Skip to main content

Miniaturized Screening Tools for Polymer and Process Evaluation

  • Chapter
  • First Online:
Amorphous Solid Dispersions

Part of the book series: Advances in Delivery Science and Technology ((ADST))

Abstract

There has been an increasing interest in studying amorphous solid dispersion (ASD) approaches in response to the increasing number of poorly soluble compounds from pharmaceutical discovery in recent years. Although ASD has demonstrated drastic bioavailability enhancement, concerns over the physical instability remain as valid. By engineering amorphous solid dispersion with an appropriate polymer, the physical stability of ASD can be improved significantly. The identification of appropriate polymer and drug loading for ASD development, however, has been based on “trial and error” and is time consuming. High-throughput miniaturized screening systems offer attractive opportunities for the development of ASD by streamlining the polymer and drug loading selection processes with low demand on material, time, and resources. The main focus of this chapter is to describe and review the current miniaturized experimental ASD screening methods, including solvent casting, solvent shift, coprecipitation, melt fusion, freeze drying, and spin coating. The criticality of understanding basic physicochemical properties of active pharmaceutical ingredient (API) in developing a successful ASD is discussed. The drug–polymer interaction in the solid state and in solution upon dissolution is also briefly tackled. Finally, a rational approach for polymer and drug loading selection based on the balance of biopharmaceutical performance and ASD stability is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alonzo DE, Zhang GG, Zhou D, Gao Y, Taylor LS (2010) Understanding the behavior of amorphous pharmaceutical systems during dissolution. Pharm Res 27:608–618.

    Article  CAS  PubMed  Google Scholar 

  • Baird JA, Van Eerdenbrugh B, Taylor LS (2010) A classification system to assess the crystallization tendency of organic molecules from undercooled melts. J Pharm Sci 99:3787–3806

    Article  CAS  PubMed  Google Scholar 

  • Barillaro V, Pescarmona PP, Van Speybroeck M, Thi TD, Van Humbeeck J, Vermant J et al (2008) High-throughput study of phenytoin solid dispersions: formulation using an automated solvent casting method, dissolution testing, and scaling-up. J Comb Chem 10:637–643

    Article  CAS  PubMed  Google Scholar 

  • Betageri G, Makarla K (1995) Enhancement of dissolution of glyburide by solid dispersion and lyophilization techniques. Int J Pharm 126:155–160

    Article  CAS  Google Scholar 

  • Bevernage J, Forier T, Brouwers J, Tack J, Annaert P, Augustijns P (2011) Excipient-mediated supersaturation stabilization in human intestinal fluids. Mol Pharm 8:564–570

    Article  CAS  PubMed  Google Scholar 

  • Bevernage J, Brouwers J, Brewster ME, Augustijns P (2013) Evaluation of gastrointestinal drug supersaturation and precipitation: strategies and issues. Int J Pharm 453:25–35

    Article  CAS  PubMed  Google Scholar 

  • Bhugra C, Pikal MJ (2008) Role of thermodynamic, molecular, and kinetic factors in crystallization from the amorphous state. J Pharm Sci 97:1329–1349

    Article  CAS  PubMed  Google Scholar 

  • Brewster ME, Vandecruys R, Peeters J, Neeskens P, Verreck G, Loftsson T (2008) Comparative interaction of 2-hydroxypropyl-β-cyclodextrin and sulfobutylether-β-cyclodextrin with itraconazole: phase-solubility behavior and stabilization of supersaturated drug solutions. Eur J Pharm Sci 34:94–103

    Article  CAS  PubMed  Google Scholar 

  • Brouwers J, Brewster ME, Augustijns P (2009) Supersaturating drug delivery systems: the answer to solubility‐limited oral bioavailability? J Pharm Sci 98:2549–2572

    Article  CAS  PubMed  Google Scholar 

  • Chiang P-C, Ran Y, Chou K-J, Cui Y, Sambrone A, Chan C et al (2012) Evaluation of drug load and polymer by using a 96-well plate vacuum dry system for amorphous solid dispersion drug delivery. AAPS PharmSciTech 13:713–722

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chokshi RJ, Sandhu HK, Iyer RM, Shah NH, Malick AW, Zia H (2005) Characterization of physico mechanical properties of indomethacin and polymers to assess their suitability for hot melt extrusion processs as a means to manufacture solid dispersion/solution. J Pharm Sci 94:2463–2474

    Article  CAS  PubMed  Google Scholar 

  • Curatolo W, Nightingale JA, Herbig SM (2009) Utility of hydroxypropylmethylcellulose acetate succinate (HPMCAS) for initiation and maintenance of drug supersaturation in the GI milieu. Pharm Res 26:1419–1431

    Article  CAS  PubMed  Google Scholar 

  • Dai WG, Pollock-Dove C, Dong LC, Li S (2008) Advanced screening assays to rapidly identify solubility-enhancing formulations: high-throughput, miniaturization and automation. Adv Drug Deliv Rev 60:657–672

    Article  CAS  PubMed  Google Scholar 

  • Djuris J, Nikolakakis I, Ibric S, Djuric Z, Kachrimanis K (2013) Preparation of carbamazepine-Soluplus solid dispersions by hot-melt extrusion, and prediction of drug-polymer miscibility by thermodynamic model fitting. Eur J Pharm Biopharm 84:228–237

    Article  CAS  PubMed  Google Scholar 

  • Dong Z, Chatterji A, Sandhu H, Choi DS, Chokshi H, Shah N (2008) Evaluation of solid state properties of solid dispersions prepared by hot-melt extrusion and solvent co-precipitation. Int J Pharm 355:141–149

    Article  CAS  PubMed  Google Scholar 

  • Engers D, Teng J, Jimenez‐Novoa J, Gent P, Hossack S, Campbell C et al (2010) A solid state approach to enable early development compounds: selection and animal bioavailability studies of an itraconazole amorphous solid dispersion. J Pharm Sci 99:3901–3922

    CAS  PubMed  Google Scholar 

  • Forster A, Hempenstall J, Tucker I, Rades T (2001) The potential of small-scale fusion experiments and the Gordon-Taylor equation to predict the suitability of drug/polymer blends for melt extrusion. Drug Dev Ind Pharm 27:549–560

    Article  CAS  PubMed  Google Scholar 

  • Friesen DT, Shanker R, Crew M, Smithey DT, Curatolo WJ, Nightingale JA (2008) Hydroxypropyl methylcellulose acetate succinate-based spray-dried dispersions: an overview. Mol Pharm 5:1003–1019

    Article  CAS  PubMed  Google Scholar 

  • Ghebremeskel AN, Vemavarapu C, Lodaya M (2007) Use of surfactants as plasticizers in preparing solid dispersions of poorly soluble API: selection of polymer–surfactant combinations using solubility parameters and testing the processability. Int J Pharm 328:119–129

    Article  CAS  PubMed  Google Scholar 

  • Graeser KA, Patterson JE, Zeitler JA, Gordon KC, Rades T (2009) Correlating thermodynamic and kinetic parameters with amorphous stability. Eur J Pharm Sci 37:492–498

    Article  CAS  PubMed  Google Scholar 

  • Guzman HR, Tawa M, Zhang Z, Ratanabanangkoon P, Shaw P, Gardner CR et al (2007) Combined use of crystalline salt forms and precipitation inhibitors to improve oral absorption of celecoxib from solid oral formulations. J Pharm Sci 96:2686–2702

    Article  CAS  PubMed  Google Scholar 

  • Hancock BC, Zografi G (1997) Characteristics and significance of the amorphous state in pharmaceutical systems. J Pharm Sci 86:1–12

    Article  CAS  PubMed  Google Scholar 

  • Hancock BC, Shamblin SL, Zografi G (1995) Molecular mobility of amorphous pharmaceutical solids below their glass transition temperatures. Pharm Res 12:799–806

    Article  CAS  PubMed  Google Scholar 

  • Hu Q, Choi DS, Chokshi H, Shah N, Sandhu H (2013) Highly efficient miniaturized coprecipitation screening (MiCoS) for amorphous solid dispersion formulation development. Int J Pharm 450:53–62

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Wigent RJ, Bentzley CM, Schwartz JB (2006) Nifedipine solid dispersion in microparticles of ammonio methacrylate copolymer and ethylcellulose binary blend for controlled drug delivery: effect of drug loading on release kinetics. Int J Pharm 319:44–54

    Article  CAS  PubMed  Google Scholar 

  • Jancsó G, Cser L, Grosz T, Ostanevich YM (1994) Hydrophobic interactions and small-angle neutron scattering in aqueous solutions. Pure Appl Chem 66:515–520

    Article  Google Scholar 

  • Janssens S, Van den Mooter G (2009) Review: physical chemistry of solid dispersions. J Pharm Pharmacol 61:1571–1586

    Article  CAS  PubMed  Google Scholar 

  • Janssens S, Nagels S, Armas HNd, D’Autry W, Van Schepdael A, Van den Mooter G (2008) Formulation and characterization of ternary solid dispersions made up of Itraconazole and two excipients, TPGS 1000 and PVPVA 64, that were selected based on a supersaturation screening study. Eur J Pharm Biopharm 69:158–166

    Article  CAS  PubMed  Google Scholar 

  • Karnachi AA, De Hon RA, Khan MA (1995) Compression of indomethacin coprecipitates with polymer mixtures: effect of preparation methodology. Drug Dev Ind Pharm 21:1473–1483

    Article  CAS  Google Scholar 

  • Khougaz K, Clas SD (2000) Crystallization inhibition in solid dispersions of MK‐0591 and poly (vinylpyrrolidone) polymers. J Pharm Sci 89:1325–1334

    Article  CAS  PubMed  Google Scholar 

  • Konno H, Taylor LS (2006) Influence of different polymers on the crystallization tendency of molecularly dispersed amorphous felodipine. J Pharm Sci 95:2692–2705

    Article  CAS  PubMed  Google Scholar 

  • Konno H, Handa T, Alonzo DE, Taylor LS (2008) Effect of polymer type on the dissolution profile of amorphous solid dispersions containing felodipine. Eur J Pharm Biopharm 70:493–499

    Article  CAS  PubMed  Google Scholar 

  • Lauer ME, Grassmann O, Siam M, Tardio J, Jacob L, Page S et al (2011) Atomic force microscopy-based screening of drug-excipient miscibility and stability of solid dispersions. Pharm Res 28:572–584

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lauer ME, Siam M, Tardio J, Page S, Kindt JH, Grassmann O (2013) Rapid assessment of homogeneity and stability of amorphous solid dispersions by atomic force microscopy–from bench to batch. Pharm Res 30:2010–2022

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee T, Lee J (2003) Drug-carrier screening on a chip. Pharm Tech 27:40–49

    CAS  Google Scholar 

  • Lindfors L, Forssen S, Westergren J, Olsson U (2008) Nucleation and crystal growth in supersaturated solutions of a model drug. J Colloid Interface Sci 325:404–413

    Article  CAS  PubMed  Google Scholar 

  • Mahlin D, Bergström CA (2013) Early drug development predictions of glass-forming ability and physical stability of drugs. Eur J Pharm Sci 49:323–332

    Article  CAS  PubMed  Google Scholar 

  • Mahlin D, Ponnambalam S, Heidarian HoÌckerfelt Höckerfelt M, BergstroÌm Bergström CA (2011) Toward in silico prediction of glass-forming ability from molecular structure alone: a screening tool in early drug development. Mol Pharm 8:498–506

    Article  CAS  PubMed  Google Scholar 

  • Marsac PJ, Konno H, Taylor LS (2006a) A comparison of the physical stability of amorphous felodipine and nifedipine systems. Pharm Res 23:2306–2316

    Article  CAS  PubMed  Google Scholar 

  • Marsac PJ, Shamblin SL, Taylor LS (2006b) Theoretical and practical approaches for prediction of drug-polymer miscibility and solubility. Pharm Res 23:2417–2426.

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto T, Zografi G (1999) Physical properties of solid molecular dispersions of indomethacin with poly(vinylpyrrolidone) and poly(vinylpyrrolidone-co-vinyl-acetate) in relation to indomethacin crystallization. Pharm Res 16:1722–1728

    Article  CAS  PubMed  Google Scholar 

  • Miller DA, DiNunzio JC, Yang W, McGinity JW, Williams RO 3rd (2008) Enhanced in vivo absorption of itraconazole via stabilization of supersaturation following acidic-to-neutral pH transition. Drug Dev Ind Pharm 34:890–902

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki T, Yoshioka S, Aso Y, Kojima S (2004) Ability of polyvinylpyrrolidone and polyacrylic acid to inhibit the crystallization of amorphous acetaminophen. J Pharm Sci 93:2710–2717

    Article  CAS  PubMed  Google Scholar 

  • Moes J, Koolen S, Huitema A, Schellens J, Beijnen J, Nuijen B (2011) Pharmaceutical development and preliminary clinical testing of an oral solid dispersion formulation of docetaxel (ModraDoc001). J Pharm Sci 420:244–250

    CAS  Google Scholar 

  • Moore MD, Wildfong PL (2011) Informatics calibration of a molecular descriptors database to predict solid dispersion potential of small molecule organic solids. Int J Pharm 418:217–226

    Article  CAS  PubMed  Google Scholar 

  • Nepal PR, Han H-K, Choi H-K (2010) Enhancement of solubility and dissolution of Coenzyme Q10 using solid dispersion formulation. Int J Pharm 383:147–153

    Article  CAS  PubMed  Google Scholar 

  • Newman A, Engers D, Bates S, Ivanisevic I, Kelly RC, Zografi G (2008) Characterization of amorphous API: polymer mixtures using X‐ray powder diffraction. J Pharm Sci 97:4840–4856

    Article  CAS  PubMed  Google Scholar 

  • Overhoff KA, Engstrom JD, Chen B, Scherzer BD, Milner TE, Johnston KP et al (2007) Novel ultra-rapid freezing particle engineering process for enhancement of dissolution rates of poorly water-soluble drugs. Eur J Pharm Biopharm 65:57–67

    Article  CAS  PubMed  Google Scholar 

  • Padden BE, Miller JM, Robbins T, Zocharski PD, Prasad L, Spence JK et al (2011) Amorphous solid dispersions as enabling formulations for discovery and early development. Am Pharm Rev 14:66–73

    CAS  Google Scholar 

  • Pajula K, Taskinen M, Lehto VP, Ketolainen J, Korhonen O (2010) Predicting the formation and stability of amorphous small molecule binary mixtures from computationally determined Flory-Huggins interaction parameter and phase diagram. Mol Pharm 7:795–804

    Article  CAS  PubMed  Google Scholar 

  • Pajula K, Lehto VP, Ketolainen J, Korhonen O (2012) Computational approach for fast screening of small molecular candidates to inhibit crystallization in amorphous drugs. Mol Pharm 9:2844–2855

    Article  CAS  PubMed  Google Scholar 

  • Petruševska M, Urleb U, Peternel L (2013) Evaluation of a high-throughput screening method for the detection of the excipient-mediated precipitation inhibition of poorly soluble drugs. Assay Drug Dev Technol 11:117–129

    Article  PubMed  Google Scholar 

  • Pham TN, Watson SA, Edwards AJ, Chavda M, Clawson JS, Strohmeier M et al (2010) Analysis of amorphous solid dispersions using 2D solid-state NMR and 1H T 1 relaxation measurements. Mol Pharm 7:1667–1691

    Article  CAS  PubMed  Google Scholar 

  • Pouton CW (2006) Formulation of poorly water-soluble drugs for oral administration: physicochemical and physiological issues and the lipid formulation classification system. Eur J Pharm Sci 29:278–287

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Hornedo N, Murphy D (1999) Significance of controlling crystallization mechanisms and kinetics in pharmaceutical systems. J Pharm Sci 88:651–660

    Article  PubMed  Google Scholar 

  • Rodríguez-Hornedo N, Murphy D (2004) Surfactant-facilitated crystallization of dihydrate carbamazepine during dissolution of anhydrous polymorph. J Pharm Sci 93:449–460

    Article  PubMed  Google Scholar 

  • Rumondor AC, Taylor LS (2010) Effect of polymer hygroscopicity on the phase behavior of amorphous solid dispersions in the presence of moisture. Mol Pharm 7:477–490

    Article  CAS  PubMed  Google Scholar 

  • Rumondor AC, Ivanisevic I, Bates S, Alonzo DE, Taylor LS (2009a) Evaluation of drug-polymer miscibility in amorphous solid dispersion systems. Pharm Res 26:2523–2534

    Article  CAS  PubMed  Google Scholar 

  • Rumondor AC, Jackson MJ, Taylor LS (2009b) Effects of moisture on the growth rate of felodipine crystals in the presence and absence of polymers. Cryst Growth Des 10:747–753

    Article  Google Scholar 

  • Rumondor AC, Stanford LA, Taylor LS (2009c) Effects of polymer type and storage relative humidity on the kinetics of felodipine crystallization from amorphous solid dispersions. Pharm Res 26:2599–2606

    Article  CAS  PubMed  Google Scholar 

  • Shah N, Sandhu H, Phuapradit W, Pinal R, Iyer R, Albano A et al (2012) Development of novel microprecipitated bulk powder (MBP) technology for manufacturing stable amorphous formulations of poorly soluble drugs. Int J Pharm 438:53–60

    Article  CAS  PubMed  Google Scholar 

  • Shamblin SL, Taylor LS, Zografi G (1998) Mixing behavior of colyophilized binary systems. J Pharm Sci 87:694–701

    Article  CAS  PubMed  Google Scholar 

  • Shanbhag A, Rabel S, Casadevall G, Shivanand P, Eichenbaum G, Mansky P (2008) Method for screening of solid dispersion formulations of low-solubility compounds—miniaturization and automation of solvent casting and dissolution testing. Int J Pharm 351:209–218

    Article  CAS  PubMed  Google Scholar 

  • Taylor LS, Zografi G (1997) Spectroscopic characterization of interactions between PVP and indomethacin in amorphous molecular dispersions. Pharm Res 14:1691–1698

    Article  CAS  PubMed  Google Scholar 

  • Tian Y, Booth J, Meehan E, Jones DS, Li S, Andrews GP (2013) Construction of drug-polymer thermodynamic phase diagrams using Flory–Huggins interaction theory: identifying the relevance of temperature and drug weight fraction to phase separation within solid dispersions. Mol Pharm 10:236–248

    Article  CAS  PubMed  Google Scholar 

  • Van den Mooter G, Wuyts M, Blaton N, Busson R, Grobet P, Augustijns P et al (2001) Physical stabilisation of amorphous ketoconazole in solid dispersions with polyvinylpyrrolidone K25. Eur J Pharm Sci 12:261–269

    Article  CAS  PubMed  Google Scholar 

  • Van Eerdenbrugh B, Taylor LS (2010) Small scale screening to determine the ability of different polymers to inhibit drug crystallization upon rapid solvent evaporation. Mol Pharm 7:1328–1337

    Google Scholar 

  • Van Eerdenbrugh B, Taylor LS (2011) An ab initio polymer selection methodology to prevent crystallization in amorphous solid dispersions by application of crystal engineering principles. Cryst Eng Comm 13:6171–6178

    Article  Google Scholar 

  • Van Eerdenbrugh B, Baird JA, Taylor LS (2010) Crystallization tendency of active pharmaceutical ingredients following rapid solvent evaporation—classification and comparison with crystallization tendency from undercooled melts. J Pharm Sci 99:3826–3838

    PubMed  Google Scholar 

  • Vandecruys R, Peeters J, Verreck G, Brewster ME (2007) Use of a screening method to determine excipients which optimize the extent and stability of supersaturated drug solutions and application of this system to solid formulation design. Int J Pharm 342:168–175

    Article  CAS  PubMed  Google Scholar 

  • Warren DB, Benameur H, Porter CJ, Pouton CW (2010) Using polymeric precipitation inhibitors to improve the absorption of poorly water-soluble drugs: a mechanistic basis for utility. J Drug Target 18:704–731

    Article  CAS  PubMed  Google Scholar 

  • Warren DB, Bergstrom CA, Benameur H, Porter CJ, Pouton CW (2013) Evaluation of the structural determinants of polymeric precipitation inhibitors using solvent shift methods and principle component analysis. Mol Pharm 10:2823–2848

    Article  CAS  PubMed  Google Scholar 

  • Weuts I, Kempen D, Verreck G, Peeters J, Brewster M, Blaton N et al (2005) Salt formation in solid dispersions consisting of polyacrylic acid as a carrier and three basic model compounds resulting in very high glass transition temperatures and constant dissolution properties upon storage. Eur J Pharm Sci 25:387–393

    Article  CAS  PubMed  Google Scholar 

  • Weuts I, Van Dycke F, Voorspoels J, De Cort S, Stokbroekx S, Leemans R et al (2011) Physicochemical properties of the amorphous drug, cast films, and spray dried powders to predict formulation probability of success for solid dispersions: etravirine. J Pharm Sci 100:260–274

    Article  CAS  PubMed  Google Scholar 

  • Wyttenbach N, Achtziger C, Page S (2011) Development of a miniaturized dissolution method for solid dispersion screening (SPADS): effect of temperature and different polymers on supersaturation. Abstract of 2011 AAPS Annual Meeting and Exposition, vol 13, p S2

    Google Scholar 

  • Wyttenbach N, Janas C, Siam M, Lauer ME, Jacob L, Scheubel E et al (2013) Miniaturized screening of polymers for amorphous drug stabilization (SPADS): rapid assessment of solid dispersion systems. Eur J Pharm Biopharm 84:583–598

    Article  CAS  PubMed  Google Scholar 

  • Yamashita T, Kokubo T, Zhao C, Ohki Y (2010) Antiprecipitant screening system for basic model compounds using bio-relevant media. J Assoc Lab Autom 15:306–312

    Article  CAS  Google Scholar 

  • Yamashita T, Ozaki S, Kushida I (2011) Solvent shift method for anti-precipitant screening of poorly soluble drugs using biorelevant medium and dimethyl sulfoxide. Int J Pharm 419:170–174

    Article  CAS  PubMed  Google Scholar 

  • Yoo Su, Krill SL, Wang Z, Telang C (2009) Miscibility/stability considerations in binary solid dispersion systems composed of functional excipients towards the design of multi‐component amorphous systems. Int J Pharm 98:4711–4723

    CAS  Google Scholar 

  • Zhang M, Li H, Lang B, O’Donnell K, Zhang H, Wang Z et al (2012) Formulation and delivery of improved amorphous fenofibrate solid dispersions prepared by thin film freezing. Eur J Pharm Biopharm 82:534–544

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Inbar P, Chokshi HP, Malick AW, Choi DS (2011) Prediction of the thermal phase diagram of amorphous solid dispersions by Flory-Huggins theory. J Pharm Sci 100:3196–3207

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Michael Brandl for his comments on this manuscript and Dr. Matthias Eckhard Lauer for the AFM pictures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingyan Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Controlled Release Society

About this chapter

Cite this chapter

Hu, Q., Wyttenbach, N., Shiraki, K., Choi, D. (2014). Miniaturized Screening Tools for Polymer and Process Evaluation. In: Shah, N., Sandhu, H., Choi, D., Chokshi, H., Malick, A. (eds) Amorphous Solid Dispersions. Advances in Delivery Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1598-9_5

Download citation

Publish with us

Policies and ethics