Skip to main content

Solar Photocatalytic Hydrogen Production: Current Status and Future Challenges

  • Chapter
  • First Online:
Book cover Materials and Processes for Solar Fuel Production

Part of the book series: Nanostructure Science and Technology ((NST,volume 174))

Abstract

Due to the increase of the worldwide demand for energy along with the global warming and the increasing level of atmospheric CO2, solar hydrogen has been proposed as an optimal fuel as it can be produced from water using solar energy which emerges as the most promising energy source in terms of abundance and sustainability. So far the main commercial process for producing hydrogen is steam reforming of hydrocarbons which is connected with a CO2 emission disadvantage. Carbon free hydrogen production can be achieved by water splitting through an electrolyser powered by photovoltaics, but a potentially more cost effective route is to perform direct photocatalytic water splitting using semiconductor photocatalysts. Herein, the authors will present the principles of this process, the current progress in the field, and future challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Navarro, R. M.; Sanchez-Sanchez, M. C.; Alvarez-Galvan, M. C.; del Valle, F.; Fierro, J. L. G., Hydrogen production from renewable sources: biomass and photocatalytic opportunities. Energy Environ. Sci. 2009, 2 (1), 35-54.

    Article  CAS  Google Scholar 

  2. Navarro, R. M.; Pena, M. A.; Fierro, J. L. G., Hydrogen production reactions from carbon feedstocks: Fossils fuels and biomass. Chem. Rev. 2007, 107 (10), 3952-3991.

    Article  CAS  Google Scholar 

  3. Hamelinck, C. N.; Faaij, A. P. C., Future prospects for production of methanol and hydrogen from biomass. J. Power Sources 2002, 111 (1), 1-22.

    Article  CAS  Google Scholar 

  4. Fujishima, A.; Honda, K., Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37-38.

    Article  CAS  Google Scholar 

  5. Mills, A.; Davies, R. H.; Worsley, D., Water-purification by semiconductor photocatalysis. Chem. Soc. Rev. 1993, 22 (6), 417-425.

    Article  CAS  Google Scholar 

  6. Hoffmann, M. R.; Martin, S. T.; Choi, W. Y.; Bahnemann, D. W., Environmental applications of semiconductor photocatalysis. Chem. Rev. 1995, 95 (1), 69-96.

    Article  CAS  Google Scholar 

  7. Linsebigler, A. L.; Lu, G. Q.; Yates, J. T., Photocatalysis on TiO2 surfaces—principles, mechanisms, and selected results. Chem. Rev. 1995, 95 (3), 735-758.

    Article  CAS  Google Scholar 

  8. Osterloh, F. E., Inorganic materials as catalysts for photochemical splitting of water. Chem. Mater. 2008, 20 (1), 35-54.

    Article  CAS  Google Scholar 

  9. Kudo, A.; Miseki, Y., Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38 (1), 253-278.

    Article  CAS  Google Scholar 

  10. van de Krol, R.; Liang, Y.; Schoonman, J., Solar hydrogen production with nanostructured metal oxides. J. Mater. Chem. 2008, 18 (20), 2311-2320.

    Article  CAS  Google Scholar 

  11. Shimura, K.; Yoshida, H., Heterogeneous photocatalytic hydrogen production from water and biomass derivatives. Energy Environ. Sci. 2011, 4 (7), 2467-2481.

    Article  CAS  Google Scholar 

  12. Sivula, K.; Le Formal, F.; Gratzel, M., Solar water splitting: Progress using hematite (α-Fe2O3) photoelectrodes. Chemsuschem 2011, 4 (4), 432-449.

    Article  CAS  Google Scholar 

  13. Maeda, K.; Domen, K., Photocatalytic Water splitting: Recent progress and future challenges. J. Phys. Chem. Lett. 2010, 1 (18), 2655-2661.

    Article  CAS  Google Scholar 

  14. Sato, S.; White, J. M., Photo-decomposition of water over P-TiO2 catalysts. Chem. Phys. Lett. 1980, 72 (1), 83-86.

    Article  CAS  Google Scholar 

  15. Maeda, K.; Domen, K., New non-oxide photocatalysts designed for overall water splitting under visible light. J. Phys. Chem. C 2007, 111 (22), 7851-7861.

    Article  CAS  Google Scholar 

  16. Weber, M. F.; Dignam, M. J., Splitting water with semiconducting photoelectrodes: Efficiency considerations. Int. J. Hydrogen Energy 1986, 11 (4), 225-232.

    Article  CAS  Google Scholar 

  17. Murphy, A. B.; Barnes, P. R. F.; Randeniya, L. K.; Plumb, I. C.; Grey, I. E.; Horne, M. D.; Glasscock, J. A., Efficiency of solar water splitting using semiconductor electrodes. Int. J. Hydrogen Energy 2006, 31 (14), 1999-2017.

    Article  CAS  Google Scholar 

  18. Bolton, J. R.; Strickler, S. J.; Connolly, J. S., Limiting and realizable efficiencies of solar photolysis of water. Nature 1985, 316 (6028), 495-500.

    Article  CAS  Google Scholar 

  19. National Renewable Energy Laboratory (NREL) website: http://rredc.nrel.gov/solar/spectra/

  20. Takanabe, K.; Domen, K., Preparation of Inorganic Photocatalytic materials for overall water splitting. ChemCatChem 2012, 4 (10), 1485-1497.

    Google Scholar 

  21. James, B. D.; Baum, G. N.; Perez, J.; Baum, K. N. Technoeconomic Analysis of Photoelectrochemical (PEC) Hydrogen Production; Final Report; U.S. Department of Energy: December 2009.

    Google Scholar 

  22. Memming, R., Photoinduced charge-transfer processes at semiconductor electrodes and particles. In Electron Transfer I, 1994; Vol. 169, pp. 105-181.

    Google Scholar 

  23. Prieto-Mahaney, O. O.; Murakami, N.; Abe, R.; Ohtani, B., Correlation between photocatalytic activities and structural and physical properties of titanium(IV) oxide Powders. Chem. Lett. 2009, 38 (3), 238-239.

    Article  CAS  Google Scholar 

  24. Kandiel, T. A.; Feldhoff, A.; Robben, L.; Dillert, R.; Bahnemann, D. W., Tailored titanium dioxide nanomaterials: Anatase nanoparticles and brookite nanorods as highly active photocatalysts. Chem. Mater. 2010, 22 (6), 2050-2060.

    Article  CAS  Google Scholar 

  25. Mills, A.; Porter, G., Photosensitized dissociation of water using dispersed suspensions of n-type semiconductors. J. Chem. Soc.-Faraday Trans. I 1982, 78, 3659-3669.

    Article  CAS  Google Scholar 

  26. Yamaguti, K.; Sato, S., Photolysis of Water over Metallized Powdered Titanium-Dioxide. J. Chem. Soc.-Faraday Transactions I 1985, 81, 1237-1246.

    Article  CAS  Google Scholar 

  27. Sayama, K.; Arakawa, H., Significant effect of carbonate addition on stoichiometric photodecomposition of liquid water into hydrogen and oxygen from platinum titanium(IV) oxide suspension. J. Chem. Soc.-Chem. Commun. 1992, (2), 150-152.

    Article  Google Scholar 

  28. Kiwi, J.; Gratzel, M., Optimization of conditions for photochemical water cleavage—aqueous Pt/TiO2 (anatase) dispersions under ultraviolet-light. J. Phys. Chem. 1984, 88 (7), 1302-1307.

    Article  CAS  Google Scholar 

  29. Abe, T.; Suzuki, E.; Nagoshi, K.; Miyashita, K.; Kaneko, M., Electron source in photoinduced hydrogen production on Pt-supported TiO2 particles. J. Phys. Chem. B 1999, 103 (7), 1119-1123.

    Article  CAS  Google Scholar 

  30. Meissner, D.; Memming, R.; Kastening, B.; Bahnemann, D., Fundamental problems of water splitting at cadmium-sulfide. Chem. Phys. Lett. 1986, 127 (5), 419-423.

    Article  CAS  Google Scholar 

  31. Williams, R., Becquerel photovoltaic effect in binary compounds. J. Chem. Phys. 1960, 32 (5), 1505-1514.

    Article  CAS  Google Scholar 

  32. Ellis, A. B.; Kaiser, S. W.; Bolts, J. M.; Wrighton, M. S., Study of n-type semiconducting cadmium chalcogenide-based photoelectrochemical cells employing polychalcogenide electrolytes. J. Am. Chem. Soc. 1977, 99 (9), 2839-2848.

    Article  CAS  Google Scholar 

  33. Abe, R.; Sayama, K.; Sugihara, H., Development of new photocatalytic water splitting into H2 and O2 using two different semiconductor photocatalysts and a shuttle redox mediator IO3 (-)/I. J. Phys. Chem. B 2005, 109 (33), 16052-16061.

    Article  CAS  Google Scholar 

  34. Kudo, A.; Omori, K.; Kato, H., A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties. J. Am. Chem. Soc. 1999, 121 (49), 11459-11467.

    Article  CAS  Google Scholar 

  35. Kato, H.; Kobayashi, H.; Kudo, A., Role of Ag+ in the band structures and photocatalytic properties of AgMO3 (M: Ta and Nb) with the perovskite structure. J. Phys. Chem. B 2002, 106 (48), 12441-12447.

    Article  CAS  Google Scholar 

  36. Kato, H.; Kudo, A., Visible-light-response and photocatalytic activities of TiO2 and SrTiO3 photocatalysts codoped with antimony and chromium. J. Phys. Chem. B 2002, 106 (19), 5029-5034.

    Article  CAS  Google Scholar 

  37. Kim, H. G.; Borse, P. H.; Choi, W.; Lee, J. S., Photocatalytic nanodiodes for visible-light photocatalysis. Ange. Chem. Inter. Ed. 2005, 44 (29), 4585-4589.

    Article  CAS  Google Scholar 

  38. Scaife, D. E., Oxide semiconductors in photoelectrochemical conversion of solar energy. Sol. Energy 1980, 25 (1), 41-54.

    Article  CAS  Google Scholar 

  39. Maeda, K.; Takata, T.; Hara, M.; Saito, N.; Inoue, Y.; Kobayashi, H.; Domen, K., GaN : ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting. J. Am. Chem. Soc. 2005, 127 (23), 8286-8287.

    Article  CAS  Google Scholar 

  40. Maeda, K.; Teramura, K.; Takata, T.; Hara, M.; Saito, N.; Toda, K.; Inoue, Y.; Kobayashi, H.; Domen, K., Overall water splitting on (Ga1-xZnx)(N1-xOx) solid solution photocatalyst: Relationship between physical properties and photocatalytic activity. J. Phys. Chem. B 2005, 109 (43), 20504-20510.

    Article  CAS  Google Scholar 

  41. Teramura, K.; Maeda, K.; Saito, T.; Takata, T.; Saito, N.; Inoue, Y.; Domen, K., Characterization of ruthenium oxide nanocluster as a cocatalyst with (Ga1-xZnx)(N1-xOx) for photocatalytic overall water splitting. J. Phys. Chem. B 2005, 109 (46), 21915-21921.

    Article  CAS  Google Scholar 

  42. Hirai, T.; Maeda, K.; Yoshida, M.; Kubota, J.; Ikeda, S.; Matsumura, M.; Domen, K., Origin of visible light absorption in GaN-Rich (Ga1-xZnx)(N1-xOx) photocatalysts. J. Phys. Chem. C 2007, 111 (51), 18853-18855.

