Skip to main content

Humanized Mouse Versus Non-human Primate Models of HIV-1 Infection

  • Chapter
  • First Online:
Humanized Mice for HIV Research

Abstract

Animal models are critical for biomedical research including human immunodeficiency virus type one (HIV-1). Asian non-human primate (NHP) macaques and humanized mice (hu-mice) are the two best available models of HIV-1 infection of humans. Here, we compare and contrast the pros and cons of NHP and hu-mouse models of HIV-1 infection of humans in general; discuss in detail which model is more relevant in studying HIV-1 transmission and vaccine, and what aspects of these models need to be further improved in order to meet the HIV-1 research need.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. UNAIDS. UNAIDS World AIDS Day Report. 2012.

    Google Scholar 

  2. VandeWoude S, Apetrei C. Going wild: lessons from naturally occurring T-lymphotropic lentiviruses. Clin Microbiol Rev. 2006;19(4):728–62.

    PubMed Central  CAS  PubMed  Google Scholar 

  3. Bibollet-Ruche F, et al., New simian immunodeficiency virus infecting De Brazza’s monkeys (Cercopithecus neglectus): evidence for a Cercopithecus monkey virus clade. J Virol. 2004;78(14):7748–62.

    PubMed Central  CAS  PubMed  Google Scholar 

  4. Worobey M, et al., Island biogeography reveals the deep history of SIV. Science. 2010;329(5998):1487.

    CAS  PubMed  Google Scholar 

  5. Peeters, M., et al. Isolation and partial characterization of an HIV-related virus occurring naturally in chimpanzees in Gabon. AIDS. 1989;3(10):625–30.

    CAS  PubMed  Google Scholar 

  6. Gao F, et al. Human infection by genetically diverse SIVSM-related HIV-2 in West Africa. Nature. 1992;358(6386):495–9.

    CAS  PubMed  Google Scholar 

  7. Gao F, et al. Origin of HIV-1 in the chimpanzee Pan troglodytes troglodytes. Nature. 1999;397(6718):436–41.

    CAS  PubMed  Google Scholar 

  8. Hirsch, VM, et al. An African primate lentivirus (SIVsm) closely related to HIV-2. Nature. 1989;339(6223):389–92.

    CAS  PubMed  Google Scholar 

  9. Chahroudi A, et al. Natural SIV hosts: showing AIDS the door. Science. 2012;335(6073):1188–93.

    CAS  PubMed  Google Scholar 

  10. Huet T, et al. Genetic organization of a chimpanzee lentivirus related to HIV-1. Nature. 1990;345(6273):356–9.

    CAS  PubMed  Google Scholar 

  11. Keele BF, et al. Chimpanzee reservoirs of pandemic and nonpandemic HIV-1. Science. 2006;313(5786):523–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  12. Sharp PM, Hahn BH. Origins of HIV and the AIDS pandemic. Cold Spring Harb Perspect Med. 2011;1(1):a006841.

    PubMed Central  PubMed  Google Scholar 

  13. Li Y, et al. Eastern Chimpanzees, but not bonobos, represent a simian immunodeficiency virus reservoir. J Virol. 2012;86(19):10776–91.

    PubMed Central  CAS  PubMed  Google Scholar 

  14. Plantier J-C, et al. A new human immunodeficiency virus derived from gorillas. Nat Med. 2009;15(8):871–2.

    CAS  PubMed  Google Scholar 

  15. Mourez T, Simon F, Plantier J-C. Non-M variants of human immunodeficiency virus type 1. Clin Microbiol Rev. 2013;26(3):448–61.

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Keele BF, et al. Increased mortality and AIDS-like immunopathology in wild chimpanzees infected with SIVcpz. Nature. 2009;460(7254):515–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  17. Great ape debate. Nature. 2011;474(7351):252.

    Google Scholar 

  18. Daniel M, et al. Isolation of T-cell tropic HTLV-III-like retrovirus from macaques. Science. 1985;228(4704):1201–4.

    CAS  PubMed  Google Scholar 

  19. Silvestri G, et al. Nonpathogenic SIV infection of sooty mangabeys is characterized by limited bystander immunopathology despite chronic high-level viremia. Immunity. 2003;18(3):441–52.

