epub 2007/06/28. eng).

    Article  CAS  PubMed  Google Scholar 

  16. Eisenman J, Ahdieh M, Beers C, Brasel K, Kennedy MK, Le T, et al. Interleukin-15 interactions with interleukin-15 receptor complexes: characterization and species specificity. Cytokine. 2002;20(3):121–9. (PubMed PMID: 12453470. Epub 2002/11/28. eng).

    Article  CAS  PubMed  Google Scholar 

  17. Metcalf D. The molecular biology and functions of the granulocyte-macrophage colony-stimulating factors. Blood. 1986;67(2):257–67. (PubMed PMID: 3002522. Epub 1986/02/01. eng).

    CAS  PubMed  Google Scholar 

  18. Mosmann TR, Yokota T, Kastelein R, Zurawski SM, Arai N, Takebe Y. Species-specificity of T cell stimulating activities of IL 2 and BSF-1 (IL 4): comparison of normal and recombinant, mouse and human IL 2 and BSF-1 (IL 4). J immunol. 1987;138(6):1813–6. (PubMed PMID: 3493289. Epub 1987/03/15. eng).

    CAS  PubMed  Google Scholar 

  19. Fixe P, Praloran V. Macrophage colony-stimulating-factor (M-CSF or CSF-1) and its receptor: structure-function relationships. Eur Cytokine Netw. 1997;8(2):125–36. (PubMed PMID: 9262961. Epub 1997/06/01. eng).

    CAS  PubMed  Google Scholar 

  20. Stevenson LM, Jones DG. Cross-reactivity amongst recombinant haematopoietic cytokines from different species for sheep bone-marrow eosinophils. J Comp Pathol. 1994;111(1):99–106. (PubMed PMID: 7962731. Epub 1994/07/01. eng).

    Article  CAS  PubMed  Google Scholar 

  21. Huntington ND, Legrand N, Alves NL, Jaron B, Weijer K, Plet A, et al. IL-15 trans-presentation promotes human NK cell development and differentiation in vivo. J Exp Med. 2009;206(1):25–34. (PubMed PMID: 19103877. Pubmed Central PMCID: 2626663. Epub 2008/12/24. eng).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Willinger T, Rongvaux A, Takizawa H, Yancopoulos GD, Valenzuela DM, Murphy AJ, et al. Human IL-3/GM-CSF knock-in mice support human alveolar macrophage development and human immune responses in the lung. Proc Natl Acad Sci U S A. 2011;108(6):2390–5. (PubMed PMID: 21262803. Pubmed Central PMCID: 3038773. Epub 2011/01/26. eng).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Rathinam C, Poueymirou WT, Rojas J, Murphy AJ, Valenzuela DM, Yancopoulos GD, et al. Efficient differentiation and function of human macrophages in humanized CSF-1 mice. Blood. 2011;118(11):3119–28. (PubMed PMID: 21791433. Epub 2011/07/28. eng).

    Article  CAS  PubMed  Google Scholar 

  24. Hu Z, Van Rooijen N, Yang YG. Macrophages prevent human red blood cell reconstitution in immunodeficient mice. Blood. 2011;118(22):5938–46. (PubMed PMID: 21926352. Pubmed Central PMCID: 3228505).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Gritsch HA, Sykes M. Hematopoietic competition limits xenogenic myeloid reconstitution in SCID mice. Transplant Proc. 1996;28(2):708. (PubMed PMID: 8623357. Epub 1996/04/01. eng).

    CAS  PubMed  Google Scholar 

  26. Ding L, Morrison SJ. Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature. 2013;495(7440):231–5. (PubMed PMID: 23434755. Pubmed Central PMCID: 3600153. Epub 2013/02/26. eng).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Hu Z, Yang YG. Full reconstitution of human platelets in humanized mice after macrophage depletion. Blood. 2012;120(8):1713–6. (PubMed PMID: 22773384. Pubmed Central PMCID: 3429310).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Qiu LB, Dickson H, Hajibagheri N, Crocker PR. Extruded erythroblast nuclei are bound and phagocytosed by a novel macrophage receptor. Blood. 1995;85(6):1630–9. (PubMed PMID: 7888682. Epub 1995/03/15. eng).

    CAS  PubMed  Google Scholar 

  29. Chen Q, Khoury M, Chen J. Expression of human cytokines dramatically improves reconstitution of specific human-blood lineage cells in humanized mice. Proc Natl Acad Sci U S A. 2009;106(51):21783–8. (PubMed PMID: 19966223. Pubmed Central PMCID: 2789167. Epub 2009/12/08. eng).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Patel SR, Hartwig JH, Italiano JE Jr. The biogenesis of platelets from megakaryocyte proplatelets. J Clin Invest. 2005;115(12):3348–54. (PubMed PMID: 16322779. Pubmed Central PMCID: 1297261. Epub 2005/12/03. eng).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Rongvaux A, Willinger T, Takizawa H, Rathinam C, Auerbach W, Murphy AJ, et al. Human thrombopoietin knockin mice efficiently support human hematopoiesis in vivo. Proc Natl Acad Sci U S A. 2011;108(6):2378–83. (PubMed PMID: 21262827. Pubmed Central PMCID: 3038726. Epub 2011/01/26. eng).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Oldenborg PA, Zheleznyak A, Fang YF, Lagenaur CF, Gresham HD, Lindberg FP. Role of CD47 as a marker of self on red blood cells. Science. 2000;288(5473):2051–4.

    Article  CAS  PubMed  Google Scholar 

  33. Jiang P, Lagenaur CF, Narayanan V. Integrin-associated protein is a ligand for the P84 neural adhesion molecule. J Biol Chem. 1999;274(2):559–62. (PubMed PMID: 9872987. Epub 1999/01/05. eng).

    Article  CAS  PubMed  Google Scholar 

  34. Wang H, VerHalen J, Madariaga ML, Xiang S, Wang S, Lan P, et al. Attenuation of phagocytosis of xenogeneic cells by manipulating CD47. Blood. 2007;109(2):836–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Ide K, Wang H, Tahara H, Liu J, Wang X, Asahara T, et al. Role for CD47-SIRPalpha signaling in xenograft rejection by macrophages. Proc Natl Acad Sci U S A. 2007;104(12):5062–6. (PubMed PMID: 17360380. Pubmed Central PMCID: 1829264. Epub 2007/03/16. eng).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Wang H, Madariaga ML, Wang S, Van Rooijen N, Oldenborg PA, Yang YG. Lack of CD47 on nonhematopoietic cells induces split macrophage tolerance to CD47null cells. Proc Natl Acad Sci U S A. 2007;104(34):13744–9. (PubMed PMID: 17699632. Pubmed Central PMCID: 1949343. Epub 2007/08/19. eng).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Chow A, Huggins M, Ahmed J, Hashimoto D, Lucas D, Kunisaki Y, et al. CD169(+) macrophages provide a niche promoting erythropoiesis under homeostasis and stress. Nat Med. 2013;19(4):429–36. (PubMed PMID: 23502962. Epub 2013/03/19. eng).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work from the authors’ laboratories discussed in this chapter was supported by grants from the National Institutes of Health (NIH) (R01 AI064569, and P01AI045897), Chinese Ministry of Science and Technology (2015CB964400), Chinese Ministry of Education (IRT1133),NSFC (81273334 and 81200397).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Guang Yang MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hu, Z., Yang, YG. (2014). Biology of Human Hematopoietic Stem Cell Xenotransplantation in Mice. In: Poluektova, L., Garcia, J., Koyanagi, Y., Manz, M., Tager, A. (eds) Humanized Mice for HIV Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1655-9_5

Download citation

Publish with us

Policies and ethics