Skip to main content

Selective Infection of CD4+ Memory T Cells

  • Chapter
  • First Online:
Humanized Mice for HIV Research
  • 879 Accesses

Abstract

HIV-1 mainly targets CD4+ memory T cells during infection, resulting in their depletion and ultimately AIDS. However, how HIV induces this CD4+ T cell depletion in vivo, particularly in the memory CD4+ T cell population, remains a long-standing question in viral pathogenesis. This chapter introduces up-to-date knowledge of the pathogenesis of CD4+ T cell depletion in HIV-1-infected individuals and discusses the feasibility of virological and immunological investigations using humanized mice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AIDS:

Acquired immunodeficiency syndrome

ART:

Antiretroviral therapy

CCR5:

CC chemokine receptor 5

CTL:

Cytotoxic T lymphocytes

HIV-1:

Human immunodeficiency virus type 1

HLA:

Human leukocyte antigen

LTR:

Long terminal repeat

NOD:

Nonobese diabetes

SCID:

Severe combined immunodeficiency

References

  1. Ito M, Hiramatsu H, Kobayashi K, Suzue K, Kawahata M, Hioki K, et al. NOD/SCID/gamma(c) (null) mouse: an excellent recipient mouse model for engraftment of human cells. Blood. 2002;100(9):3175–82.

    Article  CAS  PubMed  Google Scholar 

  2. Traggiai E, Chicha L, Mazzucchelli L, Bronz L, Piffaretti JC, Lanzavecchia A, et al. Development of a human adaptive immune system in cord blood cell-transplanted mice. Science. 2004;304(5667):104–7.

    Article  CAS  PubMed  Google Scholar 

  3. Shultz LD, Schweitzer PA, Christianson SW, Gott B, Schweitzer IB, Tennent B, et al. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R γ null mice engrafted with mobilized human hemopoietic stem cells. J Immunol. 2005;174(10):6477–89.

    Article  CAS  PubMed  Google Scholar 

  4. Melkus MW, Estes JD, Padgett-Thomas A, Gatlin J, Denton PW, Othieno FA, et al. Humanized mice mount specific adaptive and innate immune responses to EBV and TSST-1. Nat Med. 2006;12(11):1316–22.

    Article  CAS  PubMed  Google Scholar 

  5. Lan P, Tonomura N, Shimizu A, Wang S, Yang YG. Reconstitution of a functional human immune system in immunodeficient mice through combined human fetal thymus/liver and CD34+ cell transplantation. Blood. 2006;108(2):487–92.

    Article  CAS  PubMed  Google Scholar 

  6. Brainard DM, Seung E, Frahm N, Cariappa A, Bailey CC, Hart WK et al. Induction of robust cellular and humoral virus-specific adaptive immune responses in human immunodeficiency virus-infected humanized BLT mice. J Virol. 2009;83(14):7305–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Dudek TE, No DC, Seung E, Vrbanac VD, Fadda L, Bhoumik P, et al. Rapid evolution of HIV-1 to functional CD8⺠T cell responses in humanized BLT mice. Sci Transl Med. 2012;4(143):143ra98.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Denton PW, Garcia JV. Novel humanized murine models for HIV research. Curr. HIV/AIDS Rep. 2009;6(1):13–9.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Sato K, Koyanagi Y. The mouse is out of the bag: insights and perspectives on HIV-1 infected humanized mouse models. Exp Biol Med. 2011;236(8):977–85.

    Article  CAS  Google Scholar 

  10. Shultz LD, Brehm MA, Garcia-Martinez JV, Greiner DL. Humanized mice for immune system investigation: progress, promise and challenges. Nat Rev Immunol. 2012;12(11):786–98.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Akkina R. New generation humanized mice for virus research: comparative aspects and future prospects. Virology. 2013;435(1):14–28.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Sato K, Misawa N, Fukuhara M, Iwami S, An DS, Ito M et al. VPU augments the initial burst phase of HIV-1 propagation and downregulates BST2 and CD4 in humanized mice. J Virol. 2012;86(9):5000–13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Sun Z, Denton PW, Estes JD, Othieno FA, Wei BL, Wege AK et al. Intrarectal transmission, systemic infection, and CD4+ T cell depletion in humanized mice infected with HIV-1. J Exp Med. 2007;204(4):705–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Nie C, Sato K, Misawa N, Kitayama H, Fujino H, Hiramatsu H, et al. Selective infection of CD4+ effector memory T lymphocytes leads to preferential depletion of memory T lymphocytes in R5 HIV-1 infected humanized NOD/SCID/IL-2Rgammanull mice. Virology. 2009;394(1):64–72.

