Skip to main content

Development and Function of Human CD4+CD25+FOXP3+ Regulatory T Cells in Humanized Mouse and HIV-1 Infection

  • Chapter
  • First Online:
Humanized Mice for HIV Research
  • 905 Accesses

Abstract

Regulatory T (Treg) cells are implicated in modulating immunopathogenesis of a number of diseases including autoimmune and infectious diseases. Treg cells are likely to serve as primary target cells as well as immunosuppressive cells in human immunodeficiency virus type 1 (HIV-1) infection due to high expression of HIV-1 receptor and coreceptors. Recent advances in animal models including humanized mouse models, and human Treg studies, allow us to investigate the role of Treg cells in HIV-1 infection and immunopathogenesis. Accumulating data suggest that Treg cells may play a distinct role in HIV-1 infection and immunopathogenesis depending on the course of infection. During the acute phase of infection, Treg cells are likely to contribute to elevated HIV-1 infection by suppressing anti-HIV immunity, and their gradual impairment may contribute to chronic immune activation. On the other hand, Treg cells may suppress virus replication by direct or indirect mechanisms during the chronic phase of infection. This chapter provides a brief introduction to Treg cells, and their development and function in humanized mice. The role of Treg cells in HIV-1 infection and immunopathogenesis is also discussed based on recent findings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AIDS:

Acquired immunodeficiency syndrome

cAMP:

Cyclic adenosine monophosphate

FOXP3:

Forkhead box P3

HIV-1:

Human immunodeficiency virus type 1

HSC:

Hematopoietic stem cell

ONTAK:

Denileukin difftitox

Tc:

Conventional T cell

TCR:

T cell receptor

TGF-β:

Transforming growth factor-beta

Treg cell:

Regulatory T cell

tTreg cell:

Thymus-derived Treg cell

pTreg cell:

Peripherally-derived Treg cell

References

  1. Sakaguchi S, et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol. 1995;155(3):1151–64.

    CAS  PubMed  Google Scholar 

  2. Hori S, et al. Control of regulatory T cell development by the transcription factor Foxp3. Science. 2003;299(5609):1057–61.

    Article  CAS  PubMed  Google Scholar 

  3. Allan SE, et al. Inducible reprogramming of human T cells into Treg cells by a conditionally active form of FOXP3. Eur J Immunol. 2008;38(12):3282–9.

    Article  CAS  PubMed  Google Scholar 

  4. Hoffmann P, et al. Loss of FOXP3 expression in natural human CD4+CD25+ regulatory T cells upon repetitive in vitro stimulation. Eur J Immunol. 2009;39(4):1088–97.

    Article  CAS  PubMed  Google Scholar 

  5. Liu W, et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J Exp Med. 2006;203(7):1701–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Seddiki N, et al. Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells. J Exp Med. 2006;203(7):1693–700.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Furtado GC, et al. Interleukin 2 signaling is required for CD4(+) regulatory T cell function. J Exp Med. 2002;196(6):851–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Thornton AM, et al. Cutting edge: IL-2 is critically required for the in vitro activation of CD4+CD25+ T cell suppressor function. J Immunol. 2004;172(11):6519–23.

    Article  CAS  PubMed  Google Scholar 

  9. Coombes JL, et al. A functionally specialized population of mucosal CD103+DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J Exp Med. 2007;204(8):1757–64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Walker MR, et al. De novo generation of antigen-specific CD4+CD25+ regulatory T cells from human CD4+CD25− cells. Proc Natl Acad Sci U S A. 2005;102(11):4103–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Tran DQ, et al. Induction of FOXP3 expression in naive human CD4+FOXP3 T cells by T-cell receptor stimulation is transforming growth factor-beta dependent but does not confer a regulatory phenotype. Blood. 2007;110(8):2983–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Gottschalk RA, et al. Expression of Helios in peripherally induced Foxp3+ regulatory T Cells. J Immunol. 2011.

    Google Scholar 

  13. Thornton AM, et al. Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells. J Immunol. 2010;184(7):3433–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Himmel ME, et al. Helios+ and Helios- cells coexist within the natural FOXP3+ T regulatory cell subset in humans. J Immunol. 2013;190(5):2001–8.

    Article  CAS  PubMed  Google Scholar 

  15. Oswald-Richter K, et al. HIV infection of naturally occurring and genetically reprogrammed human regulatory T-cells. PLoS Biol. 2004;2(7):E198.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Moreno-Fernandez ME, et al. Homeostasis and function of regulatory T cells in HIV/SIV infection. J Virol. 2012.

    Google Scholar 

  17. Chase AJ, et al. Severe depletion of CD4+CD25+ regulatory T cells from the intestinal lamina propria but not peripheral blood or lymph nodes during acute simian immunodeficiency virus infection. J Virol. 2007;81(23):12748–57.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Qin S, et al. Chemokine and cytokine mediated loss of regulatory T cells in lymph nodes during pathogenic simian immunodeficiency virus infection. J Immunol. 2008;180(8):5530–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Jiang Q, et al. FoxP3+CD4+ regulatory T cells play an important role in acute HIV-1 infection in humanized Rag2-/-gammaC-/- mice in vivo. Blood. 2008;112(7):2858–68.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Kared H, et al. HIV-specific regulatory T cells are associated with higher CD4 cell counts in primary infection. AIDS. 2008;22(18):2451–60.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Kinter AL, et al. CD25(+)CD4(+) regulatory T cells from the peripheral blood of asymptomatic HIV-infected individuals regulate CD4(+) and CD8(+) HIV-specific T cell immune responses in vitro and are associated with favorable clinical markers of disease status. J Exp Med. 2004;200(3):331–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Angin M, et al. Preserved function of regulatory T cells in chronic HIV-1 infection despite decreased numbers in blood and tissue. J Infect Dis. 2012;205(10):1495–500.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Presicce P, et al. Frequency of circulating regulatory T cells increases during chronic HIV infection and is largely controlled by highly active antiretroviral therapy. PLoS ONE. 2011;6(12):e28118.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Schulze ZWJ, et al. Comprehensive analysis of frequency and phenotype of T regulatory cells in HIV infection: CD39 expression of FoxP3+ T regulatory cells correlates with progressive disease. J Virol. 2011;85(3):1287–97.

    Article  Google Scholar 

  25. Weiss L, et al. Human immunodeficiency virus-driven expansion of CD4+CD25+ regulatory T cells, which suppress HIV-specific CD4T-cell responses in HIV-infected patients. Blood. 2004;104(10):3249–56.

    Article  CAS  PubMed  Google Scholar 

  26. Suchard MS, et al. FOXP3 expression is upregulated in CD4T cells in progressive HIV-1 infection and is a marker of disease severity. PLoS ONE. 2010;5(7):e11762.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Zhou H, et al. Excessive conversion and impaired thymic output contribute to disturbed regulatory T-cell homeostasis in AIDS patients with low CD4 cell counts. AIDS. 2013;27(7):1059–69.

    Article  CAS  PubMed  Google Scholar 

  28. Garcia-Saez AJ, et al. Peptides derived from apoptotic Bax and Bid reproduce the poration activity of the parent full-length proteins. Biophys J. 2005;88(6):3976–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Baker CA, et al. Peripheral CD4 loss of regulatory T cells is associated with persistent viraemia in chronic HIV infection. Clin Exp Immunol. 2007;147(3):533–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Andersson J, et al. The prevalence of regulatory T cells in lymphoid tissue is correlated with viral load in HIV-infected patients. J Immunol. 2005;174(6):3143–7.

    Article  CAS  PubMed  Google Scholar 

  31. Bandera A, et al. CD4+ T cell depletion, immune activation and increased production of regulatory T cells in the thymus of HIV-infected individuals. PLoS ONE. 2010;5(5):e10788.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Epple HJ, et al. Mucosal but not peripheral FOXP3+ regulatory T cells are highly increased in untreated HIV infection and normalize after suppressive HAART. Blood. 2006;108(9):3072–8.

    Article  CAS  PubMed  Google Scholar 

  33. Nilsson J, et al. HIV-1-driven regulatory T-cell accumulation in lymphoid tissues is associated with disease progression in HIV/AIDS. Blood. 2006;108(12):3808–17.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Simonetta F, et al. Early and long lasting alteration of effector CD45RA-Foxp3high regulatory T cells homeostasis during HIV infection. J Infect Dis. 2012;205(10):1510–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Mendez-Lagares G, et al. Severe immune dysregulation affects CD4+CD25hiFoxP3+ Regulatory T-cells in HIV-infected patients with low-level CD4 T-cell repopulation despite suppressive HAART. J Infect Dis. 2012;205(10):1501–9.

    Article  CAS  PubMed  Google Scholar 

  36. Krathwohl MD, et al. Abnormal presence of semimature dendritic cells that induce regulatory T cells in HIV-infected subjects. J Infect Dis. 2006;193(4):494–504.

    Article  CAS  PubMed  Google Scholar 

  37. Pereira LE, et al. Simian immunodeficiency virus (SIV) infection influences the level and function of regulatory T cells in SIV-infected rhesus macaques but not SIV-infected sooty mangabeys. J Virol. 2007;81(9):4445–56.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Li SY, et al. Dynamics and functions of CD4(+)CD25 (high) regulatory T lymphocytes in Chinese rhesus macaques during the early stage of infection with SIVmac239. Arch Virol. 2012;157(5):961–7.

    Article  CAS  PubMed  Google Scholar 

  39. Favre D, et al. Critical loss of the balance between Th17 and T regulatory cell populations in pathogenic SIV infection. PLoS Pathog. 2009;5(2):e1000295.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Estes JD, et al. Premature induction of an immunosuppressive regulatory T cell response during acute simian immunodeficiency virus infection. J Infect Dis. 2006;193(5):703–12.

    Article  CAS  PubMed  Google Scholar 

  41. Xing S, et al. Increased turnover of FoxP3high regulatory T cells is associated with hyperactivation and disease progression of chronic HIV-1 infection. J Acquir Immune Defic Syndr. 2010;54(5):455–62.

    Article  CAS  PubMed  Google Scholar 

  42. Elahi S, et al. Protective HIV-specific CD8(+) T cells evade T(reg) cell suppression. Nat Med. 2011;17(8):989–95.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Nikolova M, et al. CD39/adenosine pathway is involved in AIDS progression. PLoS Pathog. 2011;7(7):e1002110.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Moreno-Fernandez ME, et al. Regulatory T cells control HIV replication in activated T cells through a cAMP-dependent mechanism. Blood. 2011;117(20):5372–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Huang X, et al. Functional proteomics analysis for regulatory T cell surveillance of the HIV-1-infected macrophage. J Proteome Res. 2010;9(12):6759–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Onoe T, et al. Human natural regulatory T cell development, suppressive function, and postthymic maturation in a humanized mouse model. J Immunol. 2011;187(7):3895–903.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Billerbeck E, et al. Development of human CD4+ FoxP3+ regulatory T cells in human stem cell factor-, granulocyte-macrophage colony-stimulating factor-, and interleukin-3-expressing NOD-SCID IL2Rgamma(null) humanized mice. Blood. 2011;117(11):3076–86.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Zhang L, et al. HIV-1 infection and pathogenesis in a novel humanized mouse model. Blood. 2007;109(7):2978–81.

    PubMed Central  CAS  PubMed  Google Scholar 

  49. Meissner EG, et al. Characterization of a thymus-tropic HIV-1 isolate from a rapid progressor: role of the envelope. Virology. 2004;328(1):74–88.

    Article  CAS  PubMed  Google Scholar 

  50. Nunoya J, et al. Regulatory T cells prevent liver fibrosis during HIV type 1 infection in a humanized mouse model. J Infect Dis. 2013;209(7):1039–44.

    Article  PubMed  Google Scholar 

  51. Holmes D, et al. Foxp3 and Treg cells in HIV-1 infection and immuno-pathogenesis. Immunol Res. 2008;41(3):248–66.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Imamichi H, Lane HC. Regulatory T cells in HIV-1 infection: the good, the bad, and the ugly. J Infect Dis. 2012;205(10):1479–82.

    Article  PubMed  Google Scholar 

  53. Miyara M, et al. Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity. 2009;30(6):899–911.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-ichi Nunoya PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nunoya, Ji., Su, L. (2014). Development and Function of Human CD4+CD25+FOXP3+ Regulatory T Cells in Humanized Mouse and HIV-1 Infection. In: Poluektova, L., Garcia, J., Koyanagi, Y., Manz, M., Tager, A. (eds) Humanized Mice for HIV Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1655-9_22

Download citation

Publish with us

Policies and ethics