Skip to main content

MBP Technology: Composition and Design Considerations

  • Chapter
  • First Online:
Amorphous Solid Dispersions

Abstract

An increasing number of poorly soluble drugs emerging from discovery organizations is a major challenge for drug development. Formulation approaches such as particle size reduction, use of solubilizers, and complexing agents, in addition to lipid formulations, have been conventionally used but with limited success. When such approaches fail to provide desired bioavailability, amorphous formulations can be used as an alternate approach. However, amorphous formulations face significant challenges owing to their inherent physical and chemical instability. One way to achieve amorphous stability is by developing an amorphous solid dispersion (ASD) with a stabilizing polymer. In the ASD preparation, polymer and active pharmaceutical ingredient (API) are coprocessed by either spray drying, melt extrusion, or fluid-bed layering techniques. Although these techniques provided adequate solution for many APIs, some compounds commonly referred to as “brickdust” were not readily amenable to these techniques either due to their high melting points and thermal instability or due to insufficient solubility in volatile organic solvents. An innovative technology, known as microprecipitated bulk powder (MBP) technology, was developed utilizing the exceptional solubility power of super solvents such as dimethylacetamide (DMA) and the concept of solvent-controlled coprecipitation to produce an ASD. The details of MBP technology covering the development of product from intermediate to final dosage form including theoretical aspects of coprecipitation, relevant properties of API and polymer, manufacturing process, and in-process controls are presented in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albano A, Phuapradit W, Sandhu H, Shah N (2002) Amorphous form of cell cycle inhibitor having improved solubility and bioavailability. U.S. Patent. 6,350,786

    Google Scholar 

  • Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, Dummer R, Garbe C, Testori A, Maio M, Hogg D, Lorigan P, Lebbe C, Jouary T, Schadendorf D, Ribas A, O’Day SJ, Sosman JA, Kirkwood JM, Eggermont AM, Dreno B, Nolop K, Li J, Nelson B, Hou J, Lee RJ, Flaherty KT, McArthur GA, Group B-S (2011) Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 364(26):2507–2516

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chiou WL, Riegelman S (1970) Oral absorption of griseofulvin in dogs: increased absorption via solid dispersion in polyethylene glycol 6000. J Pharm Sci 59(7):937–942

    Article  CAS  PubMed  Google Scholar 

  • Curatolo W, Nightingale J, Herbig S (2009) Utility of hydroxypropylmethylcellulose acetate succinate (HPMCAS) for initiation and maintenance of drug supersaturation in the GI milieu. Pharm Res 26(6):1419–1431

    Article  CAS  PubMed  Google Scholar 

  • De Yoreo JJ, Vekilov PG (2003) Principles of crystal nucleation and growth. Rev Mineral Geochem 54(1):57–93

    Article  CAS  Google Scholar 

  • Dupont J, Bienvenu B, Aghajanian C, Pezzulli S, Sabbatini P, Vongphrachanh P, Chang C, Perkell C, Ng K, Passe S, Breimer L, Zhi J, DeMario M, Spriggs D, Soignet SL (2004) Phase I and pharmacokinetic study of the novel oral cell-cycle inhibitor Ro 31–7453 in patients with advanced solid tumors. J Clin Oncol 22(16):3366–3374

    Article  CAS  PubMed  Google Scholar 

  • Evonik (2014) Eudragit L100–55product profile. Evonik, Germany

    Google Scholar 

  • Heakal Y, Kester M, Savage S (2011) Vemurafenib (PLX4032): an orally available inhibitor of mutated BRAF for the treatment of metastatic melanoma. Ann Pharmacother 45(11):1399–1405

    Article  CAS  PubMed  Google Scholar 

  • ICHQ3 Guidance (2009) International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use; Impurities: Guideline for Residual Solvents Q3C(R4). http://westpalmbeachanalytic.homestead.com/Q3C_R4__Guide_Res_Solv.pdf

  • Kislalioglu MS, Khan MA, Blount C, Goettsch RW, Bolton S (1991) Physical characterization and dissolution properties of ibuprofen: eudragit coprecipitates. J Pharm Sci 80(8):799–804

    Article  CAS  PubMed  Google Scholar 

  • Leuner C, Dressman J (2000) Improving drug solubility for oral delivery using solid dispersions. Eur J Pharm Biopharm 50(1):47–60

    Article  CAS  PubMed  Google Scholar 

  • Lipinski CA (2000) Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods 44(1):235–249

    Article  CAS  PubMed  Google Scholar 

  • Mascia S, Heider PL, Zhang H, Lakerveld R, Benyahia B, Barton PI, Braatz RD, Cooney CL, Evans JM, Jamison TF, Jensen KF, Myerson AS, Trout BL (2013) End-to-end continuous manufacturing of pharmaceuticals: integrated synthesis, purification, and final dosage formation. Angew Chem Int Ed Engl 52(47):12359–12363

    Article  CAS  PubMed  Google Scholar 

  • McKeown RR, Wertman JTA, Dell’Orco PC (2011) Crystallization design and scale-up. In: am Ende DJ Chemical enginnering in the pharmaceutical industry R & D to manufacturing. John Wiley & Sons, New Jersey, pp 213–248

    Google Scholar 

  • Planinsek O, Kovacic B, Vrecer F (2011) Carvedilol dissolution improvement by preparation of solid dispersions with porous silica. Int J Pharm 406(1–2):41–48

    Article  CAS  PubMed  Google Scholar 

  • Qian F, Huang J, Hussain MA (2010) Drug-polymer solubility and miscibility: stability consideration and practical challenges in amorphous solid dispersion development. J Pharm Sci 99(7):2941–2947

    CAS  PubMed  Google Scholar 

  • Repka MA, Langley NA, DiNunzio J (2013). Melt extrusion materials, technology and drug product design. AAPS press and Springer, New York

    Google Scholar 

  • Rumondor AC, Stanford LA, Taylor LS (2009) Effects of polymer type and storage relative humidity on the kinetics of felodipine crystallization from amorphous solid dispersions. Pharm Res 26(12):2599–2606

    Article  CAS  PubMed  Google Scholar 

  • Sekiguchi K, Obi N (1961) Studies on absorption of eutectic mixtures I. A comparison of the behavior of eutectic mixtures of sulfathaiazole and that of ordinary sulfathaiazole in man. Chem Phar Bull 9(11):866–872

    Article  CAS  Google Scholar 

  • Shah N, Sandhu H, Phuapradit W, Pinal R, Iyer R, Albano A, Chatterji A, Anand S, Choi DS, Tang K, Tian H, Chokshi H, Singhal D, Malick W (2012) Development of novel microprecipitated bulk powder (MBP) technology for manufacturing stable amorphous formulations of poorly soluble drugs. Int J Pharm 438(1–2):53–60

    Article  CAS  PubMed  Google Scholar 

  • Shah N, Iyer RM, Mair HJ, Choi DS, Tian H, Diodone R, Fahnrich K, Pabst-Ravot A, Tang K, Scheubel E, Grippo JF, Moreira SA, Go Z, Mouskountakis J, Louie V, Ibrahim PN, Sandhu H, Rubia L, Chokshi H, Singhal D, Malick W (2013) Improved human bioavailability of vemurafenib, a practically insoluble drug, using an amorphous polymer-stabilized solid dispersion prepared by a solvent-controlled coprecipitation process. J Pharm Sci 102(3):967–981

    Article  CAS  PubMed  Google Scholar 

  • Simonelli AP, Mehta SC, Higuchi WI (1969) Dissolution Rates of High Energy Polyvinylpyrrolidone (PVP)-Sulfathiazole Coprecipitates. J Pharm Sci 58(5):538–549

    Article  CAS  PubMed  Google Scholar 

  • Taylor LS, Zografi G (1997) Spectroscopic characterization of interactions between PVP and indomethacin in amorphous molecular dispersions. Pharm Res 14(12):1691–1698

    Article  CAS  PubMed  Google Scholar 

  • Williams IRO, Watts AB, Miller DA (2010) Formulating poorly soluble drugs. AAPS press and Springer, New York

    Google Scholar 

  • Yang W, Williams RO, Donald EO (2010) Pharmaceutical cryogenic technologies. In: Williams III RO, Watts AB, Miller DA (eds) Formulating poorly soluble drugs. AAPS press and Springer, New York, pp 443–500

    Google Scholar 

  • Zhou D, Zhang GGZ, Law D, Grant DJW, Schmitt EA (2002) Physical stability of amorphous pharmaceuticals: Importance of configurational thermodynamic quantities and molecular mobility. J Pharm Sci 91(8):1863–1872

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navnit Shah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Controlled Release Society

About this chapter

Cite this chapter

Shah, N., Sandhu, H., Choi, D., Chokshi, H., Iyer, R., Malick, A. (2014). MBP Technology: Composition and Design Considerations. In: Shah, N., Sandhu, H., Choi, D., Chokshi, H., Malick, A. (eds) Amorphous Solid Dispersions. Advances in Delivery Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1598-9_10

Download citation

Publish with us

Policies and ethics