Skip to main content

Stability of the Nanoporous Bismuth Oxide Photoanodes for Solar Water Splitting

  • Chapter
  • First Online:
Book cover Materials and Processes for Solar Fuel Production

Part of the book series: Nanostructure Science and Technology ((NST,volume 174))

Abstract

Bismuth oxide has well-dispersed valence bands that show enhanced mobility of charge carriers, high refractive index, and large dielectric constant. These properties are attractive for photocatalysis. Bismuth oxide has widely been investigated for photo degradation of dyes for safeguarding the environment. However, not much work has been reported on bismuth oxide as a photo electrode material for solar water splitting. Photo decomposition of Bi2O3 is a concern when used as a photo cathode. However, Bi2O3 can be obtained as an n-type semiconductor by stabilizing other polymorph: β-Bi2O3, which is a metastable phase. Thin films of nanoporous bismuth oxide were synthesized by a simple electrochemical anodization of bismuth substrate. Annealing the anodic nanoporous Bi2O3 at 240 °C for 2 h resulted in stabilization of the β-Bi2O3 phase. Longer annealing times resulted in formation of the more stable α-Bi2O3 phase that showed monoclinic lattice structure and p-type semiconductivity. The photo stability of these materials is discussed based on the photoelectrochemical measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fujishima, A.; Honda, K., Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238 (5358), 37-+.

    Google Scholar 

  2. Liu, Z.; Pesic, B.; Raja, K. S.; Rangaraju, R. R.; Misra, M., Hydrogen generation under sunlight by self ordered TiO2 nanotube arrays. International Journal of Hydrogen Energy 2009, 34 (8), 3250-3257.

    Article  CAS  Google Scholar 

  3. Rangaraju, R.; Panday, A.; Raja, K.; Misra, M., Nanostructured anodic iron oxide film as photoanode for water oxidation. Journal of Physics D: Applied Physics 2009, 42 (13), 135303.

    Article  Google Scholar 

  4. Yang, X.; Wolcott, A.; Wang, G.; Sobo, A.; Fitzmorris, R. C.; Qian, F.; Zhang, J. Z.; Li, Y., Nitrogen-Doped ZnO Nanowire Arrays for Photoelectrochemical Water Splitting. Nano Letters 2009, 9 (6), 2331-2336.

    Article  CAS  Google Scholar 

  5. Kudo, A.; Omori, K.; Kato, H., A Novel Aqueous Process for Preparation of Crystal Form-Controlled and Highly Crystalline BiVO4 Powder from Layered Vanadates at Room Temperature and Its Photocatalytic and Photophysical Properties. Journal of the American Chemical Society 1999, 121 (49), 11459-11467.

    Article  CAS  Google Scholar 

  6. Tang, J.; Zou, Z.; Ye, J., Efficient Photocatalytic Decomposition of Organic Contaminants over CaBi2O4 under Visible-Light Irradiation. Angewandte Chemie International Edition 2004, 43 (34), 4463-4466.

    Article  CAS  Google Scholar 

  7. Rao, P. M.; Cai, L.; Liu, C.; Cho, I. S.; Lee, C. H.; Weisse, J. M.; Yang, P.; Zheng, X., Simultaneously Efficient Light Absorption and Charge Separation in WO3/BiVO4 Core/Shell Nanowire Photoanode for Photoelectrochemical Water Oxidation. Nano Letters 2014, 14 (2), 1099-1105.

    Article  CAS  Google Scholar 

  8. Zhao, Z. B.; Wang, P.; Fan, L. B.; Chen, Z. F.; Yang, D. L., A PbS Film Synthesized by Ultrasonic Wave Assisted Chemical Bath Deposition Method and its Application in Photoelectrochemical Cell. Advanced Materials Research 2013, 820, 3-6.

    Article  CAS  Google Scholar 

  9. Mandal, K. C.; Basu, S.; Bose, D. N., Surface-modified CdTe PEC solar cells. Solar Cells 1986, 18 (1), 25-30.

    Article  CAS  Google Scholar 

  10. Gerischer, H., On the stability of semiconductor electrodes against photodecomposition. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1977, 82 (1), 133-143.

    Article  CAS  Google Scholar 

  11. Cheng, H.; Huang, B.; Lu, J.; Wang, Z.; Xu, B.; Qin, X.; Zhang, X.; Dai, Y., Synergistic effect of crystal and electronic structures on the visible-light-driven photocatalytic performances of Bi2O3 polymorphs. Physical chemistry chemical physics: PCCP 2010, 12 (47), 15468-75.

    Article  CAS  Google Scholar 

  12. Yang, X.; Lian, X.; Liu, S.; Jiang, C.; Tian, J.; Wang, G.; Chen, J.; Wang, R., Visible light photoelectrochemical properties of β-Bi2O3 nanoporous films: A study of the dependence on thermal treatment and film thickness. Applied Surface Science 2013, 282, 538-543.

    Article  CAS  Google Scholar 

  13. Yang, X.; Lian, X.; Liu, S.; Wang, G.; Jiang, C.; Tian, J.; Chen, J.; Wang, R., Enhanced photocatalytic performance: a β-Bi2O3 thin film by nanoporous surface. Journal of Physics D: Applied Physics 2013, 46 (3), 035103.

    Article  Google Scholar 

  14. Lv, X.; Zhao, J.; Wang, X.; Xu, X.; Bai, L.; Wang, B., Novel Bi2O3 nanoporous film fabricated by anodic oxidation and its photoelectrochemical performance. Journal of Solid State Electrochemistry 2013, 17 (4), 1215-1219.

    Article  CAS  Google Scholar 

  15. Brezesinski, K.; Ostermann, R.; Hartmann, P.; Perlich, J.; Brezesinski, T., Exceptional Photocatalytic Activity of Ordered Mesoporous β-Bi2O3 Thin Films and Electrospun Nanofiber Mats. Chemistry of Materials 2010, 22 (10), 3079-3085.

    Article  CAS  Google Scholar 

  16. Chunzhi Li, J. Z., Kejia Liu A New Method of Enhancing Photoelectrochemical Characteristics of Bi-Bi2O3 Electrode for Hydrogen Generation via Water Splitting. International Journal of Electrochemical Science 2012, 74 (6), 5028-5034.

    Google Scholar 

  17. Qin, F.; Li, G.; Wang, R.; Wu, J.; Sun, H.; Chen, R., Template-free fabrication of Bi2O3 and (BiO)2CO3 nanotubes and their application in water treatment. Chemistry 2012, 18 (51), 16491-7.

    Article  CAS  Google Scholar 

  18. Schlesinger, M.; Schulze, S.; Hietschold, M.; Mehring, M., Metastable beta-Bi2O3 nanoparticles with high photocatalytic activity from polynuclear bismuth oxido clusters. Dalton transactions 2013, 42 (4), 1047-56.

    Article  CAS  Google Scholar 

  19. Yu, Z.; Zhang, J.; Zhang, H.; Shen, Y.; Xie, A.; Huang, F.; Li, S., Facile solvothermal synthesis of porous Bi2O3 microsphere and their photocatalytic performance under visible light. Micro & Nano Letters 2012, 7 (8), 814.

    Article  Google Scholar 

  20. Dutta, D. P.; Roy, M.; Tyagi, A. K., Dual function of rare earth doped nano Bi2O3: white light emission and photocatalytic properties. Dalton transactions 2012, 41 (34), 10238-48.

    Article  CAS  Google Scholar 

  21. Li, S.; Morasch, J.; Klein, A.; Chirila, C.; Pintilie, L.; Jia, L.; Ellmer, K.; Naderer, M.; Reichmann, K.; Gröting, M.; Albe, K., Influence of orbital contributions to the valence band alignment of Bi2O3, Fe2O3, BiFeO3, and Bi0.5Na0.5TiO3. Physical Review B 2013, 88 (4).

    Google Scholar 

  22. Lei, Y. H.; Chen, Z. X., Density functional study of the stability of various alpha-Bi2O3 surfaces. The Journal of chemical physics 2013, 138 (5), 054703.

    Article  Google Scholar 

  23. Matsumoto, A.; Koyama, Y.; Togo, A.; Choi, M.; Tanaka, I., Electronic structures of dynamically stable As2O3, Sb2O3, and Bi2O3 crystal polymorphs. Physical Review B 2011, 83 (21), 214110.

    Article  Google Scholar 

  24. Matsumoto, A.; Koyama, Y.; Tanaka, I., Structures and energetics of Bi2O3 polymorphs in a defective fluorite family derived by systematic first-principles lattice dynamics calculations. Physical Review B 2010, 81 (9).

    Google Scholar 

  25. Xu, Z.; Tabata, I.; Hirogaki, K.; Hisada, K.; Wang, T.; Wang, S.; Hori, T., UV-induced formation of activated Bi2O3 nanoflake: an enhanced visible light driven photocatalyst by platinum loading. RSC Advances 2012, 2 (1), 103.

    Article  CAS  Google Scholar 

  26. J. Hou, C. Yang, Z. Wang, W. Zhou, S. Jiao, H. Zhu, In situ synthesis of α-β phase heterojunction on Bi2O3 nanowires with exceptional visible-light photocatalytic performance, Appl. Catal. B: Environmental, 2013, 142-143, 504-511

    Article  CAS  Google Scholar 

  27. M. Vila, C. Diaz-Guerra, J. Piqueras, Laser induced α-δ phase transformation in Bi2O3 nanowires, Appl. Phys. Lett., 2012, 101, 071905.

    Article  Google Scholar 

  28. P. M. Sirimanne, K. Takahashi, N. Sonoyama, T. Sakata, Photocurrent enhancement of wide bandgap Bi2O3 by Bi2S3 over layers, Solar Energy Materials & Solar Cells 2002, 73, 175-187

    Article  CAS  Google Scholar 

  29. E. T. Al Waisy, M. S. Al Wazny, Structural, Surface Morphology and Optical Properties of Bi2O3 Thin Film Prepared By Reactive Pulse Laser Deposition, J. of university of Anbar for pure science: 2013, 7(2) 001.

    Google Scholar 

  30. F.D. Hardcastle, I.E. Wachs, The molecular structure of bismuth oxide by Raman spectroscopy, J. Solid State Chemistry, 1992, 97, 319-331.

    Google Scholar 

  31. L. Kumari, J. H. Lin, Y. R. Ma, Synthesis of Bi oxide nanostructures by PVD, Nanotechnology, 2007, 18, 295605.

    Article  Google Scholar 

  32. Nozik, A.J. and Memming, R. Physical chemistry of semiconductor-liquid interfaces. Journal of Physical Chemistry, 1996, 100 (31), 13061-13078.

    Article  CAS  Google Scholar 

  33. Y. Xu, M.A.A. Schoonen, The absolute energy positions of conduction and valence bands of selected semiconducting minerals, American Mineralogist, 2000, 85, 543-556.

    Google Scholar 

  34. Y. Wang, Y. Wen, H. Ding, Y. Shan, Improved structural stability of Ti-doped β-Bi2O3 during visible light activated photocatalytic processes, J. Mater. Sci., 2010, 45, 1385-1392.

    Article  CAS  Google Scholar 

  35. M. Metikos-Hukoviv, The photoelectrochemical properties of anodic Bi2O3 films, Electrochim. Acta, 1981, 26 (8), 989-1000.

    Article  Google Scholar 

  36. T. W. Kim and K.-S. Choi, Nanoporous BiVO4 Photoanodes with Dual-Layer Oxygen Evolution Catalysts for Solar Water Splitting, Science, 2014, 343, 990-994.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Raja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chitrada, K., Raja, K.S. (2014). Stability of the Nanoporous Bismuth Oxide Photoanodes for Solar Water Splitting. In: Viswanathan, B., Subramanian, V., Lee, J. (eds) Materials and Processes for Solar Fuel Production. Nanostructure Science and Technology, vol 174. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1628-3_9

Download citation

Publish with us

Policies and ethics