Linear Elasticity

  • Antonio Romano
  • Addolorata Marasco
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)


We start with the formulation of the different boundary value problems of linear elasticity: mixed problem, stress problem, and displacement problem. Theorems of existence and unicity of solutions of these problems are proved in suitable functional spaces. Then, the solution of Boussinesq–Papkovich–Neuber of linear elasticity is given. The Saint–Venant conjecture is discussed together with all the fundamental solutions of linear elasticity it supplies. The remaining part of the chapter contains a wide analysis of waves in linear elasticity in which important phenomena as reflection waves, refraction of waves, and Rayleigh surface waves are analyzed.


Linear Elasticity Saint Venant Rayleigh Surface Waves Wave Reflection Stress Boundary Value Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [4]
    A. Clebsch, Thèorie de l’èlasticitè des Corpes Solides (Dunod, Paris, 1883)Google Scholar
  2. [12]
    G. Fichera, Problemi Analitici Nuovi nella Fisica Matematica Classica (Quaderni del Consiglio Nazionale delle Ricerche, Gruppo Nazionale della Fisica Matematica (Scuola Tipo-Lito Istituto Anselmi, Napoli, 1985)Google Scholar
  3. [15]
    M.E. Gurtin, The Linear Theory of Elasticity, Handbuch der Physik, vol. VIa/2 (Springer, Berlin/New York, 1972)Google Scholar
  4. [32]
    A.E.H. Love, Mathematical Theory of Elasticity (Dover, New York, 1944)Google Scholar
  5. [35]
    R. Marcolongo, Teoria Matematica dell’Equilibrio dei Corpi Elastici (Manuali Hoepli, Serie Scientifica, Milano, 1904)Google Scholar
  6. [65]
    R. Toupin, Saint-Venant’s Principle. Arch. Rat. Mech. Anal. 18, (1965)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Antonio Romano
    • 1
  • Addolorata Marasco
    • 1
  1. 1.Department of Mathematics and Applications “R. Caccioppoli”University of Naples Federico IINaplesItaly

Personalised recommendations