Skip to main content

Species Similarities and Differences in Pharmacokinetics and Distribution of Antiretroviral Drugs

  • Chapter
  • First Online:
Humanized Mice for HIV Research

Abstract

As with all xenobiotics, there are numerous factors that influence the pharmacokinetics and distribution of antiretroviral drugs. These include proteins involved in phase I metabolism, phase II metabolism, drug influx transport, drug efflux transport and the ligand-activated transcription factors that regulate them. The key differences between human and murine proteins responsible for the metabolism of antiretroviral drugs are discussed in this chapter. It is essential to consider species differences in metabolic enzymes, transporters and nuclear receptors when interpreting pharmacokinetic and drug–drug interaction (via induction or inhibition) data from rodent models. However, differences in tissue size and blood flow are also likely to affect disposition and must be considered when interpreting data from murine models. Mice transplanted with human hepatocytes have been shown to display a more human-like metabolic response to drugs and represent an interesting avenue for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boxenbaum H. Interspecies scaling, allometry, physiological time, and the ground plan of pharmacokinetics. J Pharmacokinet Biopharm. 1982;10(2):201–27.

    CAS  PubMed  Google Scholar 

  2. Back D, Sekar V, Hoetelmans R. Darunavir: pharmacokinetics and drug interactions. Antivir Ther. 2008;13(1):1–13.

    CAS  PubMed  Google Scholar 

  3. Taburet A-M, Piketty C, Chazallon C, Vincent I, Gérard L, Calvez V, et al. Interactions between atazanavir-ritonavir and tenofovir in heavily pretreated human immunodeficiency virus-infected patients. Antimicrob Agents Chemother. 2004;48(6):2091–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  4. Kumar GN, Rodrigues AD, Buko AM, Denissen JF. Cytochrome P450-mediated metabolism of the HIV-1 protease inhibitor ritonavir (ABT-538) in human liver microsomes. J Pharmacol Exp Ther. 1996;277(1):423–31.

    CAS  PubMed  Google Scholar 

  5. Lim ML, Min SS, Eron JJ, Bertz RJ, Robinson M, Gaedigk A, et al. Coadministration of lopinavir/ritonavir and phenytoin results in two-way drug interaction through cytochrome P-450 induction. J Acquir Immune Defic Syndr. 2004;36(5):1034–40.

    CAS  PubMed  Google Scholar 

  6. Smith PF, DiCenzo R, Morse GD. Clinical pharmacokinetics of non-nucleoside reverse transcriptase inhibitors. Clin Pharmacokinet. 2001;40(12):893–905.

    CAS  PubMed  Google Scholar 

  7. Kakuda T, Leopold L, Nijs S, Vandevoorde A, Crauwels H, Bertelsen K, et al., Editors. Pharmacokinetic interaction between etravirine or rilpivirine and telaprevir in healthy volunteers: a randomised, two-way crossover trial. Program and abstracts of the 13th International Workshop on Clinical Pharmacology of HIV Therapy; 2012.

    Google Scholar 

  8. MacArthur RD, Novak RM. Maraviroc: the first of a new class of antiretroviral agents. Clin Infect Dis. 2008;47(2):236–41.

    CAS  PubMed  Google Scholar 

  9. Martignoni M, Groothuis GM, de Kanter R. Species differences between mouse, rat, dog, monkey and human CYP-mediated drug metabolism, inhibition and induction. Expert Opin Drug Metab Toxicol. 2006;2(6):875–94.

    CAS  PubMed  Google Scholar 

  10. Nelson DR, Zeldin DC, Hoffman SM, Maltais LJ, Wain HM, Nebert DW. Comparison of cytochrome P450 (CYP) genes from the mouse and human genomes, including nomenclature recommendations for genes, pseudogenes and alternative-splice variants. Pharmacogenet Genomics. 2004;14(1):1–18.

    CAS  Google Scholar 

  11. Tompkins LM, Wallace AD. Mechanisms of cytochrome P450 induction. J Biochem Mol Toxicol. 2007;21(4):176–81.

    CAS  PubMed  Google Scholar 

  12. Davies R, Schuurman A, Barker CR, Clothier B, Chernova T, Higginson FM, et al. Hepatic gene expression in protoporphyic Fech mice is associated with cholestatic injury but not a marked depletion of the heme regulatory pool. Am J Pathol. 2005;166(4):1041–53.

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Erickson DA, Mather G, Trager WF, Levy RH, Keirns JJ. Characterization of the in vitro biotransformation of the HIV-1 reverse transcriptase inhibitor nevirapine by human hepatic cytochromes P-450. Drug Metab Dispos. 1999;27(12):1488–95.

    CAS  PubMed  Google Scholar 

  14. Ogburn ET, Jones DR, Masters AR, Xu C, Guo Y, Desta Z. Efavirenz primary and secondary metabolism in vitro and in vivo: identification of novel metabolic pathways and cytochrome P450 2A6 as the principal catalyst of efavirenz 7-hydroxylation. Drug Metab Dispos. 2010;38(7):1218–29

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Baede-van Dijk PA, Hugen PW, Verweij-van Wissen CP, Koopmans PP, Burger DM, Hekster YA. Analysis of variation in plasma concentrations of nelfinavir and its active metabolite M8 in HIV-positive patients. AIDS. 2001;15(8):991–8.

    CAS  PubMed  Google Scholar 

  16. Voorman RL, Maio SM, Hauer MJ, Sanders PE, Payne NA, Ackland MJ. Metabolism of delavirdine, a human immunodeficiency virus type-1 reverse transcriptase inhibitor, by microsomal cytochrome P450 in humans, rats, and other species: probable involvement of CYP2D6 and CYP3A. Drug Metab Dispos. 1998;26(7):631–9.

    CAS  PubMed  Google Scholar 

  17. Bae S, Jeong Y-J, Lee C, Liu K-H. Identification of human UGT isoforms responsible for glucuronidation of efavirenz and its three hydroxy metabolites. Xenobiotica. 2011;41(6):437–44.

    CAS  PubMed  Google Scholar 

  18. Bélanger A-S, Caron P, Harvey M, Zimmerman PA, Mehlotra RK, Guillemette C. Glucuronidation of the antiretroviral drug efavirenz by UGT2B7 and an in vitro investigation of drug-drug interaction with zidovudine. Drug Metab and Dispos. 2009;37(9):1793–6.

    Google Scholar 

  19. Michaud V, Bar-Magen T, Turgeon J, Flockhart D, Desta Z, Wainberg MA. The dual role of pharmacogenetics in HIV treatment: mutations and polymorphisms regulating antiretroviral drug resistance and disposition. Pharmacol Rev. 2012;64(3):803–33.

    CAS  PubMed  Google Scholar 

  20. Turgeon D, Carrier J-S, Lévesque É, Hum DW, Bélanger A. Relative enzymatic activity, protein stability, and tissue distribution of human steroid-metabolizing UGT2B subfamily members. Endocrinology. 2001;142(2):778–87.

    CAS  PubMed  Google Scholar 

  21. Rittweger M. Clinical pharmacokinetics of darunavir. Clin pharmacokinet. 2007;46(9):739–56.

    CAS  PubMed  Google Scholar 

  22. Zhang X, Tierney C, Albrecht M, Demeter LM, Morse G, DiFrancesco R, et al. Discordant associations between SLCO1B1 521T→ C and plasma levels of ritonavir-boosted protease inhibitors in AIDS clinical trials group study A5146. Ther drug monit. 2013;35(2):209–16.

    PubMed Central  PubMed  Google Scholar 

  23. Bousquet L, Roucairol C, Hembury A, Nevers M-C, Creminon C, Farinotti R, et al. Comparison of ABC transporter modulation by atazanavir in lymphocytes and human brain endothelial cells: ABC transporters are involved in the atazanavir-limited passage across an in vitro human model of the blood-brain barrier. AIDS Res Hum Retroviruses. 2008;24(9):1147–54.

    CAS  PubMed  Google Scholar 

  24. Chandler B, Detsika M, Owen A, Evans S, Hartkoorn RC, Cane PA, et al. Short communication effect of transporter modulation on the emergence of nelfinavir resistance in vitro. Antivir Ther. 2007;12:831–4.

    CAS  PubMed  Google Scholar 

  25. Holmstock N, Mols R, Annaert P, Augustijns P. In situ intestinal perfusion in knockout mice demonstrates inhibition of intestinal p-glycoprotein by ritonavir causing increased darunavir absorption. Drug Metab Dispos. 2010;38(9):1407–10.

    CAS  PubMed  Google Scholar 

  26. Lee CG, Gottesman MM, Cardarelli CO, Ramachandra M, Jeang K-T, Ambudkar SV, et al. HIV-1 protease inhibitors are substrates for the MDR 1 multidrug transporter. Biochemistry. 1998;37(11):3594–601.

    CAS  PubMed  Google Scholar 

  27. Shaik N, Giri N, Pan G, Elmquist WF. P-glycoprotein-mediated active efflux of the anti-HIV1 nucleoside abacavir limits cellular accumulation and brain distribution. Drug Metab Dispos. 2007;35(11):2076–85.

    CAS  PubMed  Google Scholar 

  28. Walker DK, Abel S, Comby P, Muirhead GJ, Nedderman AN, Smith DA. Species differences in the disposition of the CCR5 antagonist, UK-427,857, a new potential treatment for HIV. Drug Metab Dispos. 2005;33(4):587–95.

    CAS  PubMed  Google Scholar 

  29. Devault A, Gros P. Two members of the mouse mdr gene family confer multidrug resistance with overlapping but distinct drug specificities. Mol Cell Biol. 1990;10(4):1652–63.

    PubMed Central  CAS  PubMed  Google Scholar 

  30. Pan G, Giri N, Elmquist WF. Abcg2/Bcrp1 mediates the polarized transport of antiretroviral nucleosides abacavir and zidovudine. Drug Metab Dispos. 2007;35(7):1165–73.

    CAS  PubMed  Google Scholar 

  31. Wang X, Furukawa T, Nitanda T, Okamoto M, Sugimoto Y, Akiyama S-I, et al. Breast cancer resistance protein (BCRP/ABCG2) induces cellular resistance to HIV-1 nucleoside reverse transcriptase inhibitors. Mol Pharmacol. 2003;63(1):65–72.

    CAS  PubMed  Google Scholar 

  32. Giri N, Shaik N, Pan G, Terasaki T, Mukai C, Kitagaki S, et al. Investigation of the role of breast cancer resistance protein (Bcrp/Abcg2) on pharmacokinetics and central nervous system penetration of abacavir and zidovudine in the mouse. Drug Metab Dispos. 2008;36(8):1476–84.

    CAS  PubMed  Google Scholar 

  33. Janneh O, Hartkoorn R, Jones E, Owen A, Ward S, Davey R, et al. Cultured CD4T cells and primary human lymphocytes express hOATPs: intracellular accumulation of saquinavir and lopinavir. Br J Pharmacol. 2008;155(6):875–83.

    PubMed Central  CAS  PubMed  Google Scholar 

  34. Srinivas RV, Middlemas D, Flynn P, Fridland A. Human immunodeficiency virus protease inhibitors serve as substrates for multidrug transporter proteins MDR1 and MRP1 but retain antiviral efficacy in cell lines expressing these transporters. Antimicrob Agents Chemother. 1998;42(12):3157–62.

    PubMed Central  CAS  PubMed  Google Scholar 

  35. Ensembl. Gene: ABCC1 ENSG00000103222. [cited 2013 23rd July]. http://www.ensembl.org/Homo_sapiens/Gene/Compara_Ortholog?g=ENSG00000103222;r=16:16043434-16236931.

  36. Huisman MT, Smit JW, Crommentuyn KM, Zelcer N, Wiltshire HR, Beijnen JH, et al. Multidrug resistance protein 2 (MRP2) transports HIV protease inhibitors, and transport can be enhanced by other drugs. AIDS. 2002;16(17):2295–301.

    CAS  PubMed  Google Scholar 

  37. Ensembl. Gene: ABCC4 ENSG00000125257. 2013 [cited 2013 23rd July]. http://www.ensembl.org/Homo_sapiens/Gene/Compara_Ortholog?g=ENSG00000125257;r=13:95672083-95953687.

  38. Kearney BP, Flaherty JF, Shah J. Tenofovir disoproxil fumarate. Clin Pharmacokinet. 2004;43(9):595–612.

    CAS  PubMed  Google Scholar 

  39. Ensembl. Gene: ABCC10 ENSG00000124574. 2013 [cited 2013 31st July]. http://www.ensembl.org/Homo_sapiens/Gene/Compara_Ortholog?g=ENSG00000124574;r=6:43395104-43418168.

  40. Liptrott NJ, Pushpakom S, Wyen C, Fätkenheuer G, Hoffmann C, Mauss S, et al. Association of ABCC10 polymorphisms with nevirapine plasma concentrations in the German Competence Network for HIV/AIDS. Pharmacogenet Genomics. 2012;22(1):10–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  41. Pushpakom SP, Liptrott NJ, Rodríguez-Nóvoa S, Labarga P, Soriano V, Albalater M, et al. Genetic variants of ABCC10, a novel tenofovir transporter, are associated with kidney tubular dysfunction. J Infect Dis. 2011;204(1):145–53.

    PubMed Central  CAS  PubMed  Google Scholar 

  42. Kis O, Robillard K, Chan GN, Bendayan R. The complexities of antiretroviral drug–drug interactions: role of ABC and SLC transporters. Trends Pharm Sci. 2010;31(1):22–35.

    CAS  PubMed  Google Scholar 

  43. Weiss J, Rose J, Storch CH, Ketabi-Kiyanvash N, Sauer A, Haefeli WE, et al. Modulation of human BCRP (ABCG2) activity by anti-HIV drugs. J Antimicrob Chemother. 2007;59(2):238–45.

    CAS  PubMed  Google Scholar 

  44. Back DJ. Drug-drug interactions that matter. Top HIV Med. 2006;14(2):88–92. (Epub 2006/07/13).

    PubMed  Google Scholar 

  45. Abel S, Back DJ, Vourvahis M. Maraviroc: pharmacokinetics and drug interactions. Antivir Ther. 2009;14(5):607–18. (Epub 2009/08/26).

    CAS  PubMed  Google Scholar 

  46. Kumar GN, Jayanti V, Lee RD, Whittern DN, Uchic J, Thomas S, et al. In vitro metabolism of the HIV-1 protease inhibitor ABT-378: species comparison and metabolite identification. Drug Metab Dispos. 1999;27(1):86–91.

    CAS  PubMed  Google Scholar 

  47. Riska PS, Joseph DP, Dinallo RM, Davidson WC, Keirns JJ, Hattox SE. Biotransformation of nevirapine, a non-nucleoside HIV-1 reverse transcriptase inhibitor, in mice, rats, rabbits, dogs, monkeys, and chimpanzees. Drug Metab Dispos. 1999;27(12):1434–47.

    CAS  PubMed  Google Scholar 

  48. Riska P, Lamson M, MacGregor T, Sabo J, Hattox S, Pav J, et al. Disposition and biotransformation of the antiretroviral drug nevirapine in humans. Drug Metab Dispos. 1999;27(8):895–901.

    CAS  PubMed  Google Scholar 

  49. Dellamonica P, Di Perri G, Garraffo R. NNRTIs: pharmacological data. Med Mal Infect. 2012;42(7):287–95.

    CAS  PubMed  Google Scholar 

  50. Deb S, Pandey M, Adomat H, Guns EST. Cytochrome P450 3A-mediated microsomal biotransformation of 1α, 25-dihydroxyvitamin D3 in mouse and human liver: drug-related induction and inhibition of catabolism. Drug Metab Dispos. 2012;40(5):907–18.

    CAS  PubMed  Google Scholar 

  51. van Waterschoot RA, ter Heine R, Wagenaar E, van der Kruijssen CM, Rooswinkel RW, Huitema AD, et al. Effects of cytochrome P450 3A (CYP3A) and the drug transporters P-glycoprotein (MDR1/ABCB1) and MRP2 (ABCC2) on the pharmacokinetics of lopinavir. Br J Pharmacol. 2010;160(5):1224–33. (Epub 2010/07/02).

    PubMed Central  CAS  PubMed  Google Scholar 

  52. Merry C, Barry MG, Mulcahy F, Ryan M, Heavey J, Tjia JF, et al. Saquinavir pharmacokinetics alone and in combination with ritonavir in HIV-infected patients. AIDS. 1997;11(4):F29–33.

    CAS  PubMed  Google Scholar 

  53. van Herwaarden AE, Wagenaar E, van der Kruijssen CM, van Waterschoot RA, Smit JW, Song J-Y, et al. Knockout of cytochrome P450 3A yields new mouse models for understanding xenobiotic metabolism. J Clin Invest. 2007;117(11):3583–92.

    PubMed Central  CAS  PubMed  Google Scholar 

  54. Kuze J, Mutoh T, Takenaka T, Oda N, Hanioka N, Narimatsu S. Evaluation of animal models for intestinal first-pass metabolism of drug candidates to be metabolized by CYP3A enzymes via in vivo and in vitro oxidation of midazolam and triazolam. Xenobiotica. 2013;(0):1–9.

    Google Scholar 

  55. Schipani A, Egan D, Dickinson L, Davies G, Boffito M, Youle M, et al. Estimation of the effect of SLCO1B1 polymorphisms on lopinavir plasma concentration in HIV-infected adults. Antivir Ther. 2012;17(5):861–8. (Epub 2012/04/06).

    PubMed Central  CAS  PubMed  Google Scholar 

  56. Tomaru A, Takeda-Morishita M, Banba H, Takayama K. Analysis of the pharmacokinetic boosting effects of ritonavir on oral bioavailability of drugs in mice. Drug metabolism and pharmacokinetics. 2013;28(2):144–52. PubMed PMID: 22971642.

    Google Scholar 

  57. Perloff MD, von Moltke LL, Kotegawa T, Shader RI, Greenblatt DJ. Midazolam and triazolam biotransformation in mouse and human liver microsomes: relative contribution of CYP3A and CYP2C isoforms. J Pharmacol Exp Ther. 2000;292(2):618–28.

    CAS  PubMed  Google Scholar 

  58. Sheng J, Hua Z, Guo J, Caggana M, Ding X. Identification of a new human CYP2A gene fragment with close linkage to CYP2GP1. Drug Metab Dispos. 2001;29(1):4–7. (Epub 2000/12/22).

    CAS  PubMed  Google Scholar 

  59. Liptrott N, Khoo S, Back D, Owen A. Detection of ABCC2, CYP2B6 and CYP3A4 in human peripheral blood mononuclear cells using flow cytometry. J Immunol Methods. 2008;339(2):270–4.

    CAS  PubMed  Google Scholar 

  60. Miksys S, Lerman C, Shields PG, Mash DC, Tyndale RF. Smoking, alcoholism and genetic polymorphisms alter CYP2B6 levels in human brain. Neuropharmacology. 2003;45(1):122–32.

    CAS  PubMed  Google Scholar 

  61. Adkins JC, Noble S. Efavirenz. Drugs. 1998;56(6):1055–64.

    CAS  PubMed  Google Scholar 

  62. Nirogi R, Bhyrapuneni G, Kandikere V, Muddana N, Saralaya R, Komarneni P, et al. Pharmacokinetic profiling of efavirenz–emtricitabine–tenofovir fixed dose combination in pregnant and non‐pregnant rats. Biopharm Drug Dispos. 2012;33(5):265–77.

    CAS  PubMed  Google Scholar 

  63. Micuda S, Mundlova L, Anzenbacherova E, Anzenbacher P, Chladek J, Fuksa L, et al. Inhibitory effects of memantine on human cytochrome P450 activities: prediction of in vivo drug interactions. Eur J Clin Pharmacol. 2004;60(8):583–9.

    CAS  PubMed  Google Scholar 

  64. Posti K, Leinonen S, Tetri S, Kottari S, Viitala P, Pelkonen O, et al. Modulation of murine phenobarbital‐inducible CYP2A5, CYP2B10 and CYP1A enzymes by inhibitors of protein kinases and phosphatases. Eur J Biochem. 1999;264(1):19–26.

    CAS  PubMed  Google Scholar 

  65. Scheer N, Ross J, Kapelyukh Y, Rode A, Wolf CR. In vivo responses of the human and murine pregnane X receptor to dexamethasone in mice. Drug Metab Dispos. 2010;38(7):1046–53.

    CAS  PubMed  Google Scholar 

  66. Ingelman-Sundberg M. Genetic polymorphisms of cytochrome P450 2D6 (CYP2D6): clinical consequences, evolutionary aspects and functional diversity. Pharmacogenomics J. 2004;5(1):6–13.

    Google Scholar 

  67. Smith G, Modi S, Pillai I, Lian L-Y, Sutcliffe MJ, Pritchard MP, et al. Determinants of the substrate specificity of human cytochrome P-450 CYP2D6: design and construction of a mutant with testosterone hydroxylase activity. Biochem J. 1998;331(Pt 3):783–92.

    PubMed Central  CAS  PubMed  Google Scholar 

  68. Voorman RL, Maio SM, Hauer MJ, Sanders PE, Payne NA, Ackland MJ. Metabolism of delavirdine, a human immunodeficiency virus type-1 reverse transcriptase inhibitor, by microsomal cytochrome P450 in humans, rats, and other species: probable involvement of CYP2D6 and CYP3A. Drug Metab Dispos. 1998;26(7):631–9. (Epub 1998/07/14).