    CAS  PubMed  Google Scholar 

  20. Sodora DL, et al. Toward an AIDS vaccine: lessons from natural simian immunodeficiency virus infections of African nonhuman primate hosts. Nat Med. 2009;15(8):861–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Bosinger SE, et al. Global genomic analysis reveals rapid control of a robust innate response in SIV-infected sooty mangabeys. J Clin Invest. 2009;119(12):3556–72.

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Van Rompay KK. The use of nonhuman primate models of HIV infection for the evaluation of antiviral strategies. AIDS Res Hum Retroviruses. 2012;28(1):16–35.

    PubMed  Google Scholar 

  23. Sequencing RMG, et al. Evolutionary and biomedical insights from the rhesus macaque genome. Science. 2007;316(5822):222–34.

    Google Scholar 

  24. Letvin N, et al. Induction of AIDS-like disease in macaque monkeys with T-cell tropic retrovirus STLV-III. Science. 1985;230(4721):71–3.

    CAS  PubMed  Google Scholar 

  25. Yasutomi Y, et al. Simian immunodeficiency virus-specific CD8+ lymphocyte response in acutely infected rhesus monkeys. J Virol. 1993;67(3):1707–11.

    PubMed Central  CAS  PubMed  Google Scholar 

  26. Allen TM, et al. Tat-specific cytotoxic T lymphocytes select for SIV escape variants during resolution of primary viraemia. Nature. 2000;407(6802):386–90.

    CAS  PubMed  Google Scholar 

  27. Jin, X., et al., Dramatic rise in plasma viremia after CD8(+) T cell depletion in simian immunodeficiency virus-infected macaques. J Exp Med. 1999;189(6):991–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  28. Matano T, et al. Administration of an anti-CD8 monoclonal antibody interferes with the clearance of chimeric simian/human immunodeficiency virus during primary infections of rhesus macaques. J Virol. 1998;72(1):164–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  29. Schmitz JE, et al. Effect of humoral immune responses on controlling viremia during primary infection of rhesus monkeys with simian immunodeficiency virus. J Virol. 2003;77(3):2165–73.

    PubMed Central  CAS  PubMed  Google Scholar 

  30. Wu F, et al. Sequential evolution and escape from neutralization of simian immunodeficiency virus SIVsmE660 clones in rhesus macaques. J Virol. 2012;86(16):8835–47.

    PubMed Central  CAS  PubMed  Google Scholar 

  31. Miller CJ, et al. Antiviral antibodies are necessary for control of simian immunodeficiency virus replication. J Virol. 2007;81(10):5024–35.

    PubMed Central  CAS  PubMed  Google Scholar 

  32. Hatziioannou T, et al. A macaque model of HIV-1 infection. Proc Natl Acad Sci U S A. 2009;106(11):4425–29.

    PubMed Central  CAS  PubMed  Google Scholar 

  33. Witvrouw M, et al. Susceptibility of HIV-2, SIV and SHIV to various anti-HIV-1 compounds: implications for treatment and postexposure prophylaxis. Antivir Ther. 2004;9(1):57–65.

    CAS  PubMed  Google Scholar 

  34. Parkin NT, Schapiro JM. Antiretroviral drug resistance in non-subtype B HIV-1, HIV-2 and SIV: Antivir Ther. 2004;9(1):3–12.

    CAS  PubMed  Google Scholar 

  35. Giuffre AC, et al. Susceptibilities of simian immunodeficiency virus to protease inhibitors. Antimicrob Agents Chemother. 2003;47(5):1756–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  36. Vlasak J, Ruprecht RM. AIDS vaccine development and challenge viruses: getting real. AIDS. 2006;20(17):2135–40.

    PubMed  Google Scholar 

  37. Lopker M, et al. Heterogeneity in neutralization sensitivities of viruses comprising the simian immunodeficiency virus SIVsmE660 isolate and vaccine challenge stock. J Virol. 2013;87(10):5477–92.

    PubMed Central  CAS  PubMed  Google Scholar 

  38. Watkins DI, et al. Nonhuman primate models and the failure of the Merck HIV-1 vaccine in humans. Nat Med. 2008;14(6):617–21.

    PubMed Central  CAS  PubMed  Google Scholar 

  39. Shakirzyanova M, et al. Pathogenic consequences of vaginal infection with CCR5-tropic simian-human immunodeficiency virus SHIVSF162P3N. J Virol. 2012;86(17):9432–42.

    PubMed Central  CAS  PubMed  Google Scholar 

  40. Ren W, et al. Generation of lineage-related, mucosally transmissible subtype C R5 simian-human immunodeficiency viruses capable of aids development, induction of neurological disease, and coreceptor switching in rhesus macaques. J Virol. 2013;87(11):6137–49.

    PubMed Central  CAS  PubMed  Google Scholar 

  41. Daza-Vamenta R, et al. Genetic divergence of the rhesus macaque major histocompatibility complex. Genome Res. 2004;14(8):1501–15.

    PubMed Central  CAS  PubMed  Google Scholar 

  42. Ouyang D, et al. Identification of major histocompatibility complex class I alleles in Chinese rhesus macaques. Acta Biochim Biophys Sin. 2008;40(11):919–27.

    CAS  PubMed  Google Scholar 

  43. Otting N, et al. Unparalleled complexity of the MHC class I region in rhesus macaques. Proc Natl Acad Sci U S A. 2005;102(5):1626–31.

    PubMed Central  CAS  PubMed  Google Scholar 

  44. Shultz LD, et al. Humanized mice for immune system investigation: progress, promise and challenges. Nat Rev Immunol. 2012;12(11):786–98.

    PubMed Central  CAS  PubMed  Google Scholar 

  45. Shultz LD, Ishikawa F, Greiner DL. Humanized mice in translational biomedical research. Nat Rev Immunol. 2007;7(2):118–30.

    CAS  PubMed  Google Scholar 

  46. Ito R, et al. Current advances in humanized mouse models. Cell Mol Immunol. 2012;9(3):208–14.

    PubMed Central  CAS  PubMed  Google Scholar 

  47. McCune J, et al. The SCID-hu mouse: murine model for the analysis of human hematolymphoid differentiation and function. Science. 1988;241:1632–9.

    CAS  PubMed  Google Scholar 

  48. Mosier DE, et al. Transfer of a functional human immune system to mice with severe combined immunodeficiency. Nature. 1988;335(6187):256–9.

    CAS  PubMed  Google Scholar 

  49. Bosma GC, Custer RP, Bosma MJ. A severe combined immunodeficiency mutation in the mouse. Nature. 1983;301(5900):527–30.

    CAS  PubMed  Google Scholar 

  50. McCune J, et al. The SCID-hu mouse: a small animal model for HIV infection and pathogenesis. Ann Rev Immunol. 1991;9(1):399–429.

    CAS  Google Scholar 

  51. Namikawa R, et al. Long-term human hematopoiesis in the SCID-hu mouse. J Exp Med. 1990;172(4):1055–63.

    CAS  PubMed  Google Scholar 

  52. McCune J, et al. Suppression of HIV infection in AZT-treated SCID-hu mice. Science. 1990;247:564–6.

    CAS  PubMed  Google Scholar 

  53. Aldrovandi G, et al. The SCID-hu mouse as a model for HIV-1 infection. Nature. 1993;363:732–6.

    CAS  PubMed  Google Scholar 

  54. Bonyhadi M, et al. HIV induces thymus depletion in vivo. Nature. 1993;363:728–32.

    CAS  PubMed  Google Scholar 

  55. Stanley S, et al. Human immunodeficiency virus infection of the human thymus and disruption of the thymic microenvironment in the SCID-hu mouse. J Exp Med. 1993;178:1151–63.

    CAS  PubMed  Google Scholar 

  56. Mosier D, et al. Human immunodeficiency virus infection of human-PBL-SCID mice. Science. 1991;251: 791–4.

    CAS  PubMed  Google Scholar 

  57. Mosier DE, Gulizia RJ, Baird S, Wilson DB. On the SCIDs? Nature. 1989;338:211.

    CAS  PubMed  Google Scholar 

  58. Peault B, et al. Lymphoid reconstitution of the human fetal thymus in SCID mice with CD34+ precursor cells. J Exp Med. 1991;174(5):1283–6.

    CAS  PubMed  Google Scholar 

  59. Lapidot T, et al. Cytokine stimulation of multilineage hematopoiesis from immature human cells engrafted in SCID mice. Science. 1992;255(5048):1137–41.

    CAS  PubMed  Google Scholar 

  60. Shultz LD, et al. Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. J Immunol. 1995;154(1):180–91.

    CAS  PubMed  Google Scholar 

  61. Kataoka S, et al. Immunologic aspects of the nonobese diabetic (NOD) mouse. Abnormalities of cellular immunity. Diabetes. 1983;32(3):247–53.

