Skip to main content

Remainder formula and zeta expression for extremal CFT partition functions

  • Chapter
  • First Online:

Part of the book series: Progress in Mathematics ((PM,volume 257))

Abstract

We derive a remainder formula for the coefficients of modular invariant partition functions of extremal conformal field theories of central charge c = 24k, where k is a positive integer. The formula encodes, in particular, asymptotics of these coefficients and it provides for additional corrections to Bekenstein–Hawking black hole entropy. We also relate these partition functions to a Patterson–Selberg zeta function. More generally, when c is divisible by 8 we relate this zeta function to vacuum characters of affine E 8 and \(E_{8} \times E_{8}\).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Höhn, G., Selbstduale Vertexoperatorsuperalgebren und das Babymonster. Bonner Mathematische Schriften, 286, Universität Bonn Mathematisches Institut, Bonn, 1996, Dissertation, Rheinische Friedrich-Wilhelms Universitat Bonn, 1995.

    Google Scholar 

  2. Witten, E., Three-dimensional gravity revisited, 2007 preprint, arXiv: 0706.3359.

    Google Scholar 

  3. Maloney, A.; Witten, E., Quantum gravity partition function in three dimensions. J. High Energy Phys. 2010, No. 2, 1–58; arXiv: 0712.0155, 2007.

    Google Scholar 

  4. Maloney, A., Physics and the monster-quantum gravity, modular forms, and Faber polynomials. Concordia University lecture, 2007.

    Google Scholar 

  5. Osorio, A.V., Modular invariance and 3d gravity, 2008 thesis supervised by Vandoren, A.; pdf available online.

    Google Scholar 

  6. Avramis, S.; Kehagias, A.; Mattheopoulou, C., Three-dimensional AdS gravity and extremal CFTs at c = 8m. arXiv: 0708.3386, 2007.

    Google Scholar 

  7. Gaiotto, D., Monster symmetry and extremal CFTs, 2008 preprint, arXiv: 0801.0988.

    Google Scholar 

  8. Frenkel, I.; Lepowsky, J.; Meurman. A., A moonshine module for the monster, in Vertex Operators in Mathematics and Physics. Edited by Lepowsky, J., Mandelstam, S., and Singer, I. (Berkeley, CA., 1983). Math. Sci. Research Inst. Publ. Vol. 3, Springer, New York, 1985, 231–273.

    Google Scholar 

  9. Brisebarre, N.; Philibert, G., Effective lower and upper bounds for the Fourier coefficients of powers of the modular invariant j. Journal of the Ramanujan Math. Soc. 2005, 20, 255–282.

    MathSciNet  MATH  Google Scholar 

  10. Knopp, M., Automorphic forms of non-negative dimension and exponential sums. Michigan Math. J., 1960, 7, 257–281.

    Article  MathSciNet  MATH  Google Scholar 

  11. Petersson, H., Über die Entwicklungskoeffizienten der automorphen formen. Acta Math. 1932, 58, 501–512.

    Article  MathSciNet  Google Scholar 

  12. Rademacher, H., The Fourier coefficients of the modular invariant J(τ). Amer. J. Math. 1938, 60, 501–512.

    Article  MathSciNet  Google Scholar 

  13. Dijkgraaf, R.; Maldacena, J.; Moore, G.; Verlinde, E., A black hole Farey tail. arXiv: hepth/0005003, 2007.

    Google Scholar 

  14. Cardy, J., Operator content of two-dimensional conformally invariant theories. Nuclear Phys. B, 1986, 270, 186–204.

    Article  MathSciNet  MATH  Google Scholar 

  15. Giombi, S.; Maloney, A.; Yin, X., One-loop partition functions of 3d gravity. J. High Energy Phys. 2008, 007, 1–24; arXiv:0804. 1173, 2008.

    Google Scholar 

  16. Giombi, S., One-loop partition functions of 3d gravity. Harvard University lecture, 2008.

    Google Scholar 

  17. Williams, F., Lectures on zeta functions, L-functions and modular forms with some physical applications, and also the lecture The role of the Patterson–Selberg zeta function of a hyperbolic cylinder in three-dimensional gravity with a negative cosmological constant, in A Window into Zeta and Modular Physics. Edited by Kirsten, K. and Williams, F. Math. Sci. Research Inst. Publ. Vol. 57, Cambridge Univ. Press, 2010, 7–100 and 329–351.

    Google Scholar 

  18. Birmingham, D.; Siddhartha, S., Exact black hole entropy bound in conformal field theory. Phys. Rev. D 2001, 63, 047501-1-047501-3, arXiv:hep-th/0008051, 2000.

    Google Scholar 

  19. Williams, F., Conical defect zeta function for the BTZ black hole, from One Hundred Years of Relativity: Proceedings of the Einstein Symposium (Iais, Romania, 2005). Scientific Annals of Alexandru Ioan Univ. 2005, TOM LI-LII, 54–58.

    Google Scholar 

  20. Mann, R.; Solodukhin, S., Quantum scalar field on a three-dimensional (BTZ) black hole instanton; heat kernel, effective action, and thermodynamics. Phys. Rev. D, 1997, 55, 3622–3632.

    Article  MathSciNet  Google Scholar 

  21. Patterson, S., The Selberg zeta function of a Kleinian group, in Number Theory, Trace Formulas, and Discrete Groups (Oslo, Sweden, 1987). Academic Press, Boston, MA. 1989, 409–441.

    Google Scholar 

  22. Kac, V. G., An elucidation of “Infinite-dimensional algebras and the very strange formula”, E 8 (1) and the cube root of the modular invariant j, Adv. in Math. 1980, 35, 264–273.

    Article  MathSciNet  MATH  Google Scholar 

  23. Lepowsky, J., Euclidean Lie algebras and the modular function j, from the Santa Cruz Conf. on Finite Groups, AMS Proc. Sympos. Pure Math, 1980, 37, 567–570.

    MathSciNet  Google Scholar 

  24. Patterson, S. J.; Perry, P., The divisor of Selberg’s zeta function for Kleinian groups. Duke Math. J. 2001, 106, 321–390 (with an appendix by Epstein, C.).

    Google Scholar 

  25. Perry, P.; Williams, F., Selberg zeta function and trace formula for the BTZ black hole. Internat. J. Pure and Appl. Math. 2003, 9, 1–21.

    MathSciNet  MATH  Google Scholar 

  26. Guillopé, L.; Zworski, M., Upper bounds on the number of resonances for non-compact Riemann surfaces. J. Funct. Anal. 1995, 129, 364–389.

    Article  MathSciNet  MATH  Google Scholar 

  27. Williams, F., Remarks on the Patterson–Selberg zeta function, black hole vacua and extreme CFT partition functions, in a volume dedicated to the 75th birthday of Stuart Dowker, J. Phys. A, Math. Theor. 2012, 45 (19 pp).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Floyd L. Williams .

Editor information

Editors and Affiliations

Additional information

Dedicated to Nolan Wallach. Thank you Nolan for your mentorship and your inspiration that have markedly shaped my mathematical life.

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Williams, F.L. (2014). Remainder formula and zeta expression for extremal CFT partition functions. In: Howe, R., Hunziker, M., Willenbring, J. (eds) Symmetry: Representation Theory and Its Applications. Progress in Mathematics, vol 257. Birkhäuser, New York, NY. https://doi.org/10.1007/978-1-4939-1590-3_18

Download citation

Publish with us

Policies and ethics