Advertisement

A conjecture of Sakellaridis–Venkatesh on the unitary spectrum of spherical varieties

  • Wee Teck GanEmail author
  • Raul Gomez
Chapter
Part of the Progress in Mathematics book series (PM, volume 257)

Abstract

We describe the spectral decomposition of certain spherical varieties of low rank, verifying a recent conjecture of Sakellaridis and Venkatesh in these cases.

Keywords

Spherical varieties Unitary spectrum Theta correspondence Sakellaridis–Venkatesh conjecture 

Mathematics Subject Classification:

22E50 

References

  1. 1.
    van den Ban E. and Schlichtkrull H., The Plancherel theorem for a reductive symmetric space I. Spherical functions, and II. Representation theory. Invent. Math. 161 (2005), 453–566 and 567–628.Google Scholar
  2. 2.
    Bernstein J., On the support of Plancherel measure, J. Geom. Phys., 5(4) (1989), 663–710.CrossRefGoogle Scholar
  3. 3.
    Delorme P., Formule de Plancherel pour les espaces symmétriques réductifs, Annals of Math. 147 (1998), 417–452.CrossRefMathSciNetzbMATHGoogle Scholar
  4. 4.
    Delorme P., Formule de Plancherel pour les fonctions de Whittaker sur un groupe réductif p-adique. Ann. Inst. Fourier (Grenoble) 63 (2013), no. 1, 155–217.CrossRefMathSciNetzbMATHGoogle Scholar
  5. 5.
    Delorme P., Théorème de Paley-Wiener pour les fonctions de Whittaker sur un groupe réductif p-adique. J. Inst. Math. Jussieu 11 (2012), no. 3, 501–568.CrossRefMathSciNetzbMATHGoogle Scholar
  6. 6.
    Dvorsky A. and Sahi S., Explicit Hilbert spaces for certain unipotent representations II, Invent. Math. 138 (1999), 203–224.CrossRefMathSciNetzbMATHGoogle Scholar
  7. 7.
    Flensted-Jensen M., Discrete series for semisimple symmetric spaces. Ann. of Math. 111(1980), 253–311.CrossRefMathSciNetzbMATHGoogle Scholar
  8. 8.
    W. T. Gan and N. Gurevich, Non-tempered Arthur packets of G 2 : liftings from \(\widetilde{SL}_{2}\), American Journal of Math 128, No. 5 (2006), 1105–1185.MathSciNetGoogle Scholar
  9. 9.
    Gaitsgory, D. and Nadler, D., Spherical varieties and Langlands duality. Mosc. Math. J., 10 (2010), 65–137.MathSciNetzbMATHGoogle Scholar
  10. 10.
    Gomez R., The Bessel–Plancherel theorem and applications. UCSD PhD thesis.Google Scholar
  11. 11.
    Gomez R. and Wallach N., Holomorphic continuation of Bessel integrals for general admissible induced representations: the case of compact stabilizer. Selecta Math. (N.S.) 18 (2012), no 1, 1–26.Google Scholar
  12. 12.
    Howe R., On some results of Strichartz and Rallis and Schiffman. J. Funct. Anal. 32 (1979), no. 3, 297–303CrossRefMathSciNetzbMATHGoogle Scholar
  13. 13.
    Knus M.-A., Merkejev A., Rost M. and Tignol J. P., The book of involutions. A.M.S. Colloquium Publications Vol. 44 (1998).Google Scholar
  14. 14.
    Kazhdan D. and Savin G., The smallest representation of simply-laced groups, in Israel Math. Conference Proceedings, Piatetski-Shapiro Festschrift, Vol. 2 (1990), 209–233.MathSciNetGoogle Scholar
  15. 15.
    Kobayashi T., Singular unitary representations and discrete series for indefinite Stiefel manifolds U(p,q;F)∕U(p − m,q;F), Mem. Amer. Math. Soc., Vol. 462, Amer. Math. Soc., 1992, 106 pp.Google Scholar
  16. 16.
    Kobayashi T., Discrete decomposability of the restriction of \(A_{\mathfrak{q}}(\lambda )\) with respect to reductive subgroups and its applications, Invent. Math. 117 (1994), 181–205.CrossRefMathSciNetzbMATHGoogle Scholar
  17. 17.
    Li J. S., On the discrete series of generalized Stiefel manifolds. Trans. Amer. Math. Soc. 340 (1993), no. 2, 753–766.CrossRefMathSciNetzbMATHGoogle Scholar
  18. 18.
    Li, J. S., Singular unitary representations of classical groups. Invent. Math. 97 (1989), no. 2, 237–255.CrossRefMathSciNetzbMATHGoogle Scholar
  19. 19.
    Magaard K. and Savin G., Exceptional Θ-correspondences I. Compositio Math. 107 (1997), no. 1, 89–123.CrossRefMathSciNetzbMATHGoogle Scholar
  20. 20.
    Oshimi T. and Matsuki T., A description of discrete series for semisimple symmetric spaces. Adv. Stud. Pure Math. 4 (1984), 331–390.Google Scholar
  21. 21.
    Rallis S. and Schiffmann G., Weil representation. I. Intertwining distributions and discrete spectrum. Mem. Amer. Math. Soc. 25 (1980), no. 231, iii+203 ppGoogle Scholar
  22. 22.
    Rumelhart K., Minimal representations of exceptional p-adic groups. Represent. Theory 1 (1997), 133–181.CrossRefMathSciNetzbMATHGoogle Scholar
  23. 23.
    Sakellaridis Y. and Venkatesh A., Periods and harmonic analysis on spherical varieties, preprint, arXiv:1203.0039.Google Scholar
  24. 24.
    Savin, G., Dual pair G J × PGL 2 : G J is the automorphism group of the Jordan algebra J, Invent. Math. 118 (1994), 141–160.CrossRefMathSciNetzbMATHGoogle Scholar
  25. 25.
    Tang U.-L., The Plancherel Formula of \(L^{2}(N_{0}\setminus G;\psi )\). Ph. D. Thesis. arXiv:1102.2022.Google Scholar
  26. 26.
    Vogan D., Irreducibility of discrete series representation for semisimple symmetric spaces. Adv. Stud Pure Math. 14 (1988), 191–221.MathSciNetGoogle Scholar
  27. 27.
    Wallach N., Real Reductive Groups II, Academic Press Pure and Applied Mathematics, Boston, 132 (1992).Google Scholar
  28. 28.
    Weissman, M., D 4 modular forms. American J. of Math. 128 (2006), no. 4, 849–898.CrossRefMathSciNetzbMATHGoogle Scholar
  29. 29.
    Ørsted B. and Zhang G. K., L 2 -versions of the Howe correspondence. I. Math. Scand. 80 (1997), no. 1, 125–160.MathSciNetGoogle Scholar
  30. 30.
    Ørsted B. and Zhang G. K., L 2 -versions of the Howe correspondence. II. J. Math. Pures Appl. (9) 74 (1995), no. 2, 165–183.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of MathematicsNational University of SingaporeSingaporeSingapore
  2. 2.Department of MathematicsCornell UniversityIthacaUSA

Personalised recommendations