    CAS  PubMed  Google Scholar 

  69. Guo Y, Li F, Ma X, Cheng X, Zhou H, Klaassen CD. CYP2D plays a major role in berberine metabolism in liver of mice and humans. Xenobiotica. 2011;41(11):996–1005.

    CAS  PubMed  Google Scholar 

  70. Bogaards J, Bertrand M, Jackson P, Oudshoorn M, Weaver R, Van Bladeren P, et al. Determining the best animal model for human cytochrome P450 activities: a comparison of mouse, rat, rabbit, dog, micropig, monkey and man. Xenobiotica. 2000;30(12):1131–52.

    CAS  PubMed  Google Scholar 

  71. McLaughlin LA, Dickmann LJ, Wolf CR, Henderson CJ. Functional expression and comparative characterization of nine murine cytochromes P450 by fluorescent inhibition screening. Drug Metab Dispos. 2008;36(7):1322–31.

    CAS  PubMed  Google Scholar 

  72. Rang H, Dale M, Ritter J, Moore P. Pharmacology. 5th edn. New Delhi: Charchill Livingstone; 2006.

    Google Scholar 

  73. Buckley DB, Klaassen CD. Tissue-and gender-specific mRNA expression of UDP-glucuronosyltransferases (UGTs) in mice. Drug Metab Dispos. 2007;35(1):121–7.

    CAS  PubMed  Google Scholar 

  74. Ensembl. Gene: UGT2B7 ENSG00000171234. 2013 [cited 2013 23rd July]. https://www.ebi.ac.uk/s4/jump;jsessionid=9ED08AF0587C08212C07263C27DD2519?from=aHR0cDovL3d3dy5lYmkuYWMudWsvczQvc3VtbWFyeS9tb2xlY3VsYXI7anNlc3Npb25pZD05RUQwOEFGMDU4N0MwODIxMkMwNzI2M0MyN0REMjUxOT90ZXJtPVVHVDJCNyZjbGFzc2lmaWNhdGlvbj05NjA2&hash=07237&url=http://www.ensembl.org/Homo_sapiens/Gene/Compara_Ortholog?g%3DENSG00000171234%3Bdb%3Dcore.

  75. Trottier J, Milkiewicz P, Kaeding J, Verreault M, Barbier O. Coordinate regulation of hepatic bile acid oxidation and conjugation by nuclear receptors. Mol Pharm. 2006;3(3):212–22.

    CAS  PubMed  Google Scholar 

  76. Pretheeban M, Hammond G, Bandiera S, Riggs W, Rurak D. Ontogenesis of UDP-glucuronosyltransferase enzymes in sheep. Comp Biochem Physiol A Mol Integr Physiol. 2011;159(2):159–66.

    PubMed  Google Scholar 

  77. Nakamura A, Nakajima M, Yamanaka H, Fujiwara R, Yokoi T. Expression of UGT1A and UGT2B mRNA in human normal tissues and various cell lines. Drug Metab Dispos. 2008;36(8):1461–4.

    CAS  PubMed  Google Scholar 

  78. Veal GJ, Back DJ. Metabolism of zidovudine. Gen Pharm. 1995;26(7):1469–75.

    CAS  Google Scholar 

  79. Chow HH. A physiologically based pharmacokinetic model of zidovudine (AZT) in the mouse: model development and scale‐up to humans. J Pharm Sci. 1997;86(11):1223–8.

    CAS  PubMed  Google Scholar 

  80. Owen A, Khoo SH. Intracellular pharmacokinetics of antiretroviral agents. J HIV Ther. 2004;9(4):97–101. (Epub 2005/02/26).

    CAS  PubMed  Google Scholar 

  81. Marchetti S, Mazzanti R, Beijnen JH, Schellens JH. Concise review: clinical relevance of drug–drug and herb–drug interactions mediated by the ABC transporter ABCB1 (MDR1, P-glycoprotein). Oncologist. 2007;12(8):927–41.

    PubMed  Google Scholar 

  82. Chu X, Bleasby K, Evers R. Species differences in drug transporters and implications for translating preclinical findings to humans. Expert Opin Drug Metab Toxicol. 2013;9(0):1–16.

    Google Scholar 

  83. Mason BL, Pariante CM, Thomas SA. A revised role for P-glycoprotein in the brain distribution of dexamethasone, cortisol, and corticosterone in wild-type and ABCB1A/B-deficient mice. Endocrinology. 2008;149(10):5244–53.

    PubMed Central  CAS  PubMed  Google Scholar 

  84. Uchida Y, Ohtsuki S, Katsukura Y, Ikeda C, Suzuki T, Kamiie J, et al. Quantitative targeted absolute proteomics of human blood–brain barrier transporters and receptors. J Neurochem. 2011;117(2):333–45.

    CAS  PubMed  Google Scholar 

  85. Jones K, Bray PG, Khoo SH, Davey RA, Meaden ER, Ward SA, et al. P-Glycoprotein and transporter MRP1 reduce HIV protease inhibitor uptake in CD4 cells: potential for accelerated viral drug resistance? AIDS. 2001;15(11):1353.

    CAS  PubMed  Google Scholar 

  86. Choo EF, Leake B, Wandel C, Imamura H, Wood AJ, Wilkinson GR, et al. Pharmacological inhibition of P-glycoprotein transport enhances the distribution of HIV-1 protease inhibitors into brain and testes. Drug Metab Dispos. 2000;28(6):655–60.

    CAS  PubMed  Google Scholar 

  87. Washington CB, Wiltshire HR, Man M, Moy T, Harris SR, Worth E, et al. The disposition of saquinavir in normal and P-glycoprotein deficient mice, rats, and in cultured cells. Drug Metab Dispos. 2000;28(9):1058–62.

    CAS  PubMed  Google Scholar 

  88. van Waterschoot R, ter Heine R, Wagenaar E, van der Kruijssen C, Rooswinkel R, Huitema A, et al. Effects of cytochrome P450 3A (CYP3A) and the drug transporters P‐glycoprotein (MDR1/ABCB1) and MRP2 (ABCC2) on the pharmacokinetics of lopinavir. Br J Pharmacol. 2010;160(5):1224–33.

    PubMed Central  CAS  PubMed  Google Scholar 

  89. Kageyama M, Namiki H, Fukushima H, Terasaka S, Togawa T, Tanaka A, et al. Effect of chronic administration of ritonavir on function of cytochrome P450 3A and P-glycoprotein in rats. Biol Pharm Bull. 2005;28(1):130–7.

    CAS  PubMed  Google Scholar 

  90. Ejsing TB, Pedersen AD, Linnet K. P‐glycoprotein interaction with risperidone and 9‐OH‐risperidone studied in vitro, in knock‐out mice and in drug–drug interaction experiments. Hum Psychopharmacol. 2005;20(7):493–500.

    CAS  PubMed  Google Scholar 

  91. Boulton DW, DeVane CL, Liston HL, Markowitz JS. In vitro P-glycoprotein affinity for atypical and conventional antipsychotics. Life Sci. 2002;71(2):163–9.

    CAS  PubMed  Google Scholar 

  92. Zha W, Wang G, Xu W, Liu X, Wang Y, Zha BS, et al. Inhibition of P-glycoprotein by HIV protease inhibitors increases intracellular accumulation of berberine in murine and human macrophages. PloS one. 2013;8(1):e54349.

    PubMed Central  CAS  PubMed  Google Scholar 

  93. König J, Müller F, Fromm MF. Transporters and drug-drug interactions: important determinants of drug disposition and effects. Pharmacol Rev. 2013;65(3):944–66.

    PubMed  Google Scholar 

  94. Breedveld P, Beijnen JH, Schellens JH. Use of P-glycoprotein and BCRP inhibitors to improve oral bioavailability and CNS penetration of anticancer drugs. Trends Pharmacol Sci. 2006;27(1):17–24.

    CAS  PubMed  Google Scholar 

  95. Lai Y. Identification of interspecies difference in hepatobiliary transporters to improve extrapolation of human biliary secretion.Expert opinion on drug metabolism & toxicology. 2009;5(10):1175–87. PubMed PMID: 19611403.

    Google Scholar 

  96. Ensembl. Gene: ABCC2 ENSG00000023839. 2013 [cited 2013 23rd July]. http://www.ensembl.org/Homo_sapiens/Gene/Compara_Ortholog?g=ENSG00000023839;r=10:101542489-101611949.

  97. Ensembl. Gene: ABCC5 ENSG00000114770. 2013 [cited 2013 23rd July]. http://www.ensembl.org/Homo_sapiens/Gene/Compara_Ortholog?g=ENSG00000114770;r=3:183637722-183735803.

  98. Maher JM, Slitt AL, Cherrington NJ, Cheng X, Klaassen CD. Tissue distribution and hepatic and renal ontogeny of the multidrug resistance-associated protein (Mrp) family in mice. Drug Metab Dispos. 2005;33(7):947–55.

    CAS  PubMed  Google Scholar 

  99. Zimmermann C, van de Wetering K, van de Steeg E, Wagenaar E, Vens C, Schinkel AH. Species-dependent transport and modulation properties of human and mouse multidrug resistance protein 2 (MRP2/Mrp2, ABCC2/Abcc2). Drug Metab Dispos. 2008;36(4):631–40.

    CAS  PubMed  Google Scholar 

  100. Takayanagi Si, Ishikawa T. Molecular identification and characterization of rat Abcc1 cDNA: existence of two splicing variants and species difference in drug‐resistance profile. J Exp Ther Oncol. 2003;3(3):136–46.

    CAS  PubMed  Google Scholar 

  101. Bleasby K, Castle J, Roberts C, Cheng C, Bailey W, Sina J, et al. Expression profiles of 50 xenobiotic transporter genes in humans and pre-clinical species: a resource for investigations into drug disposition. Xenobiotica. 2006;36(10–11):963–88.

    CAS  PubMed  Google Scholar 

  102. Ensembl. Gene: SLCO1B1 ENSG00000134538. 2013. http://www.ensembl.org/Homo_sapiens/Gene/Compara_Ortholog?g=ENSG00000134538;r=12:21284136-21392180;t=ENST00000256958.

  103. Iusuf D, van de Steeg E, Schinkel AH. Functions of OATP1A and 1B transporters in vivo: insights from mouse models. Trends Pharmacol Sci. 2012;33(2):100–8.

    CAS  PubMed  Google Scholar 

  104. Ensembl. Gene: SLCO1B1 ENSG00000134538. 2013 [cited 2013 25th July]. http://www.ensembl.org/Homo_sapiens/Gene/Compara_Ortholog?g=ENSG00000134538;r=12:21284136-21392180;t=ENST00000256958.

  105. Burckhardt G. Drug transport by organic anion transporters (OATs). Pharmacology & therapeutics. 2012;136(1):106–30. PubMed PMID: 22841915.

    Google Scholar 

  106. Rizwan AN, Burckhardt G. Organic anion transporters of the SLC22 family: biopharmaceutical, physiological, and pathological roles. Pharm Res. 2007;24(3):450–70.

    CAS  PubMed  Google Scholar 

  107. Truong DM, Kaler G, Khandelwal A, Swaan PW, Nigam SK. Multi-level analysis of organic anion transporters 1, 3, and 6 reveals major differences in structural determinants of antiviral discrimination. J Biol Chem. 2008;283(13):8654–63.

    PubMed Central  CAS  PubMed  Google Scholar 

  108. Kobayashi Y, Ohshiro N, Shibusawa A, Sasaki T, Tokuyama S, Sekine T, et al. Isolation, characterization and differential gene expression of multispecific organic anion transporter 2 in mice. Mol pharmacol. 2002;62(1):7–14.

    CAS  PubMed  Google Scholar 

  109. Dresser MJ, Gray AT, Giacomini KM. Kinetic and selectivity differences between rodent, rabbit, and human organic cation transporters (OCT1). J Pharmacol Exp Ther. 2000;292(3):1146–52.

    CAS  PubMed  Google Scholar 

  110. Tweedie D, Polli JW, Berglund EG, Huang SM, Zhang L, Poirier A, et al. Transporter studies in drug development: experience to date and follow-up on decision trees from the international transporter consortium. Clin Pharmacol Ther. 2013;94(1):113–25. (Epub 2013/04/17).

    CAS  PubMed  Google Scholar 

  111. Hillgren KM, Keppler D, Zur AA, Giacomini KM, Stieger B, Cass CE, et al. Emerging transporters of clinical importance: an update from the international transporter consortium. Clin Pharmacol Ther. 2013;94(1):52–63. (Epub 2013/04/17).

    CAS  PubMed  Google Scholar 

  112. Kis E, Ioja E, Nagy T, Szente L, Herédi-Szabó K, Krajcsi P. Effect of membrane cholesterol on BSEP/Bsep activity: species specificity studies for substrates and inhibitors. Drug Metab Dispos. 2009;37(9):1878–86.

    CAS  PubMed  Google Scholar 

  113. Chu X, Bleasby K, Evers R. Species differences in drug transporters and implications for translating preclinical findings to humans. Expert Opin Drug Metab Toxicol. 2013;9(3):237–52.

    CAS  PubMed  Google Scholar 

  114. Kliewer SA, Goodwin B, Willson TM. The nuclear pregnane X receptor: a key regulator of xenobiotic metabolism. Endocr Rev. 2002;23(5):687–702.

    CAS  PubMed  Google Scholar 

  115. Wu B, Li S, Dong D. 3D structures and ligand specificities of nuclear xenobiotic receptors CAR, PXR and VDR. Drug Discovery Today. 2013;18(11-12):574–81. PubMed PMID:23299080.

    Google Scholar 

  116. Chan GN, Patel R, Cummins CL, Bendayan R. Induction of P-glycoprotein by antiretroviral drugs in human brain microvessel endothelial cells. Antimicrob Agents Chemother. 2013.

    Google Scholar 

  117. Scheer N, Roland Wolf C. Xenobiotic receptor humanized mice and their utility. Drug Metab Rev. 2013;45(1):110–21.

    CAS  PubMed  Google Scholar 

  118. Albermann N, Schmitz-Winnenthal FH, Z’Graggen K, Volk C, Hoffmann MM, Haefeli WE, et al. Expression of the drug transporters MDR1/ABCB1, MRP1/ABCC1, MRP2/ABCC2, BCRP/ABCG2, and PXR in peripheral blood mononuclear cells and their relationship with the expression in intestine and liver. Biochem Pharmacol. 2005;70(6):949–58. (Epub 2005/08/02).

    CAS  PubMed  Google Scholar 

  119. Owen A, Chandler B, Back DJ, Khoo SH. Expression of pregnane-X-receptor transcript in peripheral blood mononuclear cells and correlation with MDR1 mRNA. Antivir Ther. 2004;9(5):819–21. (Epub 2004/11/13).

    CAS  PubMed  Google Scholar 

  120. Kodama S, Negishi M. PXR cross-talks with internal and external signals in physiological and pathophysiological responses. Drug Metab Rev. 2013;45(0):1–11.

    Google Scholar 

  121. LeCluyse EL. Pregnane X receptor: molecular basis for species differences in CYP3A induction by xenobiotics. Chem Biol Interact. 2001;134(3):283–9.

    CAS  PubMed  Google Scholar 

  122. Gong H, Xie W. Orphan nuclear receptors, PXR and LXR: new ligands and therapeutic potential. Expert Opin Ther Targets. 2004;8(1):49–54.

    CAS  PubMed  Google Scholar 

  123. Chang TK, Waxman DJ. Synthetic drugs and natural products as modulators of constitutive androstane receptor (CAR) and pregnane X receptor (PXR). Drug Metab Rev. 2006;38(1–2):51–73.

    CAS  PubMed  Google Scholar 

  124. Holmstock N, Gonzalez FJ, Baes M, Annaert P, Augustijns P. PXR/CYP3A4-humanized mice for studying drug-drug interactions involving intestinal P-glycoprotein. Mol Pharm. 2013.

    Google Scholar 

  125. Martin P, Riley R, Back DJ, Owen A. Comparison of the induction profile for drug disposition proteins by typical nuclear receptor activators in human hepatic and intestinal cells. Br J Pharmacol. 2008;153(4):805–19. (Epub 2007/11/27).