    Article  CAS  PubMed  Google Scholar 

  15. Nishimura Y, Igarashi T, Donau OK, Buckler-White A, Buckler C, Lafont BA et al. Highly pathogenic SHIVs and SIVs target different CD4+ T cell subsets in rhesus monkeys, explaining their divergent clinical courses. Proc Natl Acad Sci U S A. 2004;101(33):12324–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Berger EA, Murphy PM, Farber JM. Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. Annu Rev Immunol. 1999;17:657–700.

    Article  CAS  PubMed  Google Scholar 

  17. Ambrose Z, KewalRamani VN, Bieniasz PD, Hatziioannou T. HIV/AIDS: in search of an animal model. Trends Biotechnol. 2007;25(8):333–7.

    Article  CAS  PubMed  Google Scholar 

  18. McCune JM. The dynamics of CD4+ T-cell depletion in HIV disease. Nature. 2001;410(6831):974–9.

    Article  CAS  PubMed  Google Scholar 

  19. Sato K, Nie C, Misawa N, Tanaka Y, Ito M, Koyanagi Y. Dynamics of memory and naïve CD8+ T lymphocytes in humanized NOD/SCID/IL-2Rgammanull mice infected with CCR5-tropic HIV-1. Vaccine. 2010; 28(Suppl 2):B32–7.

    Article  CAS  PubMed  Google Scholar 

  20. Ho DD. Perspectives series: host/pathogen interactions. Dynamics of HIV-1 replication in vivo. J Clin Invest. 1997;99(11):2565–720. (Davis, MM. T cell receptor gene diversity and selection. Annu Rev Biochem. 1990;59:475–96)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Jenkins, MK et al. In vivo activation of antigen-specific CD4 T cells. Annu Rev Immunol. 2001;19:23–45.

    Article  CAS  PubMed  Google Scholar 

  22. Sallusto F, Geginat J, Lanzavecchia A. Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu Rev Immunol. 2004;22:745–63.

    Article  CAS  PubMed  Google Scholar 

  23. van Leeuwen EM, Sprent J, Surh CD. Generation and maintenance of memory CD4(+) T cells. Curr Opin Immunol. 2009;21(2):167–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Huntington ND, Legrand N, Alves NL, Jaron B, Weijer K, Plet A, et al. IL-15 trans-presentation promotes human NK cell development and differentiation in vivo. J Exp Med. 2009;206(1):25–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Purton JF, Tan JT, Rubinstein MP, Kim DM, Sprent J, Surh CD. Antiviral CD4+ memory T cells are IL-15 dependent. J Exp Med 2007;204(4):951–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Younes SA, Punkosdy G, Caucheteux S, Chen T, Grossman Z, Paul WE. Memory phenotype CD4 T cells undergoing rapid, nonburst-like, cytokine-driven proliferation can be distinguished from antigen-experienced memory cells. PLoS Biol. 2011;9(10):e1001171.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Watanabe Y, Takahashi T, Okajima A, Shiokawa M, Ishii N, Katano I et al. The analysis of the functions of human B and T cells in humanized NOD/shi-scid/gammac(null) (NOG) mice (hu-HSC NOG mice). Int Immunol. 2009;21(7):843–58.

    Article  CAS  PubMed  Google Scholar 

  28. Pepper M, Jenkins MK. Origins of CD4 (+) effector and central memory T cells. Nat Immunol. 2011;12(6):467–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Löhning M, Hegazy AN, Pinschewer DD, Busse D, Lang KS, Höfer T, et al. Long-lived virus-reactive memory T cells generated from purified cytokine-secreting T helper type 1 and type 2 effectors. J Exp Med. 2008;205(1):53–61.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Pepper M, Linehan JL, Pagán AJ, Zell T, Dileepan T, Cleary PP, et al. Different routes of bacterial infection induce long-lived TH1 memory cells and short-lived TH17 cells. Nat Immunol. 2010;11(1):83–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Chomont N, El-Far M, Ancuta P, Trautmann L, Procopio FA, Yassine-Diab B et al. HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation. Nat Med. 2009;15(8):893–900.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Mattapallil JJ, Douek DC, Hill B, Nishimura Y, Martin M, Roederer M. Massive infection and loss of memory CD4+ T cells in multiple tissues during acute SIV infection. Nature. 2005;434(7037):1093–7.

    Article  CAS  PubMed  Google Scholar 

  33. Okoye A, Meier-Schellersheim M, Brenchley JM, Hagen SI, Walker JM, Rohankhedkar M, et al. Progressive CD4+ central memory T cell decline results in CD4+ effector memory insufficiency and overt disease in chronic SIV infection. J Exp Med. 2007;204(9):2171–85.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Okoye AA, Rohankhedkar M, Abana C, Pattenn A, Reyes M, Pexton C, et al. Naive T cells are dispensable for memory CD4+ T cell homeostasis in progressive simian immunodeficiency virus infection. J Exp Med. 2012;209(4):641–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Perreau M, Savoye AL, De Crignis E, Corpataux JM, Cubas R, Haddad EK, et al. Follicular helper T cells serve as the major CD4 T cell compartment for HIV-1 infection, replication, and production. J Exp Med. 2013;210(1):143–56.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Wahl A, Swanson MD, Nochi T, Olesen R, Denton PW, et al. Human breast milk and antiretrovirals dramatically reduce oral HIV-1 transmission in BLT humanized mice. PLoS Pathog. 2012;8(6):e1002732.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Kawamura T, Kurtz SE, Blauvelt A, Shimada S. The role of Langerhans cells in the sexual transmission of HIV. J Dermatol Sci. 2005;40(3):147–55.

    Article  CAS  PubMed  Google Scholar 

  38. Miura Y, Misawa N, Maeda N, Inagaki Y, Tanaka Y, Ito M, et al. Critical contribution of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) to apoptosis of human CD4+ T cells in HIV-1 infected hu-PBL-NOD-SCID mice. J Exp Med. 2001;193(5):651–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Holm GH, Gabuzda D. Distinct mechanisms of CD4+ and CD8+ T-cell activation and bystander apoptosis induced by human immunodeficiency virus type 1 virions. J Virol. 2005;79(10):6299–311.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Douek DC, Brenchley JM, Betts MR, Ambrozak DR, Hill BJ, Okamoto Y, et al. HIV preferentially infects HIV-specific CD4+ T cells. Nature. 2002;417(6884):95–8.

    Article  CAS  PubMed  Google Scholar 

  41. Perelson AS, Essunger P, Cao Y, Vesanen M, Hurley A, Saksela K, et al. Decay characteristics of HIV-1-infected compartments during combination therapy. Nature. 1997;387(6629):188–91.

    Article  CAS  PubMed  Google Scholar 

  42. Muro-Cacho CA, Pantaleo G, Fauci AS. Analysis of apoptosis in lymph nodes of HIV-infected persons. Intensity of apoptosis correlates with the general state of activation of the lymphoid tissue and not with stage of disease or viral burden. J Immunol. 1995;154(10):5555–66.

    CAS  PubMed  Google Scholar 

  43. Finkel TH, Tudor-Williams G, Banda NK, Cotton MF, Curiel T, Monks C, et al. Apoptosis occurs predominantly in bystander cells and not in productively infected cells of HIV- and SIV-infected lymph nodes. Nat Med. 1995;1(2):129–34.

    Article  CAS  PubMed  Google Scholar 

  44. Sloand EM, Kumar PN, Kim S, Chaudhuri A, Weichold FF, Young NS. Human immunodeficiency virus type 1 protease inhibitor modulates activation of peripheral blood CD4 (+) T cells and decreases their susceptibility to apoptosis in vitro and in vivo. Blood. 1999;94(3):1021–7.

    CAS  PubMed  Google Scholar 

  45. Leng Q, Borkow G, Weisman Z, Stein M, Kalinkovich A, Bentwich Z. Immune activation correlates better than HIV plasma viral load with CD4 T-cell decline during HIV infection. J Acquir Immune Defic Syndr. 2001;27(4):389–97.

    Article  CAS  PubMed  Google Scholar 

  46. Brenchley JM, Price DA, Schacker TW, Asher TE, Silvestri G, Rao S, et al. Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat Med. 2006;12(12):1365–71.

    Article  CAS  PubMed  Google Scholar 

  47. Yates A, Stark J, Klein N, Antia R, Callard R. Understanding the slow depletion of memory CD4+ T cells in HIV infection. PLoS Med. 2007;4(5):e177.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Eisele E, Siliciano RF. Redefining the viral reservoirs that prevent HIV-1 eradication. Immunity. 2012;37(3):377–88.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I thank Dr. Peter Gee (Kyoto University) for his critical review of the manuscript. This work was partially funded by a Grant-in-Aid for Scientific Research on Innovative Areas (24115008) and Grants-in-Aid for Scientific Research (B24390112) from the Ministry of Education, Culture, Sports, Science and Technology and Research on HIV/AIDS from the Ministry of Health, Labor and Welfare of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshio Koyanagi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Koyanagi, Y. (2014). Selective Infection of CD4+ Memory T Cells. In: Poluektova, L., Garcia, J., Koyanagi, Y., Manz, M., Tager, A. (eds) Humanized Mice for HIV Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1655-9_21

Download citation

Publish with us

Policies and ethics