Skip to main content

Dengue Viral Pathogenesis and Immune Responses in Humanized Mice

  • Chapter
  • First Online:

Abstract

Dengue is an insect-borne viral infection of significant global public health concern. Viral and host factors and prior humoral and cellular immunity are key contributors to severe dengue illness, dengue hemorrhagic fever (DHF). Progress in dengue research has been hampered by the lack of an ideal animal model that recapitulates key aspects of the immune responses and disease. In this regard, the generation of novel humanized mouse models presents a unique opportunity to overcome deficiencies of traditional mouse and nonhuman primate models. Two leading models of immunodeficient humanized mice, the human hematopoietic stem cell (hu-HSC) and bone marrow-liver-thymus (BLT) mice have recently been used to study dengue. Both models permit productive dengue viral infection, fever, and thrombocytopenia. Insect viral transmission has been examined in the hu-HSC model. Consistent virus-specific immunoglobulin M (IgM) responses, weak immunoglobulin G (IgG) responses with neutralizing activity, and virus-specific T cell responses are generated in hu-HSC and BLT mice. However, both humoral and cellular responses in humanized models need further improvement to match responses detected in humans. These studies are a good foundation to further our understanding of key aspects of dengue virus infection, immunity, and pathogenesis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Halstead SB. Pathogenesis of dengue: challenges to molecular biology. Science. 1988;239:476–81.

    Article  CAS  PubMed  Google Scholar 

  2. Simmons CP, Farrar JJ, Nguyen v V, Wills B. Dengue. N Engl J Med. 2012;366:1423–32.

    Article  CAS  PubMed  Google Scholar 

  3. Radke EG, Gregory CJ, Kintziger KW, Sauber-Schatz EK, Hunsperger EA, Gallagher GR, Barber JM, Biggerstaff BJ, Stanek DR, Tomashek KM, Blackmore CG. Dengue outbreak in Key West, Florida, USA, 2009. Emerg Infect Dis. 2012;18:135–7.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Pagni S, Fernandez-Sesma A. Evasion of the human innate immune system by dengue virus. Immunol Res. 2012;54:152–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Paranjape SM, Harris E. Control of dengue virus translation and replication. Curr Top Microbiol Immunol. 2010;338:15–34.

    CAS  PubMed  Google Scholar 

  6. Rothman AL. Immunity to dengue virus: a tale of original antigenic sin and tropical cytokine storms. Nat Rev Immunol. 2011;11:532–43.

    Article  CAS  PubMed  Google Scholar 

  7. Halstead SB. Immunological parameters of togavirus disease syndromes. In: Schlesinger RW, editors. The togaviruses. Biology, structure, replication. New York: Academic; 1980. p. 107–173.

    Google Scholar 

  8. Kalayanarooj S, Vaughn DW, Nimmannitya S, Green S, Suntayakorn S, Kunentrasai N, Viramitrachai W, Ratanachu-eke S, Kiatpolpoj S, Innis BL, Rothman AL, Nisalak A, Ennis FA. Early clinical and laboratory indicators of acute dengue illness. J Infect Dis. 1997;176:313–21.

    Article  CAS  PubMed  Google Scholar 

  9. Anonymous. Dengue haemorrhagic fever: diagnosis, treatment and control. Geneva:World Health Organization; 1986.

    Google Scholar 

  10. WHO. Dengue and dengue haemorrhagic fever in the Americas, 1996. Wkly Epidemiol Rec. 1997;72:122–3.

    Google Scholar 

  11. Harris E, Perez L, Phares CR, Perez Mde L, Idiaquez W, Rocha J, Cuadra R, Hernandez E, Campos LA, Gonzales A, Amador JJ, Balmaseda A. Fluid intake and decreased risk for hospitalization for dengue fever, Nicaragua. Emerg Infect Dis. 2003;9:1003–6.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Ngo NT, Cao XT, Kneen R, Wills B, Nguyen VM, Nguyen TQ, Chu VT, Nguyen TT, Simpson JA, Solomon T, White NJ, Farrar J. Acute management of dengue shock syndrome: a randomized double-blind comparison of 4 intravenous fluid regimens in the first hour. Clin Infect Dis. 2001;32:204–13.

    Article  CAS  PubMed  Google Scholar 

  13. Sabin AB. Research on dengue during World War II. Am J Trop Med Hyg. 1952;1:30–50.

    CAS  PubMed  Google Scholar 

  14. Endy TP, Nisalak A, Chunsuttitwat S, Vaughn DW, Green S, Ennis FA, Rothman AL, Libraty DH. Relationship of pre-existing dengue virus (DV) neutralizing antibody levels to viremia and disease severity in a prospective cohort study of DV infection in Thailand. J Infect Dis. 2004;189:990–1000.

    Article  PubMed  Google Scholar 

  15. Chiewsilp P, Scott RM, Bhamarapravati N. Histocompatibility antigens and dengue hemorrhagic fever. Am J Trop Med Hyg. 1981;30:1100–5.

    CAS  PubMed  Google Scholar 

  16. Loke H, Bethell DB, Phuong CX, Dung M, Schneider J, White NJ, Day NP, Farrar J, Hill AV. Strong HLA class I-restricted T cell responses in dengue hemorrhagic fever: a double-edged sword? J Infect Dis. 2001;184:1369–73.

    Article  CAS  PubMed  Google Scholar 

  17. Stephens HA, Klaythong R, Sirikong M, Vaughn DW, Green S, Kalayanarooj S, Endy TP, Libraty DH, Nisalak A, Innis BL, Rothman AL, Ennis FA, Chandanayingyong D. HLA-A and -B allele associations with secondary dengue virus infections correlate with disease severity and the infecting viral serotype in ethnic Thais. Tissue Antigens. 2002;60:309–18.

    Article  CAS  PubMed  Google Scholar 

  18. Yauch LE, Shresta S. Mouse models of dengue virus infection and disease. Antiviral Res. 2008;80:87–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Zompi S, Harris E. Animal models of dengue virus infection. Viruses. 2012;4:62–82.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Beaumier CM, Mathew A, Bashyam HS, Rothman AL. Cross-reactive memory CD8(+) T cells alter the immune response to heterologous secondary dengue virus infections in mice in a sequence-specific manner. J Infect Dis. 2008;197:608–17.

    Article  CAS  PubMed  Google Scholar 

  21. Shresta S, Kyle JL, Snider HM, Basavapatna M, Beatty PR, Harris E. Interferon-dependent immunity is essential for resistance to primary dengue virus infection in mice, whereas T- and B-cell-dependent immunity are less critical. J Virol. 2004;78:2701–10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Shresta S, Sharar KL, Prigozhin DM, Beatty PR, Harris E. Murine model for dengue virus-induced lethal disease with increased vascular permeability. J Virol. 2006;80:10208–17.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Prestwood TR, Prigozhin DM, Sharar KL, Zellweger RM, Shresta S. A mouse-passaged dengue virus strain with reduced affinity for heparan sulfate causes severe disease in mice by establishing increased systemic viral loads. J Virol. 2008;82:8411–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Yauch LE, Prestwood TR, May MM, Morar MM, Zellweger RM, Peters B, Sette A, Shresta S. CD4+ T cells are not required for the induction of dengue virus-specific CD8+ T cell or antibody responses but contribute to protection after vaccination. J Immunol. 2010;185:5405–16.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Chen YL, Yin Z, Duraiswamy J, Schul W, Lim CC, Liu B, Xu HY, Qing M, Yip A, Wang G, Chan WL, Tan HP, Lo M, Liung S, Kondreddi RR, Rao R, Gu H, He H, Keller TH, Shi PY. Inhibition of dengue virus RNA synthesis by an adenosine nucleoside. Antimicrob Agents Chemother. 2011;54:2932–9.

    Article  Google Scholar 

  26. Wang QY, Bushell S, Qing M, Xu HY, Bonavia A, Nunes S, Zhou J, Poh MK, Florez de Sessions, P., Niyomrattanakit P, Dong H, Hoffmaster K, Goh A, Nilar S, Schul W, Jones S, Kramer L, Compton T, Shi PY. Inhibition of dengue virus through suppression of host pyrimidine biosynthesis. J Virol. 2011;85:6548–56.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Tan GK, Ng JK, Trasti SL, Schul W, Yip G, Alonso S. A non mouse-adapted dengue virus strain as a new model of severe dengue infection in AG129 mice. PLoS Negl Trop Dis. 2010;4:e672.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Goncalvez AP, Engle RE, St Claire M, Purcell RH, Lai, CJ. Monoclonal antibody-mediated enhancement of dengue virus infection in vitro and in vivo and strategies for prevention. Proc Natl Acad Sci U S A. 2007;104(22):9422–7

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Kochel TJ, Watts DM, Gozalo AS, Ewing DF, Porter KR, Russell KL. Cross-serotype neutralization of dengue virus in Aotus nancymae monkeys. J Infect Dis. 2005;191:1000–4.

    Article  PubMed  Google Scholar 

  30. Maves RC, Ore RM, Porter KR, Kochel TJ. Immunogenicity and protective efficacy of a psoralen-inactivated dengue-1 virus vaccine candidate in Aotus nancymaae monkeys. Vaccine. 2011;29:2691–6.

    Article  CAS  PubMed  Google Scholar 

  31. Raviprakash K, Porter KR, Kochel TJ, Ewing D, Simmons M, Phillips I, Murphy GS, Weiss WR, Hayes CG. Dengue virus type 1 DNA vaccine induces protective immune responses in rhesus macaques. J Gen Virol. 2000;81:1659–67.

    CAS  PubMed  Google Scholar 

  32. Koraka P, Benton S, van Amerongen G, Stittelaar KJ, Osterhaus AD. Efficacy of a live attenuated tetravalent candidate dengue vaccine in naive and previously infected cynomolgus macaques. Vaccine. 2007;25:5409–16.

    Article  PubMed  Google Scholar 

  33. Koraka P, Benton S, van Amerongen G, Stittelaar KJ, Osterhaus AD. Characterization of humoral and cellular immune responses in cynomolgus macaques upon primary and subsequent heterologous infections with dengue viruses. Microbes Infect. 2007;9:940–6.

    Article  CAS  PubMed  Google Scholar 

  34. Onlamoon N, Noisakran S, Hsiao HM, Duncan A, Villinger F, Ansari AA, Perng GC. Dengue virus-induced hemorrhage in a nonhuman primate model. Blood. 2010;115:1823–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Shultz LD, Brehm MA, Garcia-Martinez JV, Greiner DL. Humanized mice for immune system investigation: progress, promise and challenges. Nat Rev Immunol. 2012;12:786–98.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Akkina R. Human immune responses and potential for vaccine assessment in humanized mice. Curr Opin Immunol. 2013;25(3):403–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Bente DA, Melkus MW, Garcia JV, Rico-Hesse R. Dengue fever in humanized NOD/SCID mice. J Virol. 2005;79:13797–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Kuruvilla JG, Troyer RM, Devi S, Akkina R. Dengue virus infection and immune response in humanized RAG2(−/−)gamma(c)(−/−) (RAG-hu) mice. Virology. 2007;369:143–52.

    Article  CAS  PubMed  Google Scholar 

  39. Jaiswal S, Pearson T, Friberg H, Shultz LD, Greiner DL, Rothman AL, Mathew A. Dengue virus infection and virus-specific HLA-A2 restricted immune responses in humanized NOD-scid IL2rgammanull mice. PLoS ONE. 2009;4:e7251.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Mota J, Rico-Hesse R. Humanized mice show clinical signs of dengue fever according to infecting virus genotype. J Virol. 2009;83:8638–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Cox J, Mota J, Sukupolvi-Petty S, Diamond MS, Rico-Hesse R. Mosquito bite delivery of dengue virus enhances immunogenicity and pathogenesis in humanized mice. J Virol. 2012;86:7637–49.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Lan P, Tonomura N, Shimizu A, Wang S, Yang YG. Reconstitution of a functional human immune system in immunodeficient mice through combined human fetal thymus/liver and CD34+ cell transplantation. Blood. 2006;108:487–92.

    Article  CAS  PubMed  Google Scholar 

  43. Melkus MW, Estes JD, Padgett-Thomas A, Gatlin J, Denton PW, Othieno FA, Wege AK, Haase AT, Garcia JV. Humanized mice mount specific adaptive and innate immune responses to EBV and TSST-1. Nat Med. 2006;12:1316–22.

    Article  CAS  PubMed  Google Scholar 

  44. Jaiswal S, Pazoles P, Woda M, Shultz LD, Greiner DL, Brehm MA, Mathew A. Enhanced humoral and HLA-A2-restricted dengue virus-specific T-cell responses in humanized BLT NSG mice. Immunology. 2012;136:334–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Mathew A, Kurane I, Green S, Stephens HA, Vaughn DW, Kalayanarooj S, Suntayakorn S, Chandanayingyong D, Ennis FA, Rothman AL. Predominance of HLA-restricted cytotoxic T-lymphocyte responses to serotype-cross-reactive epitopes on nonstructural proteins following natural secondary dengue virus infection. J Virol. 1998;72:3999–4004.

    PubMed Central  CAS  PubMed  Google Scholar 

  46. Bashyam HS, Green S, Rothman AL. Dengue virus-reactive CD8+ T cells display quantitative and qualitative differences in their response to variant epitopes of heterologous viral serotypes. J Immunol. 2006;176:2817–24.

    Article  CAS  PubMed  Google Scholar 

  47. Lang J, Kelly M, Freed BM, McCarter MD, Kedl RM, Torres RM, Pelanda R. Studies of lymphocyte reconstitution in a humanized mouse model reveal a requirement of T cells for human B cell maturation. J Immunol. 2013;190(5):2090–101.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Rongvaux A, Takizawa H, Strowig T, Willinger T, Eynon EE, Flavell RA, Manz MG. Human hemato-lymphoid system mice: current use and future potential for medicine. Annu Rev Immunol. 2013;31:635–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Huang KJ, Li SY, Chen SC, Liu HS, Lin YS, Yeh TM, Liu CC, Lei HY. Manifestation of thrombocytopenia in dengue-2-virus-infected mice. J Gen Virol. 2000;81:2177–82.

    CAS  PubMed  Google Scholar 

  50. Yen YT, Chen HC, Lin YD, Shieh CC, Wu-Hsieh BA. Enhancement by tumor necrosis factor alpha of dengue virus-induced endothelial cell production of reactive nitrogen and oxygen species is key to hemorrhage development. J Virol. 2008;82:12312–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Prestwood TR, Morar MM, Zellweger RM, Miller R, May MM, Yauch LE, Lada SM, Shresta S. Gamma interferon (IFN-gamma) receptor restricts systemic dengue virus replication and prevents paralysis in IFN-alpha/beta receptor-deficient mice. J Virol. 2012;86:12561–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anuja Mathew or Ramesh Akkina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mathew, A., Akkina, R. (2014). Dengue Viral Pathogenesis and Immune Responses in Humanized Mice. In: Poluektova, L., Garcia, J., Koyanagi, Y., Manz, M., Tager, A. (eds) Humanized Mice for HIV Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1655-9_37

Download citation

Publish with us

Policies and ethics