Skip to main content

Computer Planning for Craniofacial Surgery

  • Chapter
  • First Online:
Digital Technologies in Craniomaxillofacial Surgery

Abstract

The design and execution of reconstructive craniofacial procedures has been greatly enhanced by the application of three-dimensional modeling and rapid prototyping technologies. This chapter discusses the methods and applications of preoperative three-dimensional facial surface simulation and quantitative analysis, rapid prototyping for the generation of patient-specific implants, or molds which allow intraoperative shaping of custom implants in a variety of materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Papadopoulos MA, Christou PK, Christou PK, et al. Three-dimensional craniofacial reconstruction imaging. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2002;93(4):382–93.

    Article  PubMed  Google Scholar 

  2. Zeilhofer H-F, Sader R, Kliegis U, et al. Models by 3D-ultrasound. Phidias Rapid Prototyp Med. 2000;5:1–4.

    Google Scholar 

  3. Yue X, Wang L, Wang R. Tissue modeling and analyzing with finite element method: a review for cranium brain imaging. Int J Biomed Imaging. 2013;2013:781603.

    Article  Google Scholar 

  4. Kim H, Jürgens P, Weber S, Nolte L-P, Reyes M. A new soft-tissue simulation strategy for cranio-maxillofacial surgery using facial muscle template model. Prog Biophys Mol Biol. 2010;103(2–3):284–91.

    Article  PubMed  Google Scholar 

  5. Teshima TL, Patel V, Mainprize JG, Edwards G, Antonyshyn OM. A three-dimensional statistical average skull: Application of biometric morphing in generating missing anatomy. J Craniofac Surg. 2015;26(5):1634–8.

    Article  PubMed  Google Scholar 

  6. Bookstein FL. Principal warps: thin-plate splines and the decomposition of deformations. IEEE Trans Patt Anal. 1989;11(6):567–85.

    Article  Google Scholar 

  7. Heimann T, Meinzer H-P. Statistical shape models for 3D medical image segmentation: a review. Med Image Anal. 2009;13(4):543–63.

    Article  PubMed  Google Scholar 

  8. Rohlf FJ, Marcus LF. A revolution in morphometrics. Trends Ecol Evol. 1993;8:129.

    Article  Google Scholar 

  9. Dean D, Bookstein F, Koneru S, et al. Average African American three-dimensional computed tomography skull images: the potential clinical importance of ethnicity and sex. J Craniofac Surg. 1998;9(4):348–58.

    Article  CAS  PubMed  Google Scholar 

  10. Saber NR, Phillips J, Looi T, et al. Generation of normative pediatric skull models for use in cranial vault remodeling procedures. Childs Nerv Syst. 2012;28(3):405–10.

    Article  PubMed  Google Scholar 

  11. Spetzger U, Vougiokas V, Schipper J. Materials and techniques for osseus skull reconstruction. Minim Invasive Ther Allied Technol. 2010;19:110–21.

    Article  PubMed  Google Scholar 

  12. Lee SC, Wu CT, Lee ST, Chen PJ. Cranioplasty using polymethyl methacrylate prostheses. J Clin Neurosci. 2009;16:56–63.

    Article  CAS  PubMed  Google Scholar 

  13. Cabraja M, Klein M, Lehmann TN. Long-term results following titanium cranioplasty of large skull defects. Neurosurg Focus. 2009;26:E10.

    Article  PubMed  Google Scholar 

  14. Goh RCW, Chang CN, Lin CL, Lo LJ. Customised fabricated implants after previous failed cranioplasty. J Plast Reconstr Aesthet Surg. 2010;63:1479–84.

    Article  PubMed  Google Scholar 

  15. Dean D, Min KJ, Bond A. Computer aided design of large-format prefabricated cranial plates. J Craniofac Surg. 2003;14:819–32.

    Article  PubMed  Google Scholar 

  16. Eufinger H, Wehmoller M, Harders A, Heuser L. Prefabricated prostheses for the reconstruction of skull defects. Int J Oral Maxillofac Surg. 1995;24:104–10.

    Article  CAS  PubMed  Google Scholar 

  17. Wulf J, Busch LC, Golz T, et al. CAD generated mold for preoperative implant fabrication in cranioplasty, Medicine meets virtual reality, vol. 13. Amsterdam: IOS Press; 2005. p. 608–10.

    Google Scholar 

  18. Solaro P, Pierangeli E, Pizzoni C, Boffi P, Scalese G. From computerized tomography data processing to rapid manufacturing of custom-made prostheses for cranioplasty. J Neurosurg Sci. 2008;52:113–6.

    PubMed  CAS  Google Scholar 

  19. Chiarini L, Figurelli S, Pollastri G, et al. Cranioplasty using acrylic material: a new technical procedure. J Craniomaxillofac Surg. 2004;32:5–9.

    Article  PubMed  Google Scholar 

  20. Eschbach L. Nonresorbable polymers in bone surgery. Injury. 2000;31(Suppl 4):22–7.

    Article  PubMed  Google Scholar 

  21. Gerber N, Stieglitz L, Peterhans M, Nolte LP, Raabe A, Weber S. Using rapid prototyping molds to create patient specific polymethylmethacrylate implants in cranioplasty. Conf Proc IEEE Eng Med Biol Soc. 2010;2010:3357–60.

    PubMed  CAS  Google Scholar 

  22. Sunderland IRP, Edwards G, Mainprize J, Antonyshyn O. A technique for intra-operative creation of patient-specific titanium mesh implants for cranioplasty where the size of the skull defect is unknown pre-operatively. Plast Surg (Oakv). 2015 Summer;23(2):95–9.

    Article  Google Scholar 

  23. Mustafa SF, Evans PL, Bocca A, Patton DW, Sugar AW, Baxter PW. Customized titanium reconstruction of post-traumatic orbital wall defects: a review of 22 cases. Int J Oral Maxillofac Surg. 2011 Dec;40(12):1357–62.

    Article  CAS  PubMed  Google Scholar 

  24. Hoffmann J, Cornelius CP, Groten M, Probster L, Pfannenberg C, Schwenzer N. Orbital reconstruction with individually copy-milled ceramic implants. Plast Reconstr Surg. 1998 Mar;101(3):604–12.

    Article  CAS  PubMed  Google Scholar 

  25. Metzger MC, Schon R, Zizelmann C, Weyer N, Gutwald R, Schmelzeisen R. Semiautomatic procedure for individual preforming of titanium meshes for orbital fractures. Plast Reconstr Surg. 2007 Mar;119(3):969–76.

    Article  CAS  PubMed  Google Scholar 

  26. Schmelzeisen R, Gellrich NC, Schoen R, Gutwald R, Zizelmann C, Schramm A. Navigation-aided reconstruction of medial orbital wall and floor contour in cranio-maxillofacial reconstruction. Injury. 2004 Oct;35(10):955–62.

    Article  PubMed  Google Scholar 

  27. Schmelzeisen R, Schramm A. Computer-assisted reconstruction of the facial skeleton. Arch Facial Plast Surg. 2003 Sept–Oct;5(5):437.

    Article  PubMed  Google Scholar 

  28. Podolsky DJ, Mainprize J, Edwards G, Antonyshyn O. Patient-specific orbital implants: development and implementation of technology for more accurate orbital reconstruction. J Craniofac Surg. 2016 Jan;27(1):131–3.

    Article  PubMed  Google Scholar 

  29. Murray DJ, Edwards G, Mainprize JG, Antonyshyn O. Optimizing craniofacial osteotomies: applications of haptic and rapid prototyping technology. J Oral Maxillofac Surg. 2008;66(8):1766–72.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleh M. Antonyshyn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Antonyshyn, O.M., Edwards, G., Mainprize, J.G. (2018). Computer Planning for Craniofacial Surgery. In: Greenberg, A. (eds) Digital Technologies in Craniomaxillofacial Surgery. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1532-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1532-3_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1531-6

  • Online ISBN: 978-1-4939-1532-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics