Skip to main content

Passivating the Surface of TiO2 Photoelectrodes with Nb2O5 and Al2O3 for High-Efficiency Dye-Sensitized Solar Cells

  • Chapter
  • First Online:
  • 1409 Accesses

Part of the book series: Nanostructure Science and Technology ((NST,volume 174))

Abstract

In this contribution, we reported a method to passivate the surface of the TiO2 photoelectrode with Nb2O5 and Al2O3 layer, and its application for the dye-sensitized solar cells. The surface of TiO2 photoelectrode was passivated by depositing Nb2O5 and Al2O3 layer in turn using surface sol–gel technology. After the TiO2 photoelectrode was passivated by Nb2O5 layer, the efficiency of the TiO2/Nb2O5 cell increased from 3.6 to 4.0 %. The Al2O3 layer on the TiO2/Nb2O5 electrode further suppressed the generation of the dark current, resulting in 25 % improvement in device performance comparing with that of the TiO2/Nb2O5 cell. The electrochemical impedance spectroscopy was used to investigate the influence of the Nb2O5 and Al2O3 layer on the Helmholtz layer capacitance of the TiO2 electrode, and provided the evidences for the formation of the energy barriers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. B. O’Regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye- sensitized colloidal TiO2 films, Nature, 353 (1991) 737.

    Article  Google Scholar 

  2. M. Grätzel, Photoelectrochemical cells, Nature, 414 (2001) 338.

    Article  Google Scholar 

  3. J. Burschka, N. Pellet, S. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, M. Grätzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells, Nature, 499 (2013) 316.

    Article  CAS  Google Scholar 

  4. A. Yella, H. Lee, H. Tsao, C. Yi, A. K. Chandiran, M. Nazeeruddin, E. Diau, C. Yeh, S. M. Zakeeruddin, M. Grätzel, Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency, Science, 334 (2011) 629.

    Article  CAS  Google Scholar 

  5. M. K. Nazeeruddin, A. Kay, I. Rodicicio, R. Humphry-Baker, E. Muller, P. Liska, N. Vlachopoulos, M. Grätzel, Conversion of light to electricity by cis-X2 bis (2, 2′-bipyridyl-4, 4′-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X = Cl, Br, I, CN, and SCN) on nanocrystalline titanium dioxide electrodes, J. Am. Chem. Soc., 115 (1993) 6382.

    Article  CAS  Google Scholar 

  6. A. Hagfeldt, M. Grätzel, Light-induced redox reactions in nanocrystalline systems, Chem. Rev., 95 (1995) 49.

    Article  CAS  Google Scholar 

  7. Z. Y. Liu, K. Pan, Q. L. Zhang, M. Liu, R. K Jia, Q. Lü, D. J. Wang, Y. B. Bai, T. J. Li, The performances of the mercurochrome-sensitized composite semiconductor photoelectrochemical cells based on TiO2/SnO2 and ZnO/SnO2 composites, Thin Solid Film, 468 (2004) 291.

    Google Scholar 

  8. Z. Y. Liu, K. Pan, M. J. Wang, M. Liu, Q. Lü, Y. B. Bai, T. J. Li, Influence of the mixed ratio on the photocurrent of the TiO2/SnO2 composite photoelectrodes sensitized by mercurochrome, J. Photochem. Photobiol. A: Chem., 157 (2003) 39.

    Article  CAS  Google Scholar 

  9. Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, L. Han, Dye-sensitized solar cells with conversion efficiency of 11.1 %, Jpn. J. Appl. Phys., Part 2, 45 (2006) L638.

    Google Scholar 

  10. F. Gao, Y. Wang, D. Shi, J. Zhang, M. Wang, X. Jing, R. Humphry-Baker, P. Wang, S. M. Zakeeruddin, M. Grätzel, Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells, J. Am. Chem. Soc., 130 (2008) 10720.

    Article  CAS  Google Scholar 

  11. M. Grätzel, Dye-sensitized solar cells, J. Photochem. Photobiol. C: Photochem. Rev., 4 (2003) 145.

    Article  Google Scholar 

  12. Y. Diamant, S. G. Chen, O. Melamed, A. Zaban, Core-shell nanoporous electrode for dye sensitized solar cells: the effect of the SrTiO3 shell on the electronic properties of the TiO2 core, J. Phys. Chem. B, 107 (2003)1977.

    Article  CAS  Google Scholar 

  13. S. Chappel, S.G. Chen, A. Zaban, TiO2-coated nanoporous SnO2 electrodes for dye-sensitized solar cells, Langmuir, 18 (2002) 3336.

    Article  CAS  Google Scholar 

  14. D. Cahen, G. Hodes, M. Grätzel, J. F. Guillemoles, I. Riess, Nature of photovoltaic action in dye-sensitized solar cells, J. Phys. Chem. B, 104 (2000) 2053.

    Article  CAS  Google Scholar 

  15. L. Kavan, M. Grätzel, S. E. Gilbert, C. Klemenz, H. J. Scheel, Electrochemical and photoelectrochemical investigation of single-crystal anatase, J. Am. Chem. Soc. 118 (1996) 6716.

    Article  CAS  Google Scholar 

  16. A. Zaban, S. G. Chen, S. Chappel, B. A. Gregg, Bilayer nanoporous electrodes for dye sensitized solar cells, Chem. Commun., 2000, 2231.

    Google Scholar 

  17. S. G. Chen, S. Chappel, Y. Diamant, A. Zaban, Preparation of Nb2O5 coated TiO2 nanoporous electrodes and their application in dye-sensitized solar cells, Chem. Mater., 13 (2001) 4629.

    Article  CAS  Google Scholar 

  18. E. Palomare, J. N. Clifford, S.A. Haque, T. Lutz, J. R. Durrant, Slow charge recombination in dye-sensitised solar cells (DSSC) using Al2O3 coated nanoporous TiO2 films, Chem. Commun., 2002, 1464.

    Google Scholar 

  19. E. Palomare, J. N. Clifford, S.A. Haque, T. Lutz, J. R. Durrant, Control of charge recombination dynamics in dye sensitized solar cells by the use of conformally deposited metal oxide blocking layers, J. Am. Chem. Soc., 125 (2003) 475.

    Google Scholar 

  20. Z. Liu, K. Pan, M. Liu, M. Wang, Q. Lü, J. Li, Y. Bai, T. Li, Electrochim. Acta, 50 (2005) 2583.

    Article  CAS  Google Scholar 

  21. N. Papageorgiou, W. F. Maier, M. Grätzel, An iodine/triiodide reduction electrocatalyst for aqueous and organic media, J. Electrochem. Soc., 144 (1997) 876.

    Article  CAS  Google Scholar 

  22. X. T. Zhang, I. Sutanto, T. Taguchi, K. Tokuhiro, Q. B. Meng, T. N. Rao, A. Fujishima, H. Watanabe, T. Nakamori, M. Uragami, Al2O3-coated nanoporous TiO2 electrode for solid-state dye-sensitized solar cell, Sol. Energy Mater. Sol. Cells, 80 (2003) 315.

    Article  CAS  Google Scholar 

  23. The reference value of the binding energy: Ti4+ (TiO2) 2p1/2 464.2 eV, 2p3/2 458.5 eV. Nb5+ (Nb2O5) 3d5/2 207.3 eV. Al3+(Al2O3) 2p 74.7 eV. Handbook of the X-ray Photoelectron Spectroscopy, Perkin Elmer Corporation, Published by Physical Electronics.

    Google Scholar 

  24. M. L. Rosenblut, N. S. Lewis, “ Ideal” behavior of the open circuit voltage of semiconductor/liquid junctions, J. Phys. Chem., 93 (1989) 3735.

    Google Scholar 

  25. A. Kumer, P. G. Santangelo, N. S. Lewis, Electrolysis of water at strontium titanate (SrTiO3) photoelectrodes: distinguishing between the statistical and stochastic formalisms for electron-transfer processes in fuel-forming photoelectrochemical systems, J. Phys. Chem., 96 (1992) 835.

    Article  Google Scholar 

  26. A. Zaban, A. Meier, B. A. Gregg, Electric potential distribution and short-range screening in nanoporous TiO2 electrodes, J. Phys. Chem. B., 101(1997) 7985.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Basic Research Program of China (2011CB935704, 2014CB931803), National Natural Science Foundation of China (21003008), Beijing Natural Science Foundation (2133066), “Young Talents Plan” for the Universities in Beijing City, Fundamental Research Funds for the Central Universities (YWF-14-HHXY-004), and Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoyue Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Liu, Z., Li, L. (2014). Passivating the Surface of TiO2 Photoelectrodes with Nb2O5 and Al2O3 for High-Efficiency Dye-Sensitized Solar Cells. In: Viswanathan, B., Subramanian, V., Lee, J. (eds) Materials and Processes for Solar Fuel Production. Nanostructure Science and Technology, vol 174. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1628-3_10

Download citation

Publish with us

Policies and ethics