    CAS  PubMed  Google Scholar 

  62. Greiner DL, Hesselton RA, Shultz LD. SCID mouse models of human stem cell engraftment. Stem Cells. 1998;16(3):166–77.

    CAS  PubMed  Google Scholar 

  63. Hesselton RM, et al. High levels of human peripheral blood mononuclear cell engraftment and enhanced susceptibility to human immunodeficiency virus type 1 infection in NOD/LtSz-scid/scid mice. J Infect Dis. 1995;172(4):974–82.

    CAS  PubMed  Google Scholar 

  64. Mombaerts P, et al. RAG-1-deficient mice have no mature B and T lymphocytes. Cell. 1992;68(5):869–77.

    CAS  PubMed  Google Scholar 

  65. Shinkai Y, et al. RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell. 1992;68(5):855–67.

    CAS  PubMed  Google Scholar 

  66. Noguchi M, et al. Interleukin-2 receptor gamma chain: a functional component of the interleukin-7 receptor. Science. 1993;262(5141):1877–80.

    CAS  PubMed  Google Scholar 

  67. Russell S, et al. Interleukin-2 receptor gamma chain: a functional component of the interleukin-4 receptor. Science. 1993;262(5141):1880–3.

    CAS  PubMed  Google Scholar 

  68. DiSanto JP, et al. Lymphoid development in mice with a targeted deletion of the interleukin 2 receptor gamma chain. Proc Natl Acad Sci U S A. 1995;92(2):377–81.

    PubMed Central  CAS  PubMed  Google Scholar 

  69. Cao X, et al. Defective lymphoid development in mice lacking expression of the common cytokine receptor γ chain. Immunity. 1995;2(3):223–38.

    CAS  PubMed  Google Scholar 

  70. Asao H, et al. Cutting edge: the common γ-chain is an indispensable subunit of the IL-21 receptor complex. J Immunol. 2001;167(1):1–5.

    CAS  PubMed  Google Scholar 

  71. Kirberg J, Berns A, von Boehmer H. Peripheral T cell survival requires continual ligation of the T cell receptor to major histocompatibility complex-encoded molecules. J Exp Med. 1997;186:1269–75.

    PubMed Central  CAS  PubMed  Google Scholar 

  72. Traggiai E, et al. Development of a human adaptive immune system in cord blood cell-transplanted mice. Science. 2004;304(5667):104–7.

    CAS  PubMed  Google Scholar 

  73. Goldman J, et al. Enhanced human cell engraftment in mice deficient in RAG2 and the common cytokine receptor gamma chain. Br J Haematol. 1998;103:335–42.

    CAS  PubMed  Google Scholar 

  74. Ito M, et al. NOD/SCID/γ mouse: an excellent recipient mouse model for engraftment of human cells. Blood. 2002;100(9):3175–82.

    CAS  PubMed  Google Scholar 

  75. Shultz L, et al. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. J Immunol. 2005;174:6477–89.

    CAS  PubMed  Google Scholar 

  76. Pearson T, et al. Non-obese diabetic–recombination activating gene-1 (NOD–Rag 1 null) interleukin (IL)-2 receptor common gamma chain (IL 2 rγnull) null mice: a radioresistant model for human lymphohaematopoietic engraftment. Clin Exp Immunol. 2008;154(2):270–84.

    PubMed Central  CAS  PubMed  Google Scholar 

  77. Melkus MW, et al. Humanized mice mount specific adaptive and innate immune responses to EBV and TSST-1. Nat Med. 2006;12(11):1316–22.

    CAS  PubMed  Google Scholar 

  78. Lan P, et al. Reconstitution of a functional human immune system in immunodeficient mice through combined human fetal thymus/liver and CD34+ cell transplantation. Blood. 2006;108(2):487–92.

    CAS  PubMed  Google Scholar 

  79. Sun Z, et al. Intrarectal transmission, systemic infection, and CD4+ T cell depletion in humanized mice infected with HIV-1. J Exp Med. 2007;204(4):705–14.

    PubMed Central  CAS  PubMed  Google Scholar 

  80. Denton PW, et al. Antiretroviral pre-exposure prophylaxis prevents vaginal transmission of HIV-1 in humanized BLT mice. PLoS Med. 2008;5(1):e16.

    PubMed Central  PubMed  Google Scholar 

  81. Wheeler LA, et al. Inhibition of HIV transmission in human cervicovaginal explants and humanized mice using CD4 aptamer-siRNA chimeras. J Clin Invest. 2011;121(6):2401–12.

    PubMed Central  CAS  PubMed  Google Scholar 

  82. Brainard DM, et al. Induction of robust cellular and humoral virus-specific adaptive immune responses in human immunodeficiency virus-infected humanized BLT mice. J Virol. 2009;83(14):7305–21.

    PubMed Central  CAS  PubMed  Google Scholar 

  83. Dudek TE, et al. Rapid evolution of HIV-1 to functional CD8+ T cell responses in humanized BLT mice. Sci Transl Med. 2012;4(143):143ra98.

    Google Scholar 

  84. Hiramatsu H, et al. Complete reconstitution of human lymphocytes from cord blood CD34+ cells using the NOD/SCID/gammacnull mice model. Blood. 2003;102(3):873–80.

    CAS  PubMed  Google Scholar 

  85. Brehm MA, et al. Parameters for establishing humanized mouse models to study human immunity: analysis of human hematopoietic stem cell engraftment in three immunodeficient strains of mice bearing the IL2rγnull mutation. Clin Immunol. 2010;135(1):84–98.

    PubMed Central  CAS  PubMed  Google Scholar 

  86. Traggiai E. An efficient method to make human monoclonal antibodies from memory B cells: potent neutralization of SARS coronavirus. Nat Med. 2004;10:871–5.

    CAS  PubMed  Google Scholar 

  87. Watanabe Y, et al. The analysis of the functions of human B and T cells in humanized NOD/shi-scid/gammac(null) (NOG) mice (hu-HSC NOG mice). Int Immunol. 2009;21(7):843–58.

    CAS  PubMed  Google Scholar 

  88. Billerbeck E, et al. Development of human CD4+FoxP3+ regulatory T cells in human stem cell factor, GM-CSF and interleukin 3 expressing NOD SCID IL2RγNULL humanized mice. Blood. 2011;117(11):3076–86.

    PubMed Central  CAS  PubMed  Google Scholar 

  89. Chen Q, et al. GM-CSF and IL-4 stimulate antibody responses in humanized mice by promoting T, B, and dendritic cell maturation. J Immunol. 2012;189(11):5223–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  90. Miller PH, et al. Enhanced normal short-term human myelopoiesis in mice engineered to express human-specific myeloid growth factors. Blood. 2013;121(5):e1–4.

    CAS  PubMed  Google Scholar 

  91. Chen Q, Khoury M, Chen J. Expression of human cytokines dramatically improves reconstitution of specific human-blood lineage cells in humanized mice. Proc Natl Acad Sci U S A. 2009;106(51):21783–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  92. Shultz LD, et al. Generation of functional human T-cell subsets with HLA-restricted immune responses in HLA class I expressing NOD/SCID/IL2r gamma(null) humanized mice. Proc Natl Acad Sci U S A. 2010;107(29):13022–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  93. Billerbeck E, et al. Characterization of human antiviral adaptive immune responses during hepatotropic virus infection in HLA-transgenic human immune system mice. J Immunol. 2013;191(4):1753–64.

    PubMed Central  CAS  PubMed  Google Scholar 

  94. Strowig T, et al. Priming of protective T cell responses against virus-induced tumors in mice with human immune system components. J Exp Med. 2009;206(6):1423–34.

    PubMed Central  PubMed  Google Scholar 

  95. Sato Y, Nagata S, Takiguchi M. Effective elicitation of human effector CD8 <sup> + </sup> T cells in HLA-B*51:01 transgenic humanized mice after infection with HIV-1. PLoS One. 2012;7(8):e42776.

    PubMed Central  CAS  PubMed  Google Scholar 

  96. Suzuki M, et al. Induction of human humoral immune responses in a novel HLA-DR-expressing transgenic NOD/Shi-scid/γcnull mouse. Int Immunol. 2012;24(4):243–52.

    CAS  PubMed  Google Scholar 

  97. Danner R, et al. Expression of HLA class II molecules in humanized NOD. Rag1KO.IL2RgcKO mice is critical for development and function of human T and B cells. PLoS One. 2011;6(5):e19826.

    PubMed Central  CAS  PubMed  Google Scholar 

  98. Long BR, Stoddart CA. Alpha interferon and HIV infection cause activation of human T cells in NSG-BLT mice. J Virol. 2012;86(6):3327–36.

    PubMed Central  CAS  PubMed  Google Scholar 

  99. Wahl A, et al. Human breast milk and antiretrovirals dramatically reduce oral HIV-1 transmission in BLT humanized mice. PLoS Pathog. 2012;8(6):e1002732.

    PubMed Central  CAS  PubMed  Google Scholar 

  100. Dudek TE, et al. Rapid evolution of HIV-1 to functional CD8(+) T cell responses in humanized BLT mice. Sci Transl Med. 2012;4(143):3003984.

    Google Scholar 

  101. Palmer BE, et al. In Vivo blockade of the PD-1 receptor suppresses HIV-1 viral Loads and improves CD4+ T cell levels in humanized mice. J Immunol. 2013;190(1):211–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  102. Berges B, et al. HIV-1 infection and CD4 T cell depletion in the humanized Rag2−/−gammac−/− (RAG-hu) mouse model. Retrovirology. 2006;3(1):76.

    PubMed Central  PubMed  Google Scholar 

  103. Wainberg M, et al. Systemic administration of antiretrovirals prior to exposure prevents rectal and intravenous HIV-1 transmission in humanized BLT mice. PLoS One. 2010;5(1):e8829.

    Google Scholar 

  104. Neff CP, et al. Oral pre-exposure prophylaxis by anti-retrovirals raltegravir and maraviroc protects against HIV-1 vaginal transmission in a humanized mouse model. PLoS One. 2010;5(12):e15257.

    PubMed Central  CAS  PubMed  Google Scholar 

  105. Klein F, et al. HIV therapy by a combination of broadly neutralizing antibodies in humanized mice. Nature. 2012;492(7427):118–22.

    CAS  PubMed  Google Scholar 

  106. Shimizu S, et al. A highly efficient short hairpin RNA potently down-regulates CCR5 expression in systemic lymphoid organs in the hu-BLT mouse model. Blood. 2010;115(8):1534–44.

    PubMed Central  CAS  PubMed  Google Scholar 

  107. Joseph A, et al. Inhibition of In Vivo HIV infection in humanized mice by gene therapy of human hematopoietic stem cells with a lentiviral vector encoding a broadly neutralizing anti-HIV antibody. J Virol. 2010;84(13):6645–53.

    PubMed Central  CAS  PubMed  Google Scholar 

  108. Denton PW, et al. Generation of HIV latency in humanized BLT mice. J Virol. 2012;86(1):630–4.

    PubMed Central  CAS  PubMed  Google Scholar 

  109. Lang J, et al. Studies of lymphocyte reconstitution in a humanized mouse model reveal a requirement of T cells for human B cell maturation. J Immunol. 2013;190(5):2090–101.

    PubMed Central  CAS  PubMed  Google Scholar 

  110. Li Q, et al. Glycerol monolaurate prevents mucosal SIV transmission. Nature. 2009;458(7241):1034–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  111. Miller CJ, et al. Propagation and dissemination of infection after vaginal transmission of simian immunodeficiency virus. J. Virol. 2005;79(14):9217–27.

    PubMed Central  CAS  PubMed  Google Scholar 

  112. Stone M, et al. A limited number of simian immunodeficiency virus (SIV) env variants are transmitted to rhesus macaques vaginally inoculated with SIVmac251. J Virol. 2010;84(14):7083–95.

    PubMed Central  CAS  PubMed  Google Scholar 

  113. Keele BF, et al. Low-dose rectal inoculation of rhesus macaques by SIVsmE660 or SIVmac251 recapitulates human mucosal infection by HIV-1. J Exp Med. 2009;206(5):1117–34.

    PubMed Central  CAS  PubMed  Google Scholar 

  114. Liu J, et al. Low-dose mucosal simian immunodeficiency virus infection restricts early replication kinetics and transmitted virus variants in rhesus monkeys. J Virol. 2010;84(19):10406–12.

    PubMed Central  CAS  PubMed  Google Scholar 

  115. Ma ZM, et al. SIVmac251 is inefficiently transmitted to rhesus macaques by penile inoculation with a single SIVenv variant found in ramp-up phase plasma. AIDS Res Hum Retroviruses. 2011;27(12):1259–69.

    PubMed Central  CAS  PubMed  Google Scholar 

  116. Sallé B, et al. Infection of macaques after vaginal exposure to cell-associated simian immunodeficiency virus. J Infect Dis. 2010;202(3):337–44.

    PubMed  Google Scholar 

  117. Kolodkin-Gal D, et al. Efficiency of cell-free and cell-associated virus in mucosal transmission of HIV-1/SIV. J Virol. 2013;87(24):13589–97.

    PubMed Central  CAS  PubMed  Google Scholar 

  118. Miller CJ, et al. Genital mucosal transmission of simian immunodeficiency virus: animal model for heterosexual transmission of human immunodeficiency virus. J Virol. 1989;63(10):4277–84.

    PubMed Central  CAS  PubMed  Google Scholar 

  119. Qureshi H, et al. Low-dose penile SIVmac251 exposure of rhesus macaques infected with adenovirus type 5 (Ad5) and then immunized with a replication-defective Ad5-based SIV gag/pol/nef vaccine recapitulates the results of the phase IIb step trial of a similar HIV-1 vaccine. J Virol. 2012;86(4):2239–50.

    PubMed Central  CAS  PubMed  Google Scholar 

  120. Rothaeusler K, et al. Antiviral antibodies and T cells are present in the foreskin of simian immunodeficiency virus-infected rhesus macaques. J Virol. 2012;86(13):7098–106.

    PubMed Central  CAS  PubMed  Google Scholar 

  121. Yeh WW, et al. The TRIM5 gene modulates penile mucosal acquisition of simian immunodeficiency virus in rhesus monkeys. J Virol. 2011;85(19):10389–98.

    PubMed Central  CAS  PubMed  Google Scholar 

  122. Denton PW, et al. Systemic administration of antiretrovirals prior to exposure prevents rectal and intravenous HIV-1 transmission in humanized BLT mice. PLoS One. 2010;5(1):e8829.

    PubMed Central  PubMed  Google Scholar 

  123. Stoddart CA, et al. Superior human leukocyte reconstitution and susceptibility to vaginal HIV transmission in humanized NOD-scid IL-2Rγ−/− (NSG) BLT mice. Virology. 2011;417(1):154–60.

    PubMed Central  CAS  PubMed  Google Scholar 

  124. Berges BK, et al. Mucosal transmission of R5 and X4 tropic HIV-1 via vaginal and rectal routes in humanized Rag2−/−γc−/− (RAG-hu) mice. Virology. 2008;373(2):342–51.

    PubMed Central  CAS  PubMed  Google Scholar 

  125. Plotkin SA. Correlates of protection induced by vaccination. Clin Vaccine Immunol. 2010;17(7):1055–65.

    PubMed Central  CAS  PubMed  Google Scholar 

  126. Plotkin SA, Gilbert PB. Nomenclature for immune correlates of protection after vaccination. Clin Infect Dis. 2012;54(11):1615–7.

    PubMed Central  PubMed  Google Scholar 

  127. Balazs AB, et al. Antibody-based protection against HIV infection by vectored immunoprophylaxis. Nature. 2012;481(7379):81–4.

    CAS  Google Scholar 

  128. Wilen CB, et al. Engineering HIV-resistant human CD4+ T cells with CXCR4-specific zinc-finger nucleases. PLoS Pathog. 2011;7(4):e1002020.

    PubMed Central  CAS  PubMed  Google Scholar 

  129. Akkina R. Human immune responses and potential for vaccine assessment in humanized mice. Curr Opin Immunol. 2013;25(3):403–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  130. Chang H, et al. Human B-cell ontogeny in humanized NOD/SCID [gamma]cnull mice generates a diverse yet auto/poly- and HIV-1-reactive antibody repertoire. Genes Immun. 2012;13(5):399–410.

    PubMed Central  CAS  PubMed  Google Scholar 

  131. Girard MP, Plotkin SA. HIV vaccine development at the turn of the 21st century. Curr Opin HIV AIDS. 2012;7(1):4–9.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingsheng Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Li, Q., Wood, C. (2014). Humanized Mouse Versus Non-human Primate Models of HIV-1 Infection. In: Poluektova, L., Garcia, J., Koyanagi, Y., Manz, M., Tager, A. (eds) Humanized Mice for HIV Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1655-9_17

Download citation

Publish with us

Policies and ethics