M-series and Kloosterman–Selberg zeta functions for ℝ-rank one groups

  • Roberto J. MiatelloEmail author
  • Nolan R. Wallach
Part of the Progress in Mathematics book series (PM, volume 257)


For an arbitrary Lie group G of real rank one, we give a formula for the Fourier coefficient \(D_{\chi ^{{\prime}}}^{\chi }(\xi,\nu )\) of the M-series (a type of Poincaré series) defined in [17], in terms of Kloosterman–Selberg zeta functions \(\zeta _{\chi,\chi ^{{\prime}},\xi }(\mu )\). As a consequence we show that the meromorphic continuation of \(\zeta _{\chi,\chi ^{{\prime}},\xi }(\nu )\) to \(\mathbb{C}\) follows from the meromorphic continuation of the M-series. We also give a description of the pole set in the region \(\mathop{Re}\nolimits \nu \geq 0\).


Kloosterman sum Kloosterman–Selberg zeta function Fourier coefficient Whittaker vector rank one Lie group 

Mathematics Subject Classification

11F30 11F70 11L05 11M36 


  1. 1.
    R.W. Bruggeman, R.J. Miatello: Estimates of Kloosterman sums for groups of real rank one, Duke Math. J. 80 (1995) 105–137.CrossRefMathSciNetzbMATHGoogle Scholar
  2. 2.
    J. Cogdell, J.-S. Li, I. Piatetski-Shapiro, P. Sarnak: Poincaré series for \(\mathop{SO}\nolimits (n,1)\), Acta Math. 167 (1991), 229–285.CrossRefMathSciNetzbMATHGoogle Scholar
  3. 3.
    J.W. Cogdell, I.I. Piatetski-Shapiro: The meromorphic continuation of Kloosterman–Selberg zeta functions, Complex Analysis and Geometry (Pisa 1988), pp. 23–35, Lecture Notes in Math. 1422, Springer Verlag, 1990.Google Scholar
  4. 4.
    J.W. Cogdell, I.I. Piatetski-Shapiro: The Arithmetic and Spectral Analysis of Poincaré Series, Perspectives in Mathematics 13, Academic Press, 1990.Google Scholar
  5. 5.
    J. Elstrodt, F. Grunewald, J. Mennicke: Kloosterman sums for Clifford algebras and a lower bound for the positive eigenvalues of the Laplacian for congruence subgroups acting on hyperbolic spaces,Invent. math. 101 (1990), 641–685.CrossRefMathSciNetzbMATHGoogle Scholar
  6. 6.
    S. Gelbart, D. Soudry: On Whittaker models and the vanishing of Fourier coefficients of cusp forms, Proc. Indian Acad. Sci. Math. Sci. 97, Ramanujan Birth Centenary Volume, pp. 67–74.Google Scholar
  7. 7.
    D. Goldfeld, P. Sarnak: Sums of Kloosterman sums, Invent. Math. 71 (1983), 243–250.CrossRefMathSciNetzbMATHGoogle Scholar
  8. 8.
    R. Goodman, N. Wallach: Whittaker vectors and conical vectors, Jour. Functional Analysis. Math. 39 (1980),199–279.CrossRefMathSciNetzbMATHGoogle Scholar
  9. 9.
    S. Helgason: Groups and Geometric Analysis, Academic Press, 1984.Google Scholar
  10. 10.
    H. Kim, F. Shahidi: Functorial products for GL(2) × GL(3) and functorial symmetric cube for GL(2), C.R. Acad. Sci. Paris 331 (2001), 599–604.Google Scholar
  11. 11.
    N.V. Kuznetsov: The Petersson hypothesis for forms of weight zero and the Linnik hypothesis (Russian), Preprint Khabarovsk, 1977.Google Scholar
  12. 12.
    N. V. Kuznetsov: The Petersson hypothesis for parabolic forms of weight zero and the Linnik hypothesis. Sums of Kloosterman sums (Russian), Mat. Sbornik 111 (153) (1980), 334–383.Google Scholar
  13. 13.
    R. P. Langlands: On the Functional Equations Satisfied by Eisenstein Series, Lecture Notes in Math. 544, Springer Verlag, 1976.Google Scholar
  14. 14.
    J.-S. Li: Kloosterman–Selberg zeta functions on complex hyperbolic spaces, Amer. J. of Math. 113 (1991), 653–731.CrossRefzbMATHGoogle Scholar
  15. 15.
    Ju. V. Linnik: Additive problems and eigenvalues of the modular operators, Proc. Int. Congr. Math., 1962, Stockholm, pp. 270–284, Inst. Mittag-Leffler, 1963.Google Scholar
  16. 16.
    W. Luo, Z. Rudnick, P. Sarnak: On Selberg’s eigenvalue conjecture,Geometric and Functional Analysis 5 (1995), 387–401.CrossRefMathSciNetzbMATHGoogle Scholar
  17. 17.
    R.J. Miatello, N. R. Wallach: Automorphic forms constructed from Whittaker vectors, J. Funct. Analysis 86 (1989), 411–487.CrossRefMathSciNetzbMATHGoogle Scholar
  18. 18.
    R.J. Miatello, N. R. Wallach: Kuznetsov formulas for rank one groups,J. Funct. Anal. 93 (1990), 171–207.CrossRefMathSciNetzbMATHGoogle Scholar
  19. 19.
    P. Sarnak: Additive number theory and Maass forms, Number Theory (New York 1982), pp. 286–309, Lecture Notes in Math. 1052, Springer Verlag 1984.Google Scholar
  20. 20.
    A. Selberg: On the estimation of Fourier coefficients of modular forms,Number Theory, Proc. Symp. Pure Math. VIII, A.M.S. (1965), 1–15.CrossRefGoogle Scholar
  21. 21.
    N.R. Wallach: Real Reductive Groups II, Academic Press, 1989..Google Scholar
  22. 22.
    N.R. Wallach: Lie Algebra Cohomology and Holomorphic Continuation of Generalized Jacquet Integrals, Advanced Studies in Math 14 (1988), pp. 123–151.MathSciNetGoogle Scholar
  23. 23.
    A. Weil: On some exponential sums, Proc. Nat. Acad. Sci USA 34 (1948) 204–207.CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.FaMAF-CIEM, Facultad de Matemática, Astronomia y FisicaUniversidad Nacional de CórdobaCórdobaArgentina
  2. 2.Department of MathematicsUniversity of California at San DiegoLa JollaUSA

Personalised recommendations