Skip to main content

New Cu(I)-Based p-Type Semiconducting Metal Oxides for Solar-to-Fuel Conversion: Investigation and Challenges

  • Chapter
  • First Online:
Materials and Processes for Solar Fuel Production

Part of the book series: Nanostructure Science and Technology ((NST,volume 174))

Abstract

The search for more efficient visible light materials for solar-driven hydrogen production has brought metal oxides into the light of renewed scientific attention due to its high stability. Traditionally various n-type metal oxides have been studied for the photoelectrochemical cell (PEC) application as a photoanode such as TiO2, because of its low cost, high-corrosion resistance, and suitable band structure (for UV light). More and more efforts are focused on the development of visible active n-type semiconducting metal oxides, while very few p-type semiconducting oxides are known for the solar-to-fuel conversion. The fact that p-type semiconductor actually acting as the photocathode in the photoelectrochemical cell, which generates hydrogen, encourages us to investigate new p-type semiconducting oxides and challenges associated with it. The emphasis of this chapter will be on the strategies to make p-type semiconducting oxides for solar-to-fuel conversion. The main focus will be on copper-based p-type metal oxides (copper niobates and copper tantalates), with respect to the structure–property relationship, dopant effect, and electronic structure calculations using density of state (DOS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kamat PV (2007) Meeting the clean energy demand: Nanostructure architectures for solar energy conversion. J. Phys. Chem. C 111(7): 2834-2860.

    Article  CAS  Google Scholar 

  2. Walter MG, Warren EL, McKone JR, Boettcher SW, Mi Q, Santori EA, Lewis NS (2010) Solar water splitting cells. Chem. Rev. 110 (11): 6446-6473.

    Article  CAS  Google Scholar 

  3. Chen X, Shen S, Guo L, Mao SS (2010) Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 110 (11): 6503-6570.

    Article  CAS  Google Scholar 

  4. Osterloh F (2008) Inorganic materials as catalysts for photochemical splitting of water. Chem. Mater. 20(1): 35-54.

    Article  CAS  Google Scholar 

  5. Kumar B, Llorente M, Froehlich J, Dang T, Sathrum A, Kubiak CP (2012) Photochemical and photoelectrochemical reduction of CO2. Annu. Rev. Phys. Chem. 63: 541-69.

    Article  CAS  Google Scholar 

  6. Barton EE, Rampulla DM, Bocarsly AB (2008) Selective solar-driven reduction of CO2 to methanol using a catalyzed p-GaP based photoelectochemical cell. J. Am. Chem. Soc. 130: 6342-6344.

    Article  CAS  Google Scholar 

  7. Cole EB, Lakkaraju PS, Rampulla DM, Morris AJ, Abelev E, Bocarsly AB (2010) Using a one-electron shuttle for the multielectron reduction of CO2 to methanol: Kinetics, mechanistic and structural insights. J. Am. Chem. Soc. 132: 11539-11551.

    Article  Google Scholar 

  8. Kubacka A, GarcĂ­a MF, ColĂłn G (2012) Advanced nanoarchitectures for solar photocatalytic applications. Chem. Rev. 112: 1555-1614.

    Article  CAS  Google Scholar 

  9. Kudo A, Miseki Y (2009) Heterogeneous photocatalytic materials for water splitting. Chem. Soc. Rev. 38: 253-278.

    Article  CAS  Google Scholar 

  10. Khaseley O, Turner JA (1998) A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 280: 425-427.

    Article  Google Scholar 

  11. Bard AJ (1980) Photoelectochemistry. Science 207: 139-144.

    Article  CAS  Google Scholar 

  12. Sun J, Liu C, Yang P (2011) Surfactant-free, large-scale, solution-liquid-solid growth of gallium phosphide nanowires and their use for visible-light-driven hydrogen production from water reduction. J. Am. Chem. Soc. 133: 19306-19309.

    Article  CAS  Google Scholar 

  13. Nian J-N, Hu C-C, Teng H (2008) Electrodeposited p-type Cu2O for H2 evolution from photoelectrolysis of water under visible light illumination. Int. J. Hydrogen Energy 33: 2897-2903.

    Article  CAS  Google Scholar 

  14. McShane CM, Choi K-S (2009) Photocurrent enhancement of n-type Cu2O electrodes achieved by controlling dendritic branching growth. J. Am. Chem. Soc. 131: 2561-2569.

    Article  CAS  Google Scholar 

  15. Nakaoka K, Ueyama J, Ogura K (2004) Photoelectrochemical behavior of electrodeposited CuO and Cu2O thin films on conducting substrate. J. Electrochem. Soc. 151: C661-C665.

    Article  CAS  Google Scholar 

  16. Ingler WB, Baltrus JP Jr., Khan SUM (2004) Photoresponse of p-type zinc-doped iron (III) oxide thin films. J. Am. Chem. Soc. 126: 10238-10239.

    Article  CAS  Google Scholar 

  17. Leygraf C, Hendewerk M, Somorjai GA (1982) Photocatalytic production of hydrogen from water by a p- and n-type polycrystalline iron oxide assembly. J. Phys. Chem. 86: 4484-4485.

    Article  CAS  Google Scholar 

  18. Matsumoto Y, Omae M, Sugiyama K, Sato E (1987) New photocathode materials for hydrogen evolution: CaFe2O4 and Sr7Fe10O22. J. Phys. Chem. 91: 577-581.

    Article  CAS  Google Scholar 

  19. Ida S, Yamada K, Matsunaga T, Hagiwara H, Matsumoto Y, Ishihara T (2010) Preparation of p-type CaFe2O4 photocathodes for producing hydrogen from water. J. Am. Chem. Soc. 132: 17343-17345.

    Article  CAS  Google Scholar 

  20. Iwashina K, Kudo A (2011) Rh-doped SrTiO3 photocatalyst electrode showing cathodic photocurrent for water splitting under visible-light irradiation. J. Am. Chem. Soc. 133: 13272-13275.

    Article  CAS  Google Scholar 

  21. Chavillon B, Cario L, Renaud A, Tessier F, Chevire F, Boujtita M, Pellegrin Y, Blart E, Smeigh A, Hammarstrom L, Odobel F, Jobic S (2012) P-type nitrogen doped ZnO nanoparticles stable under ambient conditions. J. Am. Chem. Soc. 134: 464-470.

    Article  CAS  Google Scholar 

  22. Paracchino A, Laporte V, Sivula K, Grätzel M, Thimsen E (2011) Highly active oxide photocathode for photoelectrochemical water reduction. Nature Mater. 10: 456-461.

    Article  CAS  Google Scholar 

  23. Walter HB. (1951) The copper oxides rectifier, In Review of Modern Physics, pp. 203-208.

    Google Scholar 

  24. Hara M, Kondo T, Komoda M, Ikeda S, Shinohara K, Tanaka A, Kondo JN, Domen K (1998) Cu2O as a photocatalyst for overall water splitting under visible light irradiation. Chem. Commun. 3: 357-358.

    Article  Google Scholar 

  25. de Jongh PE, Vanmaekelbergh D, Kelly JJ (2000) Photoelectrochemistry of deposited Cu2O. J. Electrochem. Soc. 147: 486-489.

    Article  Google Scholar 

  26. Siripala W, Ivanovskaya A, Jaramillo TF, Baeck SH, McFarland EW (2003) A Cu2O/TiO2 heterojunction thin film cathode for photoelectrocatalysis. Sol. Energy Mater. Sol. Cells 77: 229-237.

    Article  CAS  Google Scholar 

  27. Kawazoe H, Yasukawa M, Hyodo H, Kurita M, Yanagi H, Hosono H (1997) P-type electrical conduction in transparent thin films of CuAlO2. Nature 389: 939-942.

    Article  CAS  Google Scholar 

  28. Brahimi R, Bessekhouad Y, Bouguelia A, Trari M (2007) CuAlO2/TiO2 heterojunction applied to visible light H2 production. J. Photochem. Photobio A 186: 242-247.

    Article  CAS  Google Scholar 

  29. Trari M, Bouguelia A, Bessekhouad Y (2006) p-type CuYO2 as hydrogen photocathode. Sol. Ener. Mater. & Sol. Cell. 90: 190-202.

    Article  CAS  Google Scholar 

  30. Younsi M, Saadi S, Bouguelia A, Aider A, Trari M (2007) Synthesis and characterization of oxygen rich delafossite CuYO2+x—application of H2 photo production. Sol. Ener. Mater. & Sol. Cell 91: 1102-1109.

    Article  CAS  Google Scholar 

  31. Boumaza S, Bouarab R, Trari M, Bouguelia A (2009) Hydrogen photo-evolution over the spinel CuCr2O4. Energ. Conv. Manag. 50: 62-68.

    Article  CAS  Google Scholar 

  32. Lekse JW, Underwood MK, Lewis JP, Matranga C (2012) Synthesis, characterization, electronic structure, and photocatalytic behavior of CuGaO2, and CuGa1-xFexO2 (x = 0.05, 0.10, 0.15, 0.20) delafossites. J. Phys. Chem. C 116: 1865-1872.

    Article  CAS  Google Scholar 

  33. Read CG, Park Y, Choi K-S (2012) Electrochemical synthesis of p-type CuFeO2 electrodes for use in a photoelectrochemical cell. J. Phys. Chem. Lett. 3: 1872-1876.

    Article  CAS  Google Scholar 

  34. Bessekhouad Y, Trari M (2002) Photocatalytic hydrogen production from suspension of spinel powders AMn2O4 (A = Cu and Zn). Inter. J. Hydro. Energ. 27: 357-362.

    Article  CAS  Google Scholar 

  35. Yang H, Yan J, Lu Z, Cheng X, Tang Y (2009) Photocatalytic activity evolution of tetragonal CuFe2O4 nanoparticles for the H2 evolution under visible light irradiation. J. Alloy. Compd. 476: 715-719.

    Article  CAS  Google Scholar 

  36. Saadi S, Bouguelia A, Trari M (2006) Photoassisted hydrogen evolution over spinel CuM2O4 (M = Al, Cr, Mn, Fe, and Co). Renewable Energy 31: 2245-2256.

    Article  CAS  Google Scholar 

  37. Kudo A, Yanagi H, Hosono H, Kawazoe H (1998) SrCu2O2: A p-type semiconductor oxide with wide band gap. Appl. Phys. Lett. 73: 220-222.

    Article  CAS  Google Scholar 

  38. Wang G, Wu C, Song B, Wang Y (2011) Synthesis and photocatalytic activity of SrCu2O2 for water decomposition to hydrogen. Adv. Mater. Rese. 239: 2914-2918.

    Article  Google Scholar 

  39. Joshi UA, Palasyuk A, Arney D, Maggard PA (2010) Semiconducting oxides to facilitate the conversion of solar energy to chemical fuels. J. Phys. Chem. Lett. 1: 2719-2726.

    Article  CAS  Google Scholar 

  40. Palasyuk O, Palasyuk A, Maggard PA (2010) Site-differentiated solid solution in (Na1-xCux)2Ta4O11 and its electronic structure and optical properties. Inorg. Chem. 49: 10571-10578.

    Article  CAS  Google Scholar 

  41. Joshi UA, Palasyuk AM, Maggard PA (2011) Photoelectrochemical investigation and electronic structure of a p-type CuNbO3 photocathode. J. Phys. Chem. C 115: 13534-13539.

    Article  CAS  Google Scholar 

  42. Joshi UA, Maggard PA (2012) CuNb3O8: A p-type semiconducting metal oxide photocathode. J. Phys. Chem. Lett. 3: 1577-1581.

    Article  CAS  Google Scholar 

  43. Fuoco L, Joshi UA, Maggard PA (2012) Preparation and photoelectrochemical properties of p-type Cu5Ta11O30 and Cu3Ta7O19 semiconducting polycrystalline films. J. Phys. Chem. C 116: 10490-10497.

    Article  CAS  Google Scholar 

  44. Wahlström E, Marinder B-O. (1977) Phase analysis studies in copper-niobium-oxygen system. Inorg. Nucl. Chem. Letters 13: 559-564.

    Article  Google Scholar 

  45. Meyer G, Hoppe R (1974) Na3NbO4, das erste orthoniobat mit inselstruktur: Na12[Nb1O16]. Naturwiss 1974, 61, 501.

    Article  Google Scholar 

  46. Marinder B-O, Wahlström E (1984) CuNbO3- a structure with stepped NbO3 layers. Chemica Scripta 23: 157-160.

    CAS  Google Scholar 

  47. Li G, Kako T, Wang D, Zuo Z, Ye J (2008) Synthesis and enhanced photocatalytic activity of NaNbO3 prepared by hydrothermal and polymerized complex methods. J Phys. Chem. Sol. 69: 2487-2491.

    Article  CAS  Google Scholar 

  48. Marinder B-O, Werner P-E, Wahlstroem E, Malmros G (1980) Investigation on a new copper niobate oxide of LiNb3O8 type using chemical analysis and x-ray powder diffraction analysis. Acta Chem. Scand. A. 34: 51-56.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Upendra A. Joshi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Joshi, U.A. (2014). New Cu(I)-Based p-Type Semiconducting Metal Oxides for Solar-to-Fuel Conversion: Investigation and Challenges. In: Viswanathan, B., Subramanian, V., Lee, J. (eds) Materials and Processes for Solar Fuel Production. Nanostructure Science and Technology, vol 174. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1628-3_5

Download citation

Publish with us

Policies and ethics