    Article  CAS  Google Scholar 

  43. Sun, X.; Maeda, K.; Le Faucheur, M.; Teramura, K.; Domen, K., Preparation of (Ga1-xZnx) (N1-xOx) solid-solution from ZnGa2O4 and ZnO as a photo-catalyst for overall water splitting under visible light. Appl. Catal. A-Gen. 2007, 327 (1), 114-121.

    Article  CAS  Google Scholar 

  44. Maeda, K.; Teramura, K.; Domen, K., Effect of post-calcination on photocatalytic activity of (Ga1-xZnx)(N1-xOx) solid solution for overall water splitting under visible light. J. Catal. 2008, 254 (2), 198-204.

    Article  CAS  Google Scholar 

  45. Daling Lu, T. T., Nobuo Saito,; Yasunobu Inoue, K. D., Photocatalyst releasing hydrogen from water. Nature 2006, 440 (16), 295.

    Google Scholar 

  46. Abe, R.; Higashi, M.; Domen, K., Facile fabrication of an efficient oxynitride TaON photoanode for overall water splitting into H2 and O2 under visible light irradiation. J. Am. Chem. Soc. 2010, 132 (34), 11828-11829.

    Article  CAS  Google Scholar 

  47. Maeda, K.; Domen, K., Solid solution of GaN and ZnO as a stable photocatalyst for overall water splitting under visible light. Chem. Mater. 2010, 22 (3), 612-623.

    Article  CAS  Google Scholar 

  48. Maeda, K.; Higashi, M.; Siritanaratkul, B.; Abe, R.; Domen, K., SrNbO2N as a Water-Splitting Photoanode with a Wide Visible-Light Absorption Band. J. Am. Chem. Soc. 2011, 133 (32), 12334-12337.

    Article  CAS  Google Scholar 

  49. Kasahara, A.; Nukumizu, K.; Hitoki, G.; Takata, T.; Kondo, J. N.; Hara, M.; Kobayashi, H.; Domen, K., Photoreactions on LaTiO2N under visible light irradiation. J. Phys. Chem. A 2002, 106 (29), 6750-6753.

    Article  CAS  Google Scholar 

  50. Hitoki, G.; Takata, T.; Kondo, J. N.; Hara, M.; Kobayashi, H.; Domen, K., An oxynitride, TaON, as an efficient water oxidation photocatalyst under visible light irradiation λ ≤ 500 nm). Chem. Commun. 2002, (16), 1698-1699.

    Google Scholar 

  51. Hara, M.; Chiba, E.; Ishikawa, A.; Takata, T.; Kondo, J. N.; Domen, K., Ta3N5 and TaON thin films on Ta foil: Surface composition and stability. J. Phys. Chem. B 2003, 107 (48), 13441-13445.

    Article  CAS  Google Scholar 

  52. Hara, M.; Nunoshige, J.; Takata, T.; Kondo, J. N.; Domen, K., Unusual enhancement of H2 evolution by Ru on TaON photocatalyst under visible light irradiation. Chem. Commun. 2003, (24), 3000-3001.

    Google Scholar 

  53. Ishikawa, A.; Takata, T.; Kondo, J. N.; Hara, M.; Kobayashi, H.; Domen, K., Oxysulfide Sm2Ti2S2O5 as a stable photocatalyst for water oxidation and reduction under visible light irradiation (λ ≤ 650 nm). J. Am. Chem. Soc. 2002, 124 (45), 13547-13553.

    Google Scholar 

  54. Abe, R.; Takata, T.; Sugihara, H.; Domen, K., Photocatalytic overall water splitting under visible light by TaON and WO3 with an IO3 /I shuttle redox mediator. Chem. Commun. 2005, (30), 3829-3831.

    Article  CAS  Google Scholar 

  55. Sato, J.; Kobayashi, H.; Ikarashi, K.; Saito, N.; Nishiyama, H.; Inoue, Y., Photocatalytic activity for water decomposition of RuO2-dispersed Zn2GeO4 with d10 configuration. J. Phys. Chem. B 2004, 108 (14), 4369-4375.

    Article  CAS  Google Scholar 

  56. Sato, J.; Saito, N.; Nishiyama, H.; Inoue, Y., Photocatalytic activity for water decomposition of indates with octahedrally coordinated d10 configuration. I. Influences of preparation conditions on activity. J. Phys. Chem. B 2003, 107 (31), 7965-7969.

    Article  CAS  Google Scholar 

  57. Sato, J.; Saito, N.; Nishiyama, H.; Inoue, Y., New photocatalyst group for water decomposition of RuO2-loaded p-block metal (In, Sn, and Sb) oxides with d10 configuration. J. Phys. Chem. B 2001, 105 (26), 6061-6063.

    Article  CAS  Google Scholar 

  58. Ikarashi, K.; Sato, J.; Kobayashi, H.; Saito, N.; Nishiyama, H.; Inoue, Y., Photocatalysis for water decomposition by RuO2-dispersed ZnGa2O4 with d10 configuration. J. Phys. Chem. B 2002, 106 (35), 9048-9053.

    Article  CAS  Google Scholar 

  59. Wei, S. H.; Zunger, A., Role of metal d-states in II–VI semiconductors. Phys. Review B 1988, 37 (15), 8958-8981.

    Article  CAS  Google Scholar 

  60. Maeda, K.; Teramura, K.; Lu, D. L.; Saito, N.; Inoue, Y.; Domen, K., Noble-metal/Cr2O3 core/shell nanoparticles as a cocatalyst for photocatalytic overall water splitting. Angew. Chem.-Int. Edit. 2006, 45 (46), 7806-7809.

    Article  CAS  Google Scholar 

  61. Maeda, K.; Lu, D.; Teramura, K.; Domen, K., Direct deposition of nanoparticulate rhodium-chromium mixed-oxides on a semiconductor powder by band-gap irradiation. J. Mater. Chem. 2008, 18 (30), 3539-3542.

    Article  CAS  Google Scholar 

  62. Zhang, L. W.; Baumanis, C.; Robben, L.; Kandiel, T.; Bahnemann, D., Bi2WO6 Inverse opals: Facile fabrication and efficient visible-light-driven photocatalytic and photoelectrochemical water-splitting activity. Small 2011, 7 (19), 2714-2720.

    Article  CAS  Google Scholar 

  63. Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M., A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8 (1), 76-80.

    Article  CAS  Google Scholar 

  64. Kawai, T.; Sakata, T., Conversion of carbohydrate into hydrogen fuel by a photocatalytic process. Nature 1980, 286 (5772), 474-476.

    Article  CAS  Google Scholar 

  65. Domen, K.; Naito, S.; Onishi, T.; Tamaru, K., Photocatalytic hydrogen-production from a mixture of water and 2-propanol on some semiconductors. Chem. Lett. 1982, (4), 555-558.

    Article  Google Scholar 

  66. Kanno, H.; Yamamoto, Y.; Harada, H., TiO2-based photocatalysts prepared from titanium isopropoxide and aqueous-electrolyte solutions. Chem. Phys. Lett. 1985, 121 (3), 245-248.

    Article  CAS  Google Scholar 

  67. Cihlar, J.; Bartonickova, E., Low-temperature sol-gel synthesis of anatase nanoparticles modified by Au, Pd and Pt and activity of TiO2/Au, Pd, Pt photocatalysts in water splitting. J. Sol-Gel Sci. Technol. 65 (3), 430-442.

    Google Scholar 

  68. Tran, P. D.; Xi, L. F.; Batabyal, S. K.; Wong, L. H.; Barber, J.; Loo, J. S. C., Enhancing the photocatalytic efficiency of TiO2 nanopowders for H2 production by using non-noble transition metal co-catalysts. Phys. Chem. Chem. Phys. 14 (33), 11596-11599.

    Google Scholar 

  69. Ma, B. J.; Kim, J. S.; Choi, C. H.; Woo, S. I., Enhanced hydrogen generation from methanol aqueous solutions over Pt/MoO3/TiO2 under ultraviolet light. Inter. J. Hydrogen Energy 38 (9), 3582-3587.

    Google Scholar 

  70. Lee, S. G.; Lee, S.; Lee, H. I., Photocatalytic production of hydrogen from aqueous solution containing CN as a hole scavenger. Appl. Catal. a-Gen. 2001, 207 (1-2), 173-181.

    Article  CAS  Google Scholar 

  71. Buhler, N.; Meier, K.; Reber, J. F., Photochemical hydrogen-production with cadmium-sulfide suspensions. J. Phys. Chem. 1984, 88 (15), 3261-3268.

    Article  Google Scholar 

  72. Wang, Y. B.; Wang, Y. S.; Xu, R., Photochemical deposition of Pt on CdS for H2 evolution from water: Markedly enhanced activity by controlling Pt reduction environment. J. Phys. Chem. C 117 (2), 783-790.

    Google Scholar 

  73. Yao, W. F.; Song, X. L.; Huang, C. P.; Xu, Q. J.; Wu, Q., Enhancing solar hydrogen production via modified photochemical treatment of Pt/CdS photocatalyst. Catal. Today 199, 42-47.

    Google Scholar 

  74. Bao, N. Z.; Shen, L. M.; Takata, T.; Domen, K., Self-templated synthesis of nanoporous CdS nanostructures for highly efficient photocatalytic hydrogen production under visible. Chem. Mater. 2008, 20 (1), 110-117.

    Article  CAS  Google Scholar 

  75. Zong, X.; Yan, H. J.; Wu, G. P.; Ma, G. J.; Wen, F. Y.; Wang, L.; Li, C., Enhancement of photocatalytic H2 evolution on CdS by loading MOS2 as cocatalyst under visible light irradiation. J. Am. Chem. Soc. 2008, 130 (23), 7176-7177.

    Article  CAS  Google Scholar 

  76. Frame, F. A.; Osterloh, F. E., CdSe-MoS2: A Quantum size-confined photocatalyst for hydrogen evolution from water under visible light. J. Phys. Chem. C 114 (23), 10628-10633.

    Google Scholar 

  77. Bang, J. U.; Lee, S. J.; Jang, J. S.; Choi, W.; Song, H., Geometric Effect of Single or Double Metal-Tipped CdSe Nanorods on Photocatalytic H2 Generation. J. Phys. Chem. Lett. 3 (24), 3781-3785.

    Google Scholar 

  78. Holmes, M. A.; Townsend, T. K.; Osterloh, F. E., Quantum confinement controlled photocatalytic water splitting by suspended CdSe nanocrystals. Chem. Commun. 2012, 48 (3), 371-373.

    Article  CAS  Google Scholar 

  79. Grzyll, L. R.; Thomas, J. J.; Barile, R. G., Photoelectrochemical conversion of hydrogen-sulfide to hydrogen using artificial-light and solar-radiation. Inter. J. Hydrogen Energy 1989, 14 (9), 647-651.

    Article  CAS  Google Scholar 

  80. Ma, G. J.; Yan, H. J.; Shi, J. Y.; Zong, X.; Lei, Z. B.; Li, C., Direct splitting of H2S into H2 and S on CdS-based photocatalyst under visible light irradiation. J. Catal. 2008, 260 (1), 134-140.

    Article  CAS  Google Scholar 

  81. Jang, J. S.; Kim, H. G.; Borse, P. H.; Lee, J. S., Simultaneous hydrogen production and decomposition of H2S dissolved in alkaline water over CdS-TiO2 composite photocatalysts under visible light irradiation. Inter. J. Hydrogen Energy 2007, 32 (18), 4786-4791.

    Article  CAS  Google Scholar 

  82. Chen, X. B.; Shen, S. H.; Guo, L. J.; Mao, S. S., Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 2010, 110 (11), 6503-6570.

    Article  CAS  Google Scholar 

  83. Kawai, T.; Sakata, T., Photocatalytic hydrogen-production from liquid methanol and water. J. Chem. Soc.-Chem. Commun. 1980, (15), 694-695.

    Article  Google Scholar 

  84. Lin, W. C.; Yang, W. D.; Huang, I. L.; Wu, T. S.; Chung, Z. J., Hydrogen production from methanol/water photocatalytic decomposition using Pt/TiO2-xNx catalyst. Energy & Fuels 2009, 23, 2192-2196.

    Article  CAS  Google Scholar 

  85. Chen, J.; Ollis, D. F.; Rulkens, W. H.; Bruning, H., Photocatalyzed oxidation of alcohols and organochlorides in the presence of native TiO2 and metallized TiO2 suspensions. Part (I): Photocatalytic activity and pH influence. Water Research 1999, 33 (3), 661-668.

    Article  CAS  Google Scholar 

  86. Chen, J.; Ollis, D. F.; Rulkens, W. H.; Bruning, H., Photocatalyzed oxidation of alcohols and organochlorides in the presence of native TiO2 and metallized TiO2 suspensions. Part (II): Photocatalytic mechanisms. Water Res. 1999, 33 (3), 669-676.

    Article  CAS  Google Scholar 

  87. Wang, C. Y.; Rabani, J.; Bahnemann, D. W.; Dohrmann, J. K., Photonic efficiency and quantum yield of formaldehyde formation from methanol in the presence of various TiO2 photocatalysts. J. Photochem. Photobiol. A-Chem. 2002, 148 (1-3), 169-176.

    Article  CAS  Google Scholar 

  88. Wang, C. Y.; Pagel, R.; Bahnemann, D. W.; Dohrmann, J. K., Quantum yield of formaldehyde formation in the presence of colloidal TiO2-based photocatalysts: Effect of intermittent illumination, platinization, and deoxygenation. J. Phys. Chem. B 2004, 108 (37), 14082-14092.

    Article  CAS  Google Scholar 

  89. Wang, C. Y.; Groenzin, H.; Shultz, M. J., Direct observation of competitive adsorption between methanol and water on TiO2: An in situ sum-frequency generation study. J. Am. Chem. Soc. 2004, 126 (26), 8094-8095.

    Article  CAS  Google Scholar 

  90. Sun, L. Z.; Bolton, J. R., Determination of the quantum yield for the photochemical generation of hydroxyl radicals in TiO2 suspensions. J. Phys. Chem. 1996, 100 (10), 4127-4134.

    Article  CAS  Google Scholar 

  91. Hykaway, N.; Sears, W. M.; Morisaki, H.; Morrison, S. R., Current-doubling reactions on titanium-dioxide photoanodes. J. Phys. Chem. 1986, 90 (25), 6663-6667.

    Article  CAS  Google Scholar 

  92. Nogami, G.; Kennedy, J. H., Investigation of current doubling mechanism of organic-compounds by the rotating-ring disk electrode technique. J. Electrochem. Soc. 1989, 136 (9), 2583-2588.

    Article  CAS  Google Scholar 

  93. Villarreal, T. L.; Gomez, R.; Neumann-Spallart, M.; Alonso-Vante, N.; Salvador, P., Semiconductor photooxidation of pollutants dissolved in water: A kinetic model for distinguishing between direct and indirect interfacial hole transfer. I. Photoelectrochemical experiments with polycrystalline anatase electrodes under current doubling and absence of recombination. J. Phys. Chem. B 2004, 108 (39), 15172-15181.

    Article  CAS  Google Scholar 

  94. Asmus, K. D.; Mockel, H.; Henglein, A., Pulse radiolytic study of Site of OH radical attack on aliphatic alcohols in aqueous-solution. J. Phys. Chem. 1973, 77 (10), 1218-1221.

    Google Scholar 

  95. Tamaki, Y.; Furube, A.; Murai, M.; Hara, K.; Katoh, R.; Tachiya, M., Direct observation of reactive trapped holes in TiO2 undergoing photocatalytic oxidation of adsorbed alcohols: Evaluation of the reaction rates and yields. J. Am. Chem. Soc. 2006, 128 (2), 416-417.

    Article  CAS  Google Scholar 

  96. Weber, M. F.; Dignam, M. J., Efficiency of splitting water with semiconducting photoelectrodes. J. Electrochem. Soc. 1984, 131 (6), 1258-1265.

    Article  CAS  Google Scholar 

  97. Bahnemann, D.; Henglein, A.; Lilie, J.; Spanhel, L., Flash-photolysis observation of the absorption-spectra of trapped positive holes and electrons in colloidal TiO2. J. Phys. Chem. 1984, 88 (4), 709-711.

    Article  CAS  Google Scholar 

  98. Imanishi, A.; Tsuji, E.; Nakato, Y., Dependence of the work function of TiO2 (Rutile) on crystal faces, studied by a scanning auger microprobe. J. Phys. Chem. C 2007, 111 (5), 2128-2132.

    Article  CAS  Google Scholar 

  99. Eastman, D. E., Photoelectric work functions of transition, rare-earth, and noble metals. Phys. Rev. B 1970, 2 (1), 1-&.

    Google Scholar 

  100. Anpo, M.; Takeuchi, M., The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation. J. Catal. 2003, 216 (1-2), 505-516.

    Article  CAS  Google Scholar 

  101. Furube, A.; Asahi, T.; Masuhara, H.; Yamashita, H.; Anpo, M., Direct observation of a picosecond charge separation process in photoexcited platinum-loaded TiO2 particles by femtosecond diffuse reflectance spectroscopy. Chem. Phys. Lett.. 2001, 336 (5-6), 424-430.

    Article  CAS  Google Scholar 

  102. Bahnemann, D.; Henglein, A.; Spanhel, L., Detection of the intermediates of colloidal TiO2-catalyzed photoreactions. Faraday Discussions 1984, 78, 151-163.

    Article  CAS  Google Scholar 

  103. Erdey-Gruz, T.; Volmer, M., Zur theorie der wasserstoffüberspannung. Z. Phys. Chem. 1930, 150, 203-213.

    Google Scholar 

  104. Heyrovsky, J., Eine Theorie der Überspannung. Rec. Trav. Chim. Pays-Bas 1925, 44, 499-513.

    Google Scholar 

  105. Tafel, J., Über die Polarisation bei kathodischer Wasserstoffentwicklung. Z. Phys. Chem. 1905, 50, 641-712.

    Google Scholar 

  106. Kasarevic-Popovic, Z.; Behar, D.; Rabani, J., Role of excess electrons in TiO2 nanoparticles coated with Pt in reduction reactions studied in radiolysis of aqueous solutions. J. Phys. Chem. B 2004, 108 (52), 20291-20295.

    Article  CAS  Google Scholar 

  107. Mizukoshi, Y.; Makise, Y.; Shuto, T.; Hu, J. W.; Tominaga, A.; Shironita, S.; Tanabe, S., Immobilization of noble metal nanoparticles on the surface of TiO2 by the sonochemical method: Photocatalytic production of hydrogen from an aqueous solution of ethanol. Ultrason. Sonochem. 2007, 14 (3), 387-392.

    Article  CAS  Google Scholar 

  108. Bamwenda, G. R.; Tsubota, S.; Nakamura, T.; Haruta, M., Photoassisted hydrogen-production from a water-ethanol solution—a Comparison of activities of Au-TiO2 and Pt-TiO2. J. Photochem. Photobiol. A-Chem. 1995, 89 (2), 177-189.

    Google Scholar 

  109. Jang, J. S.; Ji, S. M.; Bae, S. W.; Son, H. C.; Lee, J. S., Optimization of CdS/TiO2 nano-bulk composite photocatalysts for hydrogen production from Na2S/Na2SO3 aqueous electrolyte solution under visible light (λ ≥ 420 nm). J. Photochem. Photobiol. A-Chem. 2007, 188 (1), 112-119.

    Article  CAS  Google Scholar 

  110. Behar, D.; Rabani, J., Kinetics of hydrogen production upon reduction of aqueous TiO2 nanoparticles catalyzed by Pd0, Pt0, or Au0 coatings and an unusual hydrogen abstraction; Steady state and pulse radiolysis study. J. Phys. Chem. B 2006, 110 (17), 8750-8755.

    Article  CAS  Google Scholar 

  111. Fang, J.; Cao, S. W.; Wang, Z.; Shahjamali, M. M.; Loo, S. C. J.; Barber, J.; Xue, C., Mesoporous plasmonic Au-TiO2 nanocomposites for efficient visible-light-driven photocatalytic water reduction. Inter. J. Hydrogen Energy 37 (23), 17853-17861.

    Google Scholar 

  112. Ingram, D. B.; Linic, S., Water splitting on composite plasmonic-metal/semiconductor photoelectrodes: Evidence for selective plasmon-induced formation of charge carriers near the semiconductor surface. J. Am. Chem. Soc. 133 (14), 5202-5205.

    Google Scholar 

  113. Saadi, S.; Bouguelia, A.; Derbal, A.; Trari, M., Hydrogen photoproduction over new catalyst CuLaO2. J. Photochem. Photobiol. A-Chem. 2007, 187 (1), 97-104.

    Article  CAS  Google Scholar 

  114. Peng, T. Y.; Li, K.; Zeng, P.; Zhang, Q. G.; Zhang, X. G., Enhanced photocatalytic hydrogen production over graphene oxide-cadmium sulfide nanocomposite under visible light irradiation. J. Phys. Chem. C 116 (43), 22720-22726.

    Google Scholar 

  115. Boudjemaa, A.; Bouarab, R.; Saadi, S.; Bouguelia, A.; Trari, M., Photoelectrochemical H2-generation over Spinel FeCr2O4 in X2 solutions (X2− = S2− and SO3 2−). Appl. Energy 2009, 86 (7-8), 1080-1086.

    Google Scholar 

  116. Zhang, J.; Yu, J. G.; Jaroniec, M.; Gong, J. R., Noble metal-free reduced graphene oxide-ZnxCd1-xS nanocomposite with enhanced solar photocatalytic H2 production performance. Nano Lett. 12 (9), 4584-4589.

    Google Scholar 

  117. Tsuji, I.; Kato, H.; Kobayashi, H.; Kudo, A., Photocatalytic H2 evolution reaction from aqueous solutions over band structure-controlled (AgIn)xZn2(1-x)S2 solid solution photocatalysts with visible-light response and their surface nanostructures. J. Am. Chem. Soc. 2004, 126 (41), 13406-13413.

    Article  CAS  Google Scholar 

  118. Chen, S. Y.; Wang, L. W., Thermodynamic oxidation and reduction potentials of photocatalytic semiconductors in aqueous solution. Chem. Mater. 2012, 24 (18), 3659-3666.

    Article  CAS  Google Scholar 

  119. Minoura, H.; Tsuiki, M., Anodic reactions of several reducing agents on illuminated cadmium-sulfide electrode. Electrochim. Acta 1978, 23 (12), 1377-1382.

    Article  CAS  Google Scholar 

  120. Wardman, P., Reduction potentials of one-electron couples involving free-radicals in aqueous-solution. J. Phys. Chem. Ref. Data 1989, 18 (4), 1637-1755.

    Article  CAS  Google Scholar 

  121. Watanabe, T.; Fujishim.A; Honda, K. I., Potential variation at semiconductor-electrolyte interface through a change in ph of solution. Chem. Lett. 1974, (8), 897-900.

    Article  Google Scholar 

  122. Inoue, T.; Watanabe, T.; Fujishima, A.; Honda, K., investigation of CdS photoanode reaction in the electrolyte solution containing sulfide ion. Bull. Chem. Soc. Jpn 1979, 52 (5), 1243-1250.

    Google Scholar 

  123. Yan, H. J.; Yang, J. H.; Ma, G. J.; Wu, G. P.; Zong, X.; Lei, Z. B.; Shi, J. Y.; Li, C., Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt-PdS/CdS photocatalyst. J. Catal. 2009, 266 (2), 165-168.

    Article  CAS  Google Scholar 

  124. Kambe, S.; Fujii, M.; Kawai, T.; Kawai, S.; Nakahara, F., Photocatalytic hydrogen-production with Cd(S, Se) solid-solution particles—determining factors for the highly efficient photocatalyst. Chem. Phys. Lett. 1984, 109 (1), 105-109.

    Google Scholar 

  125. Frame, F. A.; Carroll, E. C.; Larsen, D. S.; Sarahan, M.; Browning, N. D.; Osterloh, F. E., First demonstration of CdSe as a photocatalyst for hydrogen evolution from water under UV and visible light. Chem. Commun. 2008, (19), 2206-2208.

    Article  CAS  Google Scholar 

  126. Harris, C.; Kamat, P. V., Photocatalytic events of CdSe quantum dots in confined media. electrodic behavior of coupled platinum nanoparticles. Acs Nano 2010, 4 (12), 7321-7330.

    Article  CAS  Google Scholar 

  127. Zhou, Z. H.; Shi, J. W.; Wu, P.; Li, M. T.; Guo, L. J., First-principles study on absolute band edge positions for II-VI semiconductors at (110) surface. Chem. Phys. Lett. 513 (1-3), 72-76.

    Google Scholar 

  128. Gerischer, H., The impact of semiconductors on the concepts of electrochemistry. Electrochim. Acta 1990, 35 (11-12), 1677-1699.

    Article  CAS  Google Scholar 

  129. Alonso-Tellez, A.; Robert, D.; Keller, N.; Keller, V., A parametric study of the UV-A photocatalytic oxidation of H2S over TiO2. Appl. Catal. B-Environ. 2012, 115, 209-218.

    Google Scholar 

  130. Portela, R.; Suarez, S.; Rasmussen, S. B.; Arconada, N.; Castro, Y.; Duran, A.; Avila, P.; Coronado, J. M.; Sanchez, B., Photocatalytic-based strategies for H2S elimination. Catal. Today 2010, 151 (1-2), 64-70.

    Article  CAS  Google Scholar 

  131. Canela, M. C.; Alberici, R. M.; Jardim, W. F., GaS-phase destruction of H2S using TiO2/UV-VIS. J. Photochem. Photobiol. A-Chem. 1998, 112 (1), 73-80.

    Article  CAS  Google Scholar 

  132. Tambwekar, S. V.; Subrahmanyam, M., Photocatalytic generation of hydrogen from hydrogen sulfide: An energy bargain. Inter. J. Hydrogen Energy 1997, 22 (10-11), 959-965.

    Article  CAS  Google Scholar 

  133. Boragarello E, K. K., Gratzel M, Visible light induced generation of hydrogen from hydrogen sulfide in cadmium sulfide dispersions with hole transfer catalysis by ruthenium(IV) oxide. Helv Chim Acta 1982, 65, 243-248.

    Article  Google Scholar 

  134. Szynkarczuk, J.; Komorowski, P. G.; Donini, J. C., Redox reactions of hydrosulfide ions on the platinum-electrode. 1. the presence of intermediate polysulfide ions and sulfur layers. Electrochim. Acta 1994, 39 (15), 2285-2289.

    Article  CAS  Google Scholar 

  135. Bard, A. J.; Parsons, R.; Jordan, J., Standard potentials in aqueous solution. New York and Basel, 1985.

    Google Scholar 

  136. Hara, K.; Sayama, K.; Arakawa, H., Photocatalytic hydrogen and oxygen formation over SiO2-supported RuS2 in the presence of sacrificial donor and acceptor. Appl. Catal. A-Gen. 1999, 189 (1), 127-137.

    Article  CAS  Google Scholar 

  137. Tang, J. W.; Ye, J. H., Correlation of crystal structures and electronic structures and photocatalytic properties of the W-containing oxides. J. Mater. Chem. 2005, 15 (39), 4246-4251.

    Article  CAS  Google Scholar 

  138. Ohmori, T.; Takahashi, H.; Mametsuka, H.; Suzuki, E., Photocatalytic oxygen evolution on alpha-Fe2O3 films using Fe3+ ion as a sacrificial oxidizing agent. Phys. Chem. Chem. Phys. 2000, 2 (15), 3519-3522.

    Article  CAS  Google Scholar 

  139. Kim, W.; Tachikawa, T.; Majima, T.; Choi, W., Photocatalysis of dye-sensitized TiO2 nanoparticles with thin overcoat of Al2O3: Enhanced activity for H2 production and Dechlorination of CCl4. J. Phys. Chem. C 2009, 113 (24), 10603-10609.

    Article  CAS  Google Scholar 

  140. Minero, C.; Piccinini, P.; Calza, P.; Pelizzetti, E., Photocatalytic reduction/oxidation processes occurring at the carbon and nitrogen of tetranitromethane. New J. Chem. 1996, 20 (11), 1159-1164.

    CAS  Google Scholar 

  141. Nadtochenko, V.; Denisov, N.; Gorenberg, A.; Kozlov, Y.; Chubukov, P.; Rengifo, J. A.; Pulgarin, C.; Kiwi, J., Correlations for photocatalytic activity and spectral features of the absorption band edge of TiO2 modified by thiourea. Appl. Catal. B-Environ. 2009, 91 (1-2), 460-469.

    Article  CAS  Google Scholar 

  142. Ferry, J. L.; Glaze, W. H., Photocatalytic reduction of nitroorganics over illuminated titanium dioxide: Electron transfer between excited-state TiO2 and nitroaromatics. J. Phys. Chem. B 1998, 102 (12), 2239-2244.

    Article  CAS  Google Scholar 

  143. Kandiel, T. A.; Dillert, R.; Bahnemann, D. W., Enhanced photocatalytic production of molecular hydrogen on TiO2 modified with Pt-polypyrrole nanocomposites. Photochem. Photobiol. Sci. 2009, 8 (5), 683-690.

    Article  CAS  Google Scholar 

  144. Deki, S.; Nishikawa, H.; Mizuhata, M., Fabrication of Pt nanoparticles-polypyrrole composite for electrocatalyst. Electrochem. 2004, 72 (6), 415-417.

    CAS  Google Scholar 

  145. Frank, A. J.; Honda, K., Polymer-modified electrodes, catalysis and water-splitting reactions. J. Photochem. 1985, 29 (1-2), 195-204.

    Article  CAS  Google Scholar 

  146. Cooper, G.; Noufi, R.; Frank, A. J.; Nozik, A. J., Oxygen evolution on tantalum polypyrrole platinum anodes. Nature 1982, 295 (5850), 578-580.

    Article  CAS  Google Scholar 

  147. Kandiel, T. A.; Dillert, R.; Robben, L.; Bahnemann, D. W., Photonic efficiency and mechanism of photocatalytic molecular hydrogen production over platinized titanium dioxide from aqueous methanol solutions. Catal. Today 2011, 161 (1), 196-201.

    Article  CAS  Google Scholar 

  148. Kandiel, T. A.; Ismail, A. A.; Bahnemann, D. W., Mesoporous TiO2 nanostructures: a route to minimize Pt loading on titania photocatalysts for hydrogen production. Phys. Chem. Chem. Phys. 2011, 13 (45), 20155-20161.

    Article  CAS  Google Scholar 

  149. Karakitsou, K. E.; Verykios, X. E., Effects of altervalent cation doping of TiO2 on its performance as a photocatalyst for water cleavage. J. Phys. Chem. 1993, 97 (6), 1184-1189.

    Google Scholar 

  150. Junwang Tang, H. Q., and Jinhua Ye, Photocatalytic Properties and Photoinduced Hydrophilicity of Surface-Fluorinated TiO2. Chem. Mater. 2007, 19, 116-122 2007.

    Google Scholar 

  151. Jitputti, J.; Pavasupree, S.; Suzuki, Y.; Yoshikawa, S., Synthesis and photocatalytic activity for water-splitting reaction of nanocrystalline mesoporous titania prepared by hydrothermal method. J. Sol. State Chem. 2007, 180 (5), 1743-1749.

    Article  CAS  Google Scholar 

  152. Ekambaram, S., Photoproduction of clean H2 or O2 from water using oxide semiconductors in presence of sacrificial reagent. J. All. Comp. 2008, 448 (1-2), 238-245.

    Article  CAS  Google Scholar 

  153. Jitputti, J.; Suzuki, Y.; Yoshikawa, S., Synthesis of TiO2 nanowires and their photocatalytic activity for hydrogen evolution. Catal. Commun. 2008, 9 (6), 1265-1271.

    Article  CAS  Google Scholar 

  154. Rosseler, O.; Shankar, M. V.; Du, M. K. L.; Schmidlin, L.; Keller, N.; Keller, V., Solar light photocatalytic hydrogen production from water over Pt and Au/TiO2(anatase/rutile) photocatalysts: Influence of noble metal and porogen promotion. J. Catal. 2010, 269 (1), 179-190.

    Article  CAS  Google Scholar 

  155. Highfield, J. G.; Chen, M. H.; Nguyen, P. T.; Chen, Z., Mechanistic investigations of photo-driven processes over TiO2 by in-situ DRIFTS-MS: Part 1. Platinization and methanol reforming. Energy Environ. Sci. 2009, 2 (9), 991-1002.

    Article  CAS  Google Scholar 

  156. Kandiel, T. A.; Ivanova, I.; Bahnemann, D. W., Long-term investigation of the photocatalytic hydrogen production on platinized TiO2: an isotopic study. Energy Environ. Sci. 2014, 7, 1420-1425.

    Article  CAS  Google Scholar 

  157. Yasui, S.; Itoh, K.; Ohno, A.; Tokitoh, N., Kinetic deuterium isotope effect in single-electron transfer occurring from tributylphosphine to viologens. Chem. Lett. 2001, (10), 1056-1057.

    Article  Google Scholar 

Download references

Acknowledgments

Financial support from the BMBF (Bundesministerium für Bildung und Forschung) within the project HyCats (Grant No. 01RC1012C) and from the Gottfried Wilhelm Leibniz University of Hanover within the WiF II project No. 60420974 is gratefully acknowledged. The authors thank Dr. R. Dillert for the stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarek A. Kandiel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schneider, J., Kandiel, T.A., Bahnemann, D.W. (2014). Solar Photocatalytic Hydrogen Production: Current Status and Future Challenges. In: Viswanathan, B., Subramanian, V., Lee, J. (eds) Materials and Processes for Solar Fuel Production. Nanostructure Science and Technology, vol 174. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1628-3_3

Download citation

Publish with us

Policies and ethics