    PubMed Central  CAS  PubMed  Google Scholar 

  126. Martin P, Riley R, Thompson P, Williams D, Back D, Owen A. Effect of prototypical inducers on ligand activated nuclear receptor regulated drug disposition genes in rodent hepatic and intestinal cells. Acta Pharmacol Sin. 2010;31(1):51–65. (Epub 2010/01/06).

    PubMed Central  CAS  PubMed  Google Scholar 

  127. Shelby MK, Klaassen CD. Induction of rat UDP-glucuronosyltransferases in liver and duodenum by microsomal enzyme inducers that activate various transcriptional pathways. Drug Metab Dispos. 2006;34(10):1772–8. (Epub 2006/07/21).

    CAS  PubMed  Google Scholar 

  128. Faucette SR, Zhang T-C, Moore R, Sueyoshi T, Omiecinski CJ, LeCluyse EL, et al. Relative activation of human pregnane X receptor versus constitutive androstane receptor defines distinct classes of CYP2B6 and CYP3A4 inducers. J Pharmacol Exp Ther. 2007;320(1):72–80.

    PubMed Central  CAS  PubMed  Google Scholar 

  129. Chang TK, Bandiera SM, Chen J. Constitutive androstane receptor and pregnane X receptor gene expression in human liver: interindividual variability and correlation with CYP2B6 mRNA levels. Drug Metab Dispos. 2003;31(1):7–10.

    CAS  PubMed  Google Scholar 

  130. Wortham M, Czerwinski M, He L, Parkinson A, Wan YJ. Expression of constitutive androstane receptor, hepatic nuclear factor 4 alpha, and P450 oxidoreductase genes determines interindividual variability in basal expression and activity of a broad scope of xenobiotic metabolism genes in the human liver. Drug Metab Dispos. 2007;35(9):1700–10. (Epub 2007/06/20).

    CAS  PubMed  Google Scholar 

  131. Scheer N, Ross J, Rode A, Zevnik B, Niehaves S, Faust N, et al. A novel panel of mouse models to evaluate the role of human pregnane X receptor and constitutive androstane receptor in drug response. J Clin Invest. 2008;118(9):3228–39.

    PubMed Central  CAS  PubMed  Google Scholar 

  132. Choi H-S, Chung M, Tzameli I, Simha D, Lee Y-K, Seol W, et al. Differential transactivation by two isoforms of the orphan nuclear hormone receptor CAR. J Biol Chem. 1997;272(38):23565–71.

    CAS  PubMed  Google Scholar 

  133. Sueyoshi T, Kawamoto T, Zelko I, Honkakoski P, Negishi M. The repressed nuclear receptor CAR responds to phenobarbital in activating the human CYP2B6 gene. J Biol Chem. 1999;274(10):6043–6.

    CAS  PubMed  Google Scholar 

  134. Huang W, Zhang J, Wei P, Schrader WT, Moore DD. Meclizine is an agonist ligand for mouse constitutive androstane receptor (CAR) and an inverse agonist for human CAR. Mol Endocrinol. 2004;18(10):2402–8.

    CAS  PubMed  Google Scholar 

  135. Agutter PS, Tuszynski JA. Analytic theories of allometric scaling. J Exp Biol. 2011;214(7):1055–62.

    PubMed  Google Scholar 

  136. Kielbasa W, Stratford RE. Exploratory translational modeling approach in drug development to predict human brain pharmacokinetics and pharmacologically relevant clinical doses. Drug Metab Dispos. 2012;40(5):877–83.

    CAS  PubMed  Google Scholar 

  137. Moss DM, Siccardi M, Murphy M, Piperakis MM, Khoo SH, Back DJ, et al. Divalent metals and pH alter raltegravir disposition in vitro. Antimicrob Agents Chemother. 2012;56(6):3020–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  138. McConnell EL, Basit AW, Murdan S. Measurements of rat and mouse gastrointestinal pH, fluid and lymphoid tissue, and implications for in‐vivo experiments. J Pharm Pharmacol. 2008;60(1):63–70.

    CAS  PubMed  Google Scholar 

  139. Evans D, Pye G, Bramley R, Clark A, Dyson T, Hardcastle J. Measurement of gastrointestinal pH profiles in normal ambulant human subjects. Gut. 1988;29(8):1035–41.

    PubMed Central  CAS  PubMed  Google Scholar 

  140. Tateno C, Yoshizane Y, Saito N, Kataoka M, Utoh R, Yamasaki C, et al. Near completely humanized liver in mice shows human-type metabolic responses to drugs. Am J Pathol. 2004;165(3):901–12.

    PubMed Central  CAS  PubMed  Google Scholar 

  141. Holmstock N, Gonzalez FJ, Baes M, Annaert P, Augustijns P. PXR/CYP3A4-Humanized Mice for Studying Drug–Drug Interactions Involving Intestinal P-Glycoprotein. Mol Pharm. 2013;10(3):1056–62.

    PubMed Central  CAS  PubMed  Google Scholar 

  142. Scheer N, Wolf CR. Genetically humanized mouse models of drug metabolizing enzymes and transporters and their applications. Xenobiotica; the fate of foreign compounds in biological systems. 2014 Jan;44(2):96 108. PubMed PMID: 23845026.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Owen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Owen, A., Curley, P. (2014). Species Similarities and Differences in Pharmacokinetics and Distribution of Antiretroviral Drugs. In: Poluektova, L., Garcia, J., Koyanagi, Y., Manz, M., Tager, A. (eds) Humanized Mice for HIV Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1655-9_28

Download citation

Publish with us

Policies and ethics