Craniomaxillofacial Reconstruction Based on 3D Modeling

  • Gerald T. Grant


Current treatment planning and reconstruction of craniofacial trauma has been advanced greatly due to the increase in the use of software to convert medical image files in the form of Digital Imaging and Communications in Medicine (DICOM) to 3D reconstructions and ultimately files which can be converted for fabrication of medical models and surgical guides using additive or subtractive manufacturing technologies. In addition, advances in photogrammetry systems allow for capture of the surface of the head and neck using camera systems that can be registered to medical images to help in the surgical planning for head and neck reconstructions.


Craniofacial trauma Digital Imaging and Communications in Medicine (DICOM) 3D reconstruction 3D printing Photogrammetry 


  1. 1.
    Taft RM, Kondor S, Grant GT. Accuracy of rapid prototype models for head and neck reconstruction. J Prosthet Dent. 2011 Dec;106(6):399–408.CrossRefPubMedGoogle Scholar
  2. 2.
    Grant GT, Liacouras PC, Kondor S. Maxillofacial trauma imaging in the trauma patient. Atlas Oral Maxillofac Surg Clin North Am. 2013 Mar;21(1):25–36.Google Scholar
  3. 3.
    Kozakiewicz M, Elgalal M, Loba P, et al. Clinical application of 3D pre-bent titanium implants for orbital floor fractures. J Craniomaxillofac Surg. 2009;37(4):229–34.CrossRefPubMedGoogle Scholar
  4. 4.
    Cui J, Chen L, Guan X, Ye L, Wang H, Liu L. Surgical planning, three-dimensional model surgery and preshaped implants in treatment of bilateral craniomaxillofacial post-traumatic deformities. J Oral Maxillofac Surg. 2014;72(6):1138–e1-14.CrossRefPubMedGoogle Scholar
  5. 5.
    Muller A, Krishnan KG, Uhl E, Mast G. The application of rapid prototyping techniques in cranial reconstruction and preoperative planning in neurosurgery. J Craniofac Surg. 2003;14(6):899–914.CrossRefPubMedGoogle Scholar
  6. 6.
    Zurl B, Tiefling R, Whinkler P, Kindi P, Kapp KS. Hounsfied units variations: impact on CT density based conversion tables and their effects on dose distribution. Strahlenther Onkol. 2014 Jan;190(1):88–93.CrossRefPubMedGoogle Scholar
  7. 7.
    Patel S, Dawood A, Ford TP, Whaites E. The potential applications of cone beam computed tomography in the management of endodontic problems. Int Endod J. 2007 Oct;40(10):818–30.CrossRefPubMedGoogle Scholar
  8. 8.
    Jacobs R, Quirynen M. Dental cone beam computed tomography: justification for use in planning oral implant placement. Periodontol. 2014;66(1):203–13.CrossRefGoogle Scholar
  9. 9.
    Makins SR. Artifacts interfering with interpretation of cone beam tomography images. Dent Clin N Am. 2014 Jul;58(3):485–95.CrossRefPubMedGoogle Scholar
  10. 10.
    Maal TJ, van Loon B, Plooij JM, Rangel F, Ettema AM, Borstlap WA, Berge SJ. Registration of 3-dimenstional facial photographs for clinical use. J Oral Maxillofac Surg. 2010 Oct;68(10):2391–401.CrossRefPubMedGoogle Scholar
  11. 11.
    Simanca E, Morris D, Zhao L, Reisberg D, Viana G. Measuring progressive soft tissue change with nasoalveolar molding using a three-dimensional system. J Craniofac Surg. 2011 Sept;22(5):1622–5.CrossRefPubMedGoogle Scholar
  12. 12.
    Edgar D, Day R, Briffa NK, Cole J, Wood F. Volume measurements using the Polhemus FastSCAN 3D laser scanning: a novel application for burns clinical research. J Burn Care Res. 2008 Nov-Dec;29(6):994–1000.CrossRefPubMedGoogle Scholar
  13. 13.
    Hiller J, Lipson H. STL 2.0: a proposal for a universal, multi-material Additive Manufacturing File Format. In: Proceedings of the Solid Freeform Fabrication Symposium (SFF’09), Austin;2009. p. 266–278.Google Scholar
  14. 14.
    Parks CL, Richard AH, Monson KL. Preliminary performance assessment of computer automated facial approximations using computed tomography scans of living individuals. Forensic Sci Int. 2013;233(1-3):133–9.CrossRefPubMedGoogle Scholar
  15. 15.
    Lindsay RW, Herberg M, Liacouras P. The use of three dimensional technology and additive manufacturing to create templates for soft-tissue reconstructions. Plast Reconstr Surg. 2012 Oct;130(4):629e–31e.CrossRefPubMedGoogle Scholar
  16. 16.
    Antony AK, Chen WF, Kolokythas A, Weimer KA, Cohn MN. Use of virtual surgery and stereolithography-guided osteotomy for mandibular reconstruction with the free fibula. Plast Reconstr Surg. 2011 Nov;128(5):1080–4.CrossRefPubMedGoogle Scholar
  17. 17.
    Gordon CR, Susarla S, Peacock Z, et al. Le Fort-based maxillofacial transplantation: current state-of-the-art and refined technique. J Craniofac Surg. 2012;23:81–7.Google Scholar
  18. 18.
    Siemionow M, Papay F, Alam D, et al. Near total face transplantation in severely disfigured patient in the USA. Lancet. 2009;374:203–9.CrossRefPubMedGoogle Scholar
  19. 19.
    Singhal D, Pribaz JJ, Pomahac B. The Brigham and Women’s Hospital face transplant program: a look back. Plast Reconstr Surg 2012 Jan;129(1):81e–88e.Google Scholar
  20. 20.
    Gordon CR, Murphy RJ, Coon D, Otake Y, Basafa E, Al Rakan M, Rada E, Susarla S, Swanson E, Fishman E, Santiago G, Brandacher G, Andrew Lee WP, Liacouras P, Grant G, Armand M. Preliminary development of a preliminary development of a workstation for craniomaxillofacial surgical procedures – introducing a computer-assisted planning and execution (CAPE) system. J Craniofac Surg. 2014;25(1):273–83.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Hsieh TY, Dedhia R, Cervenka B, Tollefson TT. 3D Printing: current use in facial plastic and reconstructive surgery. Curr Opin Otolaryngol Head Neck Surg 2017 Aug; 25(4)291–299.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Oral Health and RehabilitationUniversity of Louisville School of DentistryLouisvilleUSA

Personalised recommendations