Advertisement

Finite maximal tori

  • Gang HanEmail author
  • David A. VoganJr.
Chapter
Part of the Progress in Mathematics book series (PM, volume 257)

Abstract

We define a “finite maximal torus” of a compact Lie group G to be a maximal finite abelian subgroup A of G. We introduce structure for finite maximal tori parallel to the classical structure for maximal tori, like roots and the Weyl group; and we recall a large number of (previously known) examples.

Keywords

Compact group Maximal finite abelian subgroup 

Mathematics Subject Classification

17B22 20G15 22C05 

References

  1. 1.
    A. V. Alekseevskiĭ, Jordan finite commutative subgroups of simple complex Lie groups, Funkcional. Anal. i Priložen. 8 (1974), no. 4, 1–4 (Russian); English transl., Functional Anal. Appl. 8 (1974), 277–279.Google Scholar
  2. 2.
    A. Borel, Sous-groupes commutatifs et torsion des groupes de Lie compacts connexes, Tohoku Math. J.(2) 13 (1961), 216–240.Google Scholar
  3. 3.
    A. Borel and J. De Siebenthal, Les sous-groupes fermés de rang maximum des groupes de Lie clos, Comment. Math. Helv. 23 (1949), 200–221 (French).Google Scholar
  4. 4.
    M. Demazure and A. Grothendieck et al., Schémas en Groupes. III: Structure des groupes réductifs, Séminaire de Géométrie Algébrique du Bois Marie 1962/64 (SGA 3). Dirigé par M. Demazure et A. Grothendieck. Lecture Notes in Mathematics, Vol. 153, Springer-Verlag, Berlin, Heidelberg, New York, 1970.Google Scholar
  5. 5.
    E.B. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Mat. Sbornik N.S. 30(72) (1952), 349–462 (Russian); English transl., Amer. Math. Soc. Transl., Ser. 2 6 (1957), 111–245.Google Scholar
  6. 6.
    V. V. Gorbatsevich, A. L. Onishchik, and È. B. Vinberg, Structure of Lie groups and Lie algebras, Current problems in mathematics. Fundamental directions, Vol. 41, Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow (Russian); English transl. in translated by V. Minachin, Encyclopedia of Mathematical Sciences, Vol. 41, Springer-Verlag, Berlin, New York, 1994.Google Scholar
  7. 7.
    Robert L. Griess Jr., Elementary abelian p-subgroups of algebraic groups, Geom. Dedicata 39 (1991), no. 3, 253–305.Google Scholar
  8. 8.
    Gang Han, The Weyl group of the fine grading of \(\mathrm{sl}(n, \mathbb{C})\) associated with tensor product of generalized Pauli matrices, J. Math. Phys. 52 (2011), no. 4, 042109, 18.Google Scholar
  9. 9.
    Miloslav Havlícek, Jiří Patera, and Edita Pelantova, On Lie gradings. II, Linear Algebra Appl. 277 (1998), no. 1–3, 97–125.CrossRefMathSciNetzbMATHGoogle Scholar
  10. 10.
    S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, New York, San Francisco, London, 1978.zbMATHGoogle Scholar
  11. 11.
    Anthony W. Knapp, Lie Groups Beyond an Introduction, Second Edition, Progress in Mathematics, Vol. 140, Birkhäuser, Boston, 2002.Google Scholar
  12. 12.
    D. Mumford, On the equations defining abelian varieties. I, Invent. Math. 1 (1966), 287–354.CrossRefMathSciNetzbMATHGoogle Scholar
  13. 13.
    A. L. Onishchik and È. B. Vinberg, Lie groups and algebraic groups, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1990. Translated from the Russian and with a preface by D. A. Leites.Google Scholar
  14. 14.
    J. Patera and H. Zassenhaus, On Lie gradings. I, Linear Algebra Appl. 112 (1989), 87–159.CrossRefMathSciNetzbMATHGoogle Scholar
  15. 15.
    H. Rubenthaler, Les paires duales dans les algèbres de Lie réductives, Astérisque 219 (1994) (French, with English and French summaries).Google Scholar
  16. 16.
    T. A. Springer, Linear Algebraic Groups, 2nd ed., Progress in Mathematics, Vol. 9, Birkhäuser Boston Inc., Boston, MA, 1998.Google Scholar
  17. 17.
    A. Terras, Fourier analysis on finite groups and applications, London Mathematical Society Student Texts, Vol. 43, Cambridge University Press, Cambridge, 1999.Google Scholar
  18. 18.
    A. Weil, Sur certains groupes d’opérateurs unitaires, Acta Math. 111 (1964), 143–211.CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of MathematicsZhejiang UniversityHangzhouChina
  2. 2.Department of MathematicsMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations