Advertisement

Remainder formula and zeta expression for extremal CFT partition functions

  • Floyd L. WilliamsEmail author
Chapter
Part of the Progress in Mathematics book series (PM, volume 257)

Abstract

We derive a remainder formula for the coefficients of modular invariant partition functions of extremal conformal field theories of central charge c = 24k, where k is a positive integer. The formula encodes, in particular, asymptotics of these coefficients and it provides for additional corrections to Bekenstein–Hawking black hole entropy. We also relate these partition functions to a Patterson–Selberg zeta function. More generally, when c is divisible by 8 we relate this zeta function to vacuum characters of affine E 8 and \(E_{8} \times E_{8}\).

Keywords

Affine E8 Extremal conformal field theory Modular j-invariant q-expansion Black hole entropy Kloosterman sum Zeta function 

Mathematics Subject Classification

11FO3 11F25 11F30 11M36 81T40 81R10 83C57 

References

  1. 1.
    Höhn, G., Selbstduale Vertexoperatorsuperalgebren und das Babymonster. Bonner Mathematische Schriften, 286, Universität Bonn Mathematisches Institut, Bonn, 1996, Dissertation, Rheinische Friedrich-Wilhelms Universitat Bonn, 1995.Google Scholar
  2. 2.
    Witten, E., Three-dimensional gravity revisited, 2007 preprint, arXiv: 0706.3359.Google Scholar
  3. 3.
    Maloney, A.; Witten, E., Quantum gravity partition function in three dimensions. J. High Energy Phys. 2010, No. 2, 1–58; arXiv: 0712.0155, 2007.Google Scholar
  4. 4.
    Maloney, A., Physics and the monster-quantum gravity, modular forms, and Faber polynomials. Concordia University lecture, 2007.Google Scholar
  5. 5.
    Osorio, A.V., Modular invariance and 3d gravity, 2008 thesis supervised by Vandoren, A.; pdf available online.Google Scholar
  6. 6.
    Avramis, S.; Kehagias, A.; Mattheopoulou, C., Three-dimensional AdS gravity and extremal CFTs at c = 8m. arXiv: 0708.3386, 2007.Google Scholar
  7. 7.
    Gaiotto, D., Monster symmetry and extremal CFTs, 2008 preprint, arXiv: 0801.0988.Google Scholar
  8. 8.
    Frenkel, I.; Lepowsky, J.; Meurman. A., A moonshine module for the monster, in Vertex Operators in Mathematics and Physics. Edited by Lepowsky, J., Mandelstam, S., and Singer, I. (Berkeley, CA., 1983). Math. Sci. Research Inst. Publ. Vol. 3, Springer, New York, 1985, 231–273.Google Scholar
  9. 9.
    Brisebarre, N.; Philibert, G., Effective lower and upper bounds for the Fourier coefficients of powers of the modular invariant j. Journal of the Ramanujan Math. Soc. 2005, 20, 255–282.MathSciNetzbMATHGoogle Scholar
  10. 10.
    Knopp, M., Automorphic forms of non-negative dimension and exponential sums. Michigan Math. J., 1960, 7, 257–281.CrossRefMathSciNetzbMATHGoogle Scholar
  11. 11.
    Petersson, H., Über die Entwicklungskoeffizienten der automorphen formen. Acta Math. 1932, 58, 501–512.CrossRefMathSciNetGoogle Scholar
  12. 12.
    Rademacher, H., The Fourier coefficients of the modular invariant J(τ). Amer. J. Math. 1938, 60, 501–512.CrossRefMathSciNetGoogle Scholar
  13. 13.
    Dijkgraaf, R.; Maldacena, J.; Moore, G.; Verlinde, E., A black hole Farey tail. arXiv: hepth/0005003, 2007.Google Scholar
  14. 14.
    Cardy, J., Operator content of two-dimensional conformally invariant theories. Nuclear Phys. B, 1986, 270, 186–204.CrossRefMathSciNetzbMATHGoogle Scholar
  15. 15.
    Giombi, S.; Maloney, A.; Yin, X., One-loop partition functions of 3d gravity. J. High Energy Phys. 2008, 007, 1–24; arXiv:0804. 1173, 2008.Google Scholar
  16. 16.
    Giombi, S., One-loop partition functions of 3d gravity. Harvard University lecture, 2008.Google Scholar
  17. 17.
    Williams, F., Lectures on zeta functions, L-functions and modular forms with some physical applications, and also the lecture The role of the Patterson–Selberg zeta function of a hyperbolic cylinder in three-dimensional gravity with a negative cosmological constant, in A Window into Zeta and Modular Physics. Edited by Kirsten, K. and Williams, F. Math. Sci. Research Inst. Publ. Vol. 57, Cambridge Univ. Press, 2010, 7–100 and 329–351.Google Scholar
  18. 18.
    Birmingham, D.; Siddhartha, S., Exact black hole entropy bound in conformal field theory. Phys. Rev. D 2001, 63, 047501-1-047501-3, arXiv:hep-th/0008051, 2000.Google Scholar
  19. 19.
    Williams, F., Conical defect zeta function for the BTZ black hole, from One Hundred Years of Relativity: Proceedings of the Einstein Symposium (Iais, Romania, 2005). Scientific Annals of Alexandru Ioan Univ. 2005, TOM LI-LII, 54–58.Google Scholar
  20. 20.
    Mann, R.; Solodukhin, S., Quantum scalar field on a three-dimensional (BTZ) black hole instanton; heat kernel, effective action, and thermodynamics. Phys. Rev. D, 1997, 55, 3622–3632.CrossRefMathSciNetGoogle Scholar
  21. 21.
    Patterson, S., The Selberg zeta function of a Kleinian group, in Number Theory, Trace Formulas, and Discrete Groups (Oslo, Sweden, 1987). Academic Press, Boston, MA. 1989, 409–441.Google Scholar
  22. 22.
    Kac, V. G., An elucidation of “Infinite-dimensional algebras and the very strange formula”, E 8 (1) and the cube root of the modular invariant j, Adv. in Math. 1980, 35, 264–273.CrossRefMathSciNetzbMATHGoogle Scholar
  23. 23.
    Lepowsky, J., Euclidean Lie algebras and the modular function j, from the Santa Cruz Conf. on Finite Groups, AMS Proc. Sympos. Pure Math, 1980, 37, 567–570.MathSciNetGoogle Scholar
  24. 24.
    Patterson, S. J.; Perry, P., The divisor of Selberg’s zeta function for Kleinian groups. Duke Math. J. 2001, 106, 321–390 (with an appendix by Epstein, C.).Google Scholar
  25. 25.
    Perry, P.; Williams, F., Selberg zeta function and trace formula for the BTZ black hole. Internat. J. Pure and Appl. Math. 2003, 9, 1–21.MathSciNetzbMATHGoogle Scholar
  26. 26.
    Guillopé, L.; Zworski, M., Upper bounds on the number of resonances for non-compact Riemann surfaces. J. Funct. Anal. 1995, 129, 364–389.CrossRefMathSciNetzbMATHGoogle Scholar
  27. 27.
    Williams, F., Remarks on the Patterson–Selberg zeta function, black hole vacua and extreme CFT partition functions, in a volume dedicated to the 75th birthday of Stuart Dowker, J. Phys. A, Math. Theor. 2012, 45 (19 pp).Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsUniversity of Massachusetts at AmherstAmherstUSA

Personalised recommendations