Skip to main content

Magnetic Resonance Elastography of the Brain

  • Chapter
  • First Online:

Abstract

MR Elastography (MRE) is an emerging technique capable of noninvasively and quantitatively measuring stiffness of tissue. Performing MRE of the brain has presented unique technical challenges, including the introduction of shear waves through the skull, as well as performing sampling and processing of a 3D displacement field. Using an accelerated spin-echo EPI sequence allows fast volumetric acquisitions that fully sample the required extent of k-space. Initial work has demonstrated an emerging role for MRE in both diffuse diseases, such as Alzheimer’s disease, multiple sclerosis and normal pressure hydrocephalus, as well as focal lesions, such as meningiomas.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bradley Jr WG, Whittemore AR, Watanabe AS, Davis SJ, Teresi LM, Homyak M. Association of deep white matter infarction with chronic communicating hydrocephalus: implications regarding the possible origin of normal-pressure hydrocephalus. AJNR Am J Neuroradiol. 1991;12(1):31–9.

    PubMed  Google Scholar 

  2. Kruse SA, Rose GH, Glaser KJ, Manduca A, Felmlee JP, Jack Jr CR, et al. Magnetic resonance elastography of the brain. Neuroimage. 2008;39(1):231–7.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Green MA, Bilston LE, Sinkus R. In vivo brain viscoelastic properties measured by magnetic resonance elastography. NMR Biomed. 2008;21(7):755–64 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  Google Scholar 

  4. Sack I, Beierbach B, Hamhaber U, Klatt D, Braun J. Non-invasive measurement of brain viscoelasticity using magnetic resonance elastography. NMR Biomed. 2008;21(3):265–71 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  Google Scholar 

  5. Hamhaber U, Sack I, Papazoglou S, Rump J, Klatt D, Braun J. Three-dimensional analysis of shear wave propagation observed by in vivo magnetic resonance elastography of the brain. Acta Biomater. 2007;3(1):127–37 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  6. Murphy MC, Huston 3rd J, Jack Jr CR, Glaser KJ, Manduca A, Felmlee JP, et al. Decreased brain stiffness in Alzheimer’s disease determined by magnetic resonance elastography. J Magn Reson Imaging. 2011;34(3):494–8 [Research Support, N.I.H., Extramural].

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wuerfel J, Paul F, Beierbach B, Hamhaber U, Klatt D, Papazoglou S, et al. MR-elastography reveals degradation of tissue integrity in multiple sclerosis. Neuroimage. 2010;49(3):2520–5 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  Google Scholar 

  8. Lipp A, Trbojevic R, Paul F, Fehlner A, Hirsch S, Scheel M, et al. Cerebral magnetic resonance elastography in supranuclear palsy and idiopathic Parkinson’s disease. Neuroimage Clin. 2013;3:381–7.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kruse SA, Dresner MA, Rossman P, Femlee JP, Jack CR, Jr., Ehman RL, editors. Palpation of the brain using magnetic resonance elastography. International Society for Magnetic Resonance in Medicine; 22–28 May 1999; Philadelphia, PA.

    Google Scholar 

  10. Kruse SA, Ehman RL, editors. 2D approximation of 3D wave propagation in MR elastography of the brain. In: Proceedings of the 11th international society for magnetic resonance in medicine; 10–16 July 2003; Toronto, Ontario, Canada.

    Google Scholar 

  11. Gallichan D, Robson MD, Bartsch A, Miller KL. TREMR: table-resonance elastography with MR. Magn Reson Med. 2009;62(3):815–21 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  Google Scholar 

  12. Xu L, Lin Y, Han JC, Xi ZN, Shen H, Gao PY. Magnetic resonance elastography of brain tumors: preliminary results. Acta Radiol. 2007;48(3):327–30 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  13. Murphy MC, Huston 3rd J, Glaser KJ, Manduca A, Meyer FB, Lanzino G, et al. Preoperative assessment of meningioma stiffness using magnetic resonance elastography. J Neurosurg. 2013;118(3):643–8 [Evaluation Studies Research Support, N.I.H., Extramural].

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hoover JM, Morris JM, Meyer FB. Use of preoperative magnetic resonance imaging T1 and T2 sequences to determine intraoperative meningioma consistency. Surg Neurol Int. 2011;2:142.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Yamaguchi N, Kawase T, Sagoh M, Ohira T, Shiga H, Toya S. Prediction of consistency of meningiomas with preoperative magnetic resonance imaging. Surg Neurol. 1997;48(6):579–83.

    Article  PubMed  CAS  Google Scholar 

  16. Chernov MF, Kasuya H, Nakaya K, Kato K, Ono Y, Yoshida S, et al. (1)H-MRS of intracranial meningiomas: what it can add to known clinical and MRI predictors of the histopathological and bio-logical characteristics of the tumor? Clin Neurol Neurosurg. 2011;113(3):202–12 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  Google Scholar 

  17. Kashimura H, Inoue T, Ogasawara K, Arai H, Otawara Y, Kanbara Y, et al. Prediction of meningioma consistency using fractional anisotropy value measured by magnetic resonance imaging. J Neurosurg. 2007;107(4):784–7 [Clinical Trial Research Support, Non-U.S. Gov’t].

    Article  PubMed  Google Scholar 

  18. Kendall B, Pullicino P. Comparison of consistency of meningiomas and CT appearances. Neuroradiology. 1979;18(4):173–6.

    Article  PubMed  CAS  Google Scholar 

  19. Kleihues P, Sobin LH. World Health Organization classification of tumors. Cancer. 2000;88(12):2887.

    Article  PubMed  CAS  Google Scholar 

  20. Chawalparit O, Sangruchi T, Witthiwej T, Sathornsumetee S, Tritrakarn S, Piyapittayanan S, et al. Diagnostic performance of advanced MRI in differentiating high-grade from low-grade gliomas in a setting of routine service. J Med Assoc Thai. 2013;96(10):1365–73 [Research Support, Non-U.S. Gov’t].

    PubMed  Google Scholar 

  21. Juge L, Doan BT, Seguin J, Albuquerque M, Larrat B, Mignet N, et al. Colon tumor growth and antivascular treatment in mice: complementary assessment with MR elastography and diffusion-weighted MR imaging. Radiology. 2012;264(2):436–44 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  Google Scholar 

  22. Pepin KM, Chen J, Glaser KJ, Mariappan YK, Reuland B, Ziesmer S, et al. MR elastography derived shear stiffness—a new imaging biomarker for the assessment of early tumor response to chemotherapy. Magn Reson Med. 2014;71(5):1834–40.

    Article  PubMed  Google Scholar 

  23. Lu P, Weaver VM, Werb Z. The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol. 2012;196(4):395–406 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review].

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Bodhinayake I, Ottenhausen M, Mooney MA, Kesavabhotla K, Christos P, Schwarz JT, et al. Results and risk factors for recurrence following endoscopic endonasal transsphenoidal surgery for pituitary adenoma. Clin Neurol Neurosurg. 2014;119:75–9 [Research Support, N.I.H., Extramural].

    Article  PubMed  Google Scholar 

  25. Halvorsen H, Ramm-Pettersen J, Josefsen R, Ronning P, Reinlie S, Meling T, et al. Surgical complications after transsphenoidal microscopic and endoscopic surgery for pituitary adenoma: a consecutive series of 506 procedures. Acta Neurochir (Wien). 2014;156(3):441–9.

    Article  Google Scholar 

  26. Lucchinetti CF, Popescu BF, Bunyan RF, Moll NM, Roemer SF, Lassmann H, et al. Inflammatory cortical demyelination in early multiple sclerosis. N Engl J Med. 2011;365(23):2188–97 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. McDonald WI, Compston A, Edan G, Goodkin D, Hartung HP, Lublin FD, et al. Recommended diagnostic criteria for multiple sclerosis: guidelines from the international panel on the diagnosis of multiple sclerosis. Ann Neurol. 2001;50(1):121–7 [Guideline Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  28. Fisniku LK, Brex PA, Altmann DR, Miszkiel KA, Benton CE, Lanyon R, et al. Disability and T2 MRI lesions: a 20-year follow-up of patients with relapse onset of multiple sclerosis. Brain. 2008;131(Pt 3):808–17 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  29. Streitberger KJ, Sack I, Krefting D, Pfuller C, Braun J, Paul F, et al. Brain viscoelasticity alteration in chronic-progressive multiple sclerosis. PLoS One. 2012;7(1):e29888 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Pattison AJ, Lollis SS, Perrinez PR, Weaver JB, Paulsen KD, editors. MR elastography of hydrocephalus. Medical Imaging 2009: Biomedical Applications in Molecular, Structural, and Functional Imaging, 72620A; 27 Feb 2009.

    Google Scholar 

  31. Adams RD, Fisher CM, Hakim S, Ojemann RG, Sweet WH. Symptomatic occult hydrocephalus with “normal” cerebrospinal-fluid pressure. a treatable syndrome. N Engl J Med. 1965;273:117–26.

    Article  PubMed  CAS  Google Scholar 

  32. Klassen BT, Ahlskog JE. Normal pressure hydrocephalus: how often does the diagnosis hold water? Neurology. 2011;77(12):1119–25 [Comparative Study Research Support, N.I.H., Extramural].

    Article  PubMed  PubMed Central  Google Scholar 

  33. Streitberger KJ, Wiener E, Hoffmann J, Freimann FB, Klatt D, Braun J, et al. In vivo viscoelastic properties of the brain in normal pressure hydrocephalus. NMR Biomed. 2011;24(4):385–92 [Research Support, Non-U.S. Gov’t].

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Huston III M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Huston, J. (2014). Magnetic Resonance Elastography of the Brain. In: Venkatesh, S., Ehman, R. (eds) Magnetic Resonance Elastography. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1575-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1575-0_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1574-3

  • Online ISBN: 978-1-4939-1575-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics