Digital Planning in Pediatric Craniofacial Surgery

  • Samer Elia Haber
  • Anup Patel
  • Derek M. Steinbacher
Chapter

Abstract

Pediatric craniofacial surgery requires complex reconstructions, with spatial repositioning of structures and compartments within the head and facial region. Radiologic and morphometric assessments have always been central to both preoperative planning and gauging postoperative results. With the advent of sophisticated, three-dimensional planning tools, the accuracy and reproducibility of challenging craniomaxillofacial reconstructions can be facilitated. In this chapter we outline current applications of computer-based planning utilized for pediatric craniofacial surgery. Example cases have been chosen to represent the scope of craniomaxillofacial reconstruction and implementation of 3D technology. These include:
  • Craniosynostosis (syndromic and non-syndromic)

  • Cranial defect or dysmorphology

  • Orbital repositioning or translocation

  • Mandibular reconstruction using free fibula flap

  • Mandibular distraction for micrognathia with airway obstruction (neonatal and in older children)

  • Orthognathic surgery

Keywords

CAD/CAM Computer-assisted surgery Maxillofacial procedures Pediatrics Three-dimensional imaging Tomography Craniosynostoses Free tissue flap Distraction osteogenesis Mandibular advancement 

Abbreviations

2D:

Two-dimensional

3D:

Three-dimensional

CAD:

Computer-aided design

CAM:

Computer-aided manufacturing

CT:

Computed Tomography

DICOM:

Digital imaging and communications in medicine

HFM:

Hemifacial microsomia

VSP:

Virtual Surgical Planning

References

  1. 1.
    Robiony M, Salvo I, Costa F, Zerman N, Bandera C, Filippi S, et al. Accuracy of virtual reality and stereolithographic models in maxillo-facial surgical planning. J Craniofac Surg. 2008;19(2):482–9.CrossRefGoogle Scholar
  2. 2.
    Schendel SA, Hazan-Molina H, Rachmiel A, Aizenbud D. The future in craniofacial surgery: computer-assisted planning. Rambam Maimonides Med J. 2012;3(2):e0012.CrossRefGoogle Scholar
  3. 3.
    Grauer D, Cevidanes LSH, Proffit WR. Working with DICOM craniofacial images. Am J Orthod Dentofac Orthop. 2009;136(3):460–70.CrossRefGoogle Scholar
  4. 4.
    Flores RL, Deluccia N, Grayson BH, Oliker A, McCarthy JG. Creating a virtual surgical atlas of craniofacial procedures: Part I. Three-dimensional digital models of craniofacial deformities. Plast Reconstr Surg. 2010;126(6):2084–92.CrossRefGoogle Scholar
  5. 5.
    Flores RL, Deluccia N, Oliker A, McCarthy JG. Creating a virtual surgical atlas of craniofacial procedures: Part II. Surgical animations. Plast Reconstr Surg. 2010;126(6):2093–101.CrossRefGoogle Scholar
  6. 6.
    Meehan M, Teschner M, Girod S. Three-dimensional simulation and prediction of craniofacial surgery. Orthod Craniofac Res. 2003;6(Suppl 1):102–7.CrossRefGoogle Scholar
  7. 7.
    Rudman K, Hoekzema C, Rhee J. Computer-assisted innovations in craniofacial surgery. Facial Plast Surg FPS. 2011;27(4):358–65.CrossRefGoogle Scholar
  8. 8.
    Markiewicz MR, Bell RB. The use of 3D imaging tools in facial plastic surgery. Facial Plast Surg Clin North Am. 2011;19(4):655–82.CrossRefGoogle Scholar
  9. 9.
    Bell RB. Computer planning and intraoperative navigation in cranio-maxillofacial surgery. Oral Maxillofac Surg Clin North Am. 2010;22(1):135–56.CrossRefGoogle Scholar
  10. 10.
    Marsh JL, Vannier MW. Surface imaging from computerized tomographic scans. Surgery. 1983;94(2):159–65.PubMedGoogle Scholar
  11. 11.
    Cutting C, Bookstein FL, Grayson B, Fellingham L, McCarthy JG. Three-dimensional computer-assisted design of craniofacial surgical procedures: optimization and interaction with cephalometric and CT-based models. Plast Reconstr Surg. 1986;77(6):877–87.CrossRefGoogle Scholar
  12. 12.
    Cutting C, Grayson B, Bookstein F, Fellingham L, McCarthy JG. Computer-aided planning and evaluation of facial and orthognathic surgery. Clin Plast Surg. 1986;13(3):449–62.PubMedGoogle Scholar
  13. 13.
    Vannier MW, Conroy GC, Marsh JL, Knapp RH. Three-dimensional cranial surface reconstructions using high-resolution computed tomography. Am J Phys Anthropol. 1985;67(4):299–311.CrossRefGoogle Scholar
  14. 14.
    Marsh JL, Vannier MW, Stevens WG, Warren JO, Gayou D, Dye DM. Computerized imaging for soft tissue and osseous reconstruction in the head and neck. Clin Plast Surg. 1985;12(2):279–91.PubMedGoogle Scholar
  15. 15.
    Vander Sloten J, Degryse K, Gobin R, Van der Perre G, Mommaerts MY. Interactive simulation of cranial surgery in a computer aided design environment. J Craniomaxillofac Surg. 1996;24(2):122–9.CrossRefGoogle Scholar
  16. 16.
    Mommaerts MY, Jans G, Vander Sloten J, Staels PF, Van der Perre G, Gobin R. On the assets of CAD planning for craniosynostosis surgery. J Craniofac Surg. 2001;12(6):547–54.CrossRefGoogle Scholar
  17. 17.
    Saber NR, Phillips J, Looi T, Usmani Z, Burge J, Drake J, et al. Generation of normative pediatric skull models for use in cranial vault remodeling procedures. Childs Nerv Syst. 2012;28(3):405–10.CrossRefGoogle Scholar
  18. 18.
    Burge J, Saber NR, Looi T, French B, Usmani Z, Anooshiravani N, et al. Application of CAD/CAM prefabricated age-matched templates in cranio-orbital remodeling in craniosynostosis. J Craniofac Surg. 2011;22(5):1810–3.CrossRefGoogle Scholar
  19. 19.
    Seruya M, Borsuk DE, Khalifian S, Carson BS, Dalesio NM, Dorafshar AH. Computer-aided design and manufacturing in craniosynostosis surgery. J Craniofac Surg. 2013;24(4):1100–5.CrossRefGoogle Scholar
  20. 20.
    Mardini S, Alsubaie S, Cayci C, Chim H, Wetjen N. Three-dimensional preoperative virtual planning and template use for surgical correction of craniosynostosis. J Plast Reconstr Aesthet Surg. 2014;67(3):336–43.CrossRefGoogle Scholar
  21. 21.
    Diluna ML, Steinbacher DM. Simulated fronto-orbital advancement achieves reproducible results in metopic synostosis. J Craniofac Surg. 2012;23(3):e231–4.CrossRefGoogle Scholar
  22. 22.
    Shah A, Patel A, Steinbacher DM. Simulated frontoorbital advancement and intraoperative templates enhance reproducibility in craniosynostosis. Plast Reconstr Surg. 2012;129(6):1011e–2e.CrossRefGoogle Scholar
  23. 23.
    Khechoyan DY, Saber NR, Burge J, Fattah A, Drake J, Forrest CR, et al. Surgical outcomes in craniosynostosis reconstruction: the use of prefabricated templates in cranial vault remodelling. J Plast Reconstr Aesthet Surg. 2014;67(1):9–16.CrossRefGoogle Scholar
  24. 24.
    Ezaldein HH, Metzler P, Persing JA, Steinbacher DM. Three-dimensional orbital dysmorphology in metopic synostosis. J Plast Reconstr Aesthet Surg. 2014;67(7):900–5.CrossRefGoogle Scholar
  25. 25.
    Metzler P, Ezaldein HH, Persing JA, Steinbacher DM. Comparing two fronto-orbital advancement strategies to treat trigonocephaly in metopic synostosis. J Craniomaxillofac Surg. 2014;42:1437–41.CrossRefGoogle Scholar
  26. 26.
    Beckett JS, Persing JA, Steinbacher DM. Bilateral orbital dysmorphology in unicoronal synostosis. Plast Reconstr Surg. 2013;131(1):125–30.CrossRefGoogle Scholar
  27. 27.
    Beckett JS, Chadha P, Persing JA, Steinbacher DM. Classification of trigonocephaly in metopic synostosis. Plast Reconstr Surg. 2012;130(3):442e–7e.CrossRefGoogle Scholar
  28. 28.
    Pfaff MJ, Wong K, Persing JA, Steinbacher DM. Zygomatic dysmorphology in unicoronal synostosis. J Plast Reconstr Aesthet Surg. 2013;66(8):1096–102.CrossRefGoogle Scholar
  29. 29.
    Steinbacher DM, Skirpan J, Puchała J, Bartlett SP. Expansion of the posterior cranial vault using distraction osteogenesis. Plast Reconstr Surg. 2011;127(2):792–801.CrossRefGoogle Scholar
  30. 30.
    Taylor JA, Derderian CA, Bartlett SP, Fiadjoe JE, Sussman EM, Stricker PA. Perioperative morbidity in posterior cranial vault expansion: distraction osteogenesis versus conventional osteotomy. Plast Reconstr Surg. 2012;129(4):674e–80e.CrossRefGoogle Scholar
  31. 31.
    Marchac A, Arnaud E. Cranium and midface distraction osteogenesis: current practices, controversies, and future applications. J Craniofac Surg. 2012;23(1):235–8.CrossRefGoogle Scholar
  32. 32.
    Choi M, Flores RL, Havlik RJ. Volumetric analysis of anterior versus posterior cranial vault expansion in patients with syndromic craniosynostosis. J Craniofac Surg. 2012;23(2):455–8.CrossRefGoogle Scholar
  33. 33.
    Nowinski D, Di Rocco F, Renier D, SainteRose C, Leikola J, Arnaud E. Posterior cranial vault expansion in the treatment of craniosynostosis. Comparison of current techniques. Childs Nerv Syst. 2012;28(9):1537–44.CrossRefGoogle Scholar
  34. 34.
    Derderian CA, Bastidas N, Bartlett SP. Posterior cranial vault expansion using distraction osteogenesis. Childs Nerv Syst. 2012;28(9):1551–6.CrossRefGoogle Scholar
  35. 35.
    Satoh K, Mitsukawa N. Suitable indication for the application of distraction osteogenesis: occipital enlargement for lambdoid synostosis. J Craniofac Surg. 2013;24(5):1530–4.CrossRefGoogle Scholar
  36. 36.
    Ylikontiola LP, Sándor GK, Salokorpi N, Serlo WS. Experience with craniosynostosis treatment using posterior cranial vault distraction osteogenesis. Ann Maxillofac Surg. 2012;2(1):4–7.CrossRefGoogle Scholar
  37. 37.
    White N, Evans M, Dover MS, Noons P, Solanki G, Nishikawa H. Posterior calvarial vault expansion using distraction osteogenesis. Childs Nerv Syst. 2009;25(2):231–6.CrossRefGoogle Scholar
  38. 38.
    Nowinski D, Saiepour D, Leikola J, Messo E, Nilsson P, Enblad P. Posterior cranial vault expansion performed with rapid distraction and time-reduced consolidation in infants with syndromic craniosynostosis. Childs Nerv Syst. 2011;27(11):1999–2003.CrossRefGoogle Scholar
  39. 39.
    De Jong T, van Veelen MLC, Mathijssen IMJ. Spring-assisted posterior vault expansion in multisuture craniosynostosis. Childs Nerv Syst. 2013;29(5):815–20.CrossRefGoogle Scholar
  40. 40.
    Mulliken JB, Godwin SL, Pracharktam N, Altobelli DE. The concept of the sagittal orbital-globe relationship in craniofacial surgery. Plast Reconstr Surg. 1996;97(4):700–6.CrossRefGoogle Scholar
  41. 41.
    Pai L, Kohout MP, Mulliken JB. Prospective anthropometric analysis of sagittal orbital-globe relationship following fronto-orbital advancement in childhood. Plast Reconstr Surg. 1999;103(5):1341–6.CrossRefGoogle Scholar
  42. 42.
    Bender CA, Veneman W, Veenland JF, Mathijssen IMJ, Hop WCJ, Koudstaal MJ, et al. Orbital aspects following monobloc advancement in syndromic craniosynostosis. J Craniomaxillofac Surg. 2013;41(7):e146–53.CrossRefGoogle Scholar
  43. 43.
    Jeelani NUO, Khan MA, Fitzgerald O’Connor EJ, Dunaway D, Hayward R. Frontofacial monobloc distraction using the StealthStation intraoperative navigation system: the ability to see where you are cutting. J Craniofac Surg. 2009;20(3):892–4.CrossRefGoogle Scholar
  44. 44.
    Paige KT, Vega SJ, Kelly CP, Bartlett SP, Zakai E, Jawad AF, et al. Age-dependent closure of bony defects after frontal orbital advancement. Plast Reconstr Surg. 2006;118(4):977–84.CrossRefGoogle Scholar
  45. 45.
    Dean D, Min K-J, Bond A. Computer aided design of large-format prefabricated cranial plates. J Craniofac Surg. 2003;14(6):819–32.CrossRefGoogle Scholar
  46. 46.
    Winder J, Cooke RS, Gray J, Fannin T, Fegan T. Medical rapid prototyping and 3D CT in the manufacture of custom made cranial titanium plates. J Med Eng Technol. 1999;23(1):26–8.CrossRefGoogle Scholar
  47. 47.
    Saringer W, Nöbauer-Huhmann I, Knosp E. Cranioplasty with individual carbon fibre reinforced polymer (CFRP) medical grade implants based on CAD/CAM technique. Acta Neurochir. 2002;144(11):1193–203.CrossRefGoogle Scholar
  48. 48.
    Ono I, Tateshita T, Satou M, Sasaki T, Matsumoto M, Kodama N. Treatment of large complex cranial bone defects by using hydroxyapatite ceramic implants. Plast Reconstr Surg. 1999;104(2):339–49.CrossRefGoogle Scholar
  49. 49.
    Eufinger H, Wehmöller M. Individual prefabricated titanium implants in reconstructive craniofacial surgery: clinical and technical aspects of the first 22 cases. Plast Reconstr Surg. 1998;102(2):300–8.CrossRefGoogle Scholar
  50. 50.
    Hanasono MM, Goel N, DeMonte F. Calvarial reconstruction with polyetheretherketone implants. Ann Plast Surg. 2009;62(6):653–5.CrossRefGoogle Scholar
  51. 51.
    Bricolo A, Benati A, Bazzan A. Cranioplasty with acrylic resin, with heavy stainless steel mesh and with fragments of theca. Minerva Neurochir. 1967;11(3):208–11.PubMedGoogle Scholar
  52. 52.
    Cohen AJ, Dickerman RD, Schneider SJ. New method of pediatric cranioplasty for skull defect utilizing polylactic acid absorbable plates and carbonated apatite bone cement. J Craniofac Surg. 2004;15(3):469–72.CrossRefGoogle Scholar
  53. 53.
    Biskup NI, Singh DJ, Beals S, Joganic EF, Manwaring K. Pediatric cranial vault defects: early experience with beta-tricalcium phosphate bone graft substitute. J Craniofac Surg. 2010;21(2):358–62.CrossRefGoogle Scholar
  54. 54.
    Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials. 2000;21(24):2529–43.CrossRefGoogle Scholar
  55. 55.
    Chim H, Schantz J-T. New frontiers in calvarial reconstruction: integrating computer-assisted design and tissue engineering in cranioplasty. Plast Reconstr Surg. 2005;116(6):1726–41.CrossRefGoogle Scholar
  56. 56.
    Jarrahy R. Controversies in the management of neonatal micrognathia: to distract or not to distract, that is the question. J Craniofac Surg. 2012;23(1):243–9.CrossRefGoogle Scholar
  57. 57.
    D’Hauthuille C, Taha F, Devauchelle B, Testelin S. Comparison of two computer-assisted surgery techniques to guide a mandibular distraction osteogenesis procedure. Technical note. Int J Oral Maxillofac Surg. 2005;34(2):197–201.CrossRefGoogle Scholar
  58. 58.
    Rachmiel A, Srouji S, Emodi O, Aizenbud D. Distraction osteogenesis for tracheostomy dependent children with severe micrognathia. J Craniofac Surg. 2012;23(2):459–63.CrossRefGoogle Scholar
  59. 59.
    McCarthy JG, Schreiber J, Karp N, Thorne CH, Grayson BH. Lengthening the human mandible by gradual distraction. Plast Reconstr Surg. 1992;89(1):1–8. discussion 9–10.CrossRefGoogle Scholar
  60. 60.
    Nagy K, Kuijpers-Jagtman AM, Mommaerts MY. No evidence for long-term effectiveness of early osteodistraction in hemifacial microsomia. Plast Reconstr Surg. 2009;124(6):2061–71.CrossRefGoogle Scholar
  61. 61.
    Suh J, Choi TH, Baek S-H, Kim JC, Kim S. Mandibular distraction in unilateral craniofacial microsomia: longitudinal results until the completion of growth. Plast Reconstr Surg. 2013;132(5):1244–52.CrossRefGoogle Scholar
  62. 62.
    Ascenço ASK, Balbinot P, Junior IM, D’Oro U, Busato L, da Silva Freitas R. Mandibular distraction in hemifacial microsomia is not a permanent treatment: a long-term evaluation. J Craniofac Surg. 2014;25(2):352–4.CrossRefGoogle Scholar
  63