Skip to main content

Craniomaxillofacial Reconstruction Based on 3D Modeling

  • Chapter
  • First Online:
Digital Technologies in Craniomaxillofacial Surgery

Abstract

Current treatment planning and reconstruction of craniofacial trauma has been advanced greatly due to the increase in the use of software to convert medical image files in the form of Digital Imaging and Communications in Medicine (DICOM) to 3D reconstructions and ultimately files which can be converted for fabrication of medical models and surgical guides using additive or subtractive manufacturing technologies. In addition, advances in photogrammetry systems allow for capture of the surface of the head and neck using camera systems that can be registered to medical images to help in the surgical planning for head and neck reconstructions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Taft RM, Kondor S, Grant GT. Accuracy of rapid prototype models for head and neck reconstruction. J Prosthet Dent. 2011 Dec;106(6):399–408.

    Article  PubMed  Google Scholar 

  2. Grant GT, Liacouras PC, Kondor S. Maxillofacial trauma imaging in the trauma patient. Atlas Oral Maxillofac Surg Clin North Am. 2013 Mar;21(1):25–36.

    Google Scholar 

  3. Kozakiewicz M, Elgalal M, Loba P, et al. Clinical application of 3D pre-bent titanium implants for orbital floor fractures. J Craniomaxillofac Surg. 2009;37(4):229–34.

    Article  PubMed  Google Scholar 

  4. Cui J, Chen L, Guan X, Ye L, Wang H, Liu L. Surgical planning, three-dimensional model surgery and preshaped implants in treatment of bilateral craniomaxillofacial post-traumatic deformities. J Oral Maxillofac Surg. 2014;72(6):1138–e1-14.

    Article  PubMed  Google Scholar 

  5. Muller A, Krishnan KG, Uhl E, Mast G. The application of rapid prototyping techniques in cranial reconstruction and preoperative planning in neurosurgery. J Craniofac Surg. 2003;14(6):899–914.

    Article  PubMed  Google Scholar 

  6. Zurl B, Tiefling R, Whinkler P, Kindi P, Kapp KS. Hounsfied units variations: impact on CT density based conversion tables and their effects on dose distribution. Strahlenther Onkol. 2014 Jan;190(1):88–93.

    Article  CAS  PubMed  Google Scholar 

  7. Patel S, Dawood A, Ford TP, Whaites E. The potential applications of cone beam computed tomography in the management of endodontic problems. Int Endod J. 2007 Oct;40(10):818–30.

    Article  CAS  PubMed  Google Scholar 

  8. Jacobs R, Quirynen M. Dental cone beam computed tomography: justification for use in planning oral implant placement. Periodontol. 2014;66(1):203–13.

    Article  Google Scholar 

  9. Makins SR. Artifacts interfering with interpretation of cone beam tomography images. Dent Clin N Am. 2014 Jul;58(3):485–95.

    Article  PubMed  Google Scholar 

  10. Maal TJ, van Loon B, Plooij JM, Rangel F, Ettema AM, Borstlap WA, Berge SJ. Registration of 3-dimenstional facial photographs for clinical use. J Oral Maxillofac Surg. 2010 Oct;68(10):2391–401.

    Article  PubMed  Google Scholar 

  11. Simanca E, Morris D, Zhao L, Reisberg D, Viana G. Measuring progressive soft tissue change with nasoalveolar molding using a three-dimensional system. J Craniofac Surg. 2011 Sept;22(5):1622–5.

    Article  PubMed  Google Scholar 

  12. Edgar D, Day R, Briffa NK, Cole J, Wood F. Volume measurements using the Polhemus FastSCAN 3D laser scanning: a novel application for burns clinical research. J Burn Care Res. 2008 Nov-Dec;29(6):994–1000.

    Article  PubMed  Google Scholar 

  13. Hiller J, Lipson H. STL 2.0: a proposal for a universal, multi-material Additive Manufacturing File Format. In: Proceedings of the Solid Freeform Fabrication Symposium (SFF’09), Austin;2009. p. 266–278.

    Google Scholar 

  14. Parks CL, Richard AH, Monson KL. Preliminary performance assessment of computer automated facial approximations using computed tomography scans of living individuals. Forensic Sci Int. 2013;233(1-3):133–9.

    Article  PubMed  Google Scholar 

  15. Lindsay RW, Herberg M, Liacouras P. The use of three dimensional technology and additive manufacturing to create templates for soft-tissue reconstructions. Plast Reconstr Surg. 2012 Oct;130(4):629e–31e.

    Article  CAS  PubMed  Google Scholar 

  16. Antony AK, Chen WF, Kolokythas A, Weimer KA, Cohn MN. Use of virtual surgery and stereolithography-guided osteotomy for mandibular reconstruction with the free fibula. Plast Reconstr Surg. 2011 Nov;128(5):1080–4.

    Article  CAS  PubMed  Google Scholar 

  17. Gordon CR, Susarla S, Peacock Z, et al. Le Fort-based maxillofacial transplantation: current state-of-the-art and refined technique. J Craniofac Surg. 2012;23:81–7.

    Google Scholar 

  18. Siemionow M, Papay F, Alam D, et al. Near total face transplantation in severely disfigured patient in the USA. Lancet. 2009;374:203–9.

    Article  PubMed  Google Scholar 

  19. Singhal D, Pribaz JJ, Pomahac B. The Brigham and Women’s Hospital face transplant program: a look back. Plast Reconstr Surg 2012 Jan;129(1):81e–88e.

    Google Scholar 

  20. Gordon CR, Murphy RJ, Coon D, Otake Y, Basafa E, Al Rakan M, Rada E, Susarla S, Swanson E, Fishman E, Santiago G, Brandacher G, Andrew Lee WP, Liacouras P, Grant G, Armand M. Preliminary development of a preliminary development of a workstation for craniomaxillofacial surgical procedures – introducing a computer-assisted planning and execution (CAPE) system. J Craniofac Surg. 2014;25(1):273–83.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hsieh TY, Dedhia R, Cervenka B, Tollefson TT. 3D Printing: current use in facial plastic and reconstructive surgery. Curr Opin Otolaryngol Head Neck Surg 2017 Aug; 25(4)291–299.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald T. Grant .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Grant, G.T. (2018). Craniomaxillofacial Reconstruction Based on 3D Modeling. In: Greenberg, A. (eds) Digital Technologies in Craniomaxillofacial Surgery. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1532-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1532-3_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1531-6

  • Online ISBN: 978-1-4939-1532-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics