Advertisement

Arithmetic invariant theory

  • Manjul BhargavaEmail author
  • Benedict H. Gross
Chapter
Part of the Progress in Mathematics book series (PM, volume 257)

Abstract

Let k be a field, let G be a reductive algebraic group over k, and let V be a linear representation of G. Geometric invariant theory involves the study of the k-algebra of G-invariant polynomials on V, and the relation between these invariants and the G-orbits on V, usually under the hypothesis that the base field k is algebraically closed. In favorable cases, one can determine the geometric quotient \(V /\!/G = \mathrm{Spec}(\mathrm{Sym}^{{\ast}}(V ^{\vee })^{G})\) and can identify certain fibers of the morphism \(V \rightarrow V/\!/G\) with certain G-orbits on V. In this paper we study the analogous problem when k is not algebraically closed. The additional complexity that arises in the orbit picture in this scenario is what we refer to as arithmetic invariant theory. We illustrate some of the issues that arise by considering the regular semisimple orbits—i.e., the closed orbits whose stabilizers have minimal dimension—in three arithmetically rich representations of the split odd special orthogonal group \(G = \mathrm{SO}_{2n+1}\).

Keywords

Invariant theory Hyperelliptic curves 

Mathematics Subject Classification 2010:

11E72 14L24 

References

  1. 1.
    M. Bhargava and W. Ho, Coregular spaces and genus one curves, ArXiv:1306.4424 (2013).Google Scholar
  2. 2.
    M. Bhargava and A. Shankar, Binary quartic forms having bounded invariants, and the boundedness of the average rank of elliptic curves, ArXiv: 1006.1002 (2010); to appear Annals of Math.Google Scholar
  3. 3.
    N. Bourbaki, Groupes et algèbres de Lie, Hermann, 1982.Google Scholar
  4. 4.
    B. J. Birch and H. P. F. Swinnerton-Dyer, Notes on elliptic curves I, J. Reine Angew. Math. 212 (1963), 7–25.Google Scholar
  5. 5.
    R. Bolling, Die Ordnung der Schafarewitsch-Tate-Gruppe kann beliebig gross werden, Math. Nachr. 67 (1975), 157–179.Google Scholar
  6. 6.
    D. A. Buell, Binary Quadratic Forms: Classical Theory and Modern Computations, Springer-Verlag, 1989.Google Scholar
  7. 7.
    R. Donagi, Group law on the intersection of two quadrics, Annali della Scuola Normale Superiore di Pisa 7 (1980), 217–239.Google Scholar
  8. 8.
    B. Gross, On Bhargava’s representations and Vinberg’s invariant theory, In: Frontiers of Mathematical Sciences, International Press (2011), 317–321.Google Scholar
  9. 9.
    B. Gross, W. Kohnen, and D. Zagier, Heegner points and derivatives of L-series II, Math. Ann. 278 (1987), 497–562.CrossRefMathSciNetzbMATHGoogle Scholar
  10. 10.
    R. Kottwitz, Stable trace formula: cuspidal tempered terms, Duke Math. J. 51 (1984), 611–650.Google Scholar
  11. 11.
    A. Knus, A. Merkurjev, M. Rost, and J.-P. Tignol, The book of involutions, AMS Colloquium Publications 44, 1998.Google Scholar
  12. 12.
    A. Kostrikin and P. H. Tiep, Orthogonal decompositions and integral lattices, deGruyter Expositions in Mathematics 15, Berlin, 1994.Google Scholar
  13. 13.
    R. Langlands, Stable conjugacy—definitions and lemmas, Canadian J. Math 31 (1979), 700–725.Google Scholar
  14. 14.
    R. Langlands, Les débuts d’une formule des traces stable, Publ. Math. de L’Univ. Paris VII, 13, 1983.Google Scholar
  15. 15.
    A. Miller, Knots and arithmetic invariant theory, preprint.Google Scholar
  16. 16.
    J. Milnor and D. Husemoller, Symmetric bilinear forms, Springer Ergebnisse 73, 1970.Google Scholar
  17. 17.
    D. Mumford, J. Fogarty, F. Kirwan, Geometric invariant theory, Springer Ergebnisse 34, 1994.Google Scholar
  18. 18.
    D. Panyushev, On invariant theory of θ-groups, J. Algebra 283 (2005), 655–670.Google Scholar
  19. 19.
    V. Platonov and A. Rapinchuk, Algebraic groups and number theory, Translated from the 1991 Russian original by Rachel Rowen, Pure and Applied Mathematics 139, Academic Press, Inc., Boston, MA, 1994.Google Scholar
  20. 20.
    V. L. Popov and E. B. Vinberg, Invariant Theory in Algebraic Geometry IV, Encyclopaedia of Mathematical Sciences 55, Springer-Verlag, 1994.Google Scholar
  21. 21.
    J-P. Serre, Galois Cohomology, Springer Monographs in Mathematics, 2002.Google Scholar
  22. 22.
    J-P. Serre, A Course in Arithmetic, Springer GTM 7, (1978).Google Scholar
  23. 23.
    D. Shelstad Orbital integrals and a family of groups attached to a real reductive group, Ann. Sci. École Norm. Sup. 12 (1979), 1–31.Google Scholar
  24. 24.
    M. Stoll, Implementing 2-descent for Jacobians of hyperelliptic curves, Acta Arith 98 (2001), 245–277.Google Scholar
  25. 25.
    M. Wood, Moduli spaces for rings and ideals, Ph.D. thesis, Princeton University, 2008.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Mathematics Princeton UniversityPrincetonUSA
  2. 2.Department of MathematicsHarvard UniversityCambridgeUSA

Personalised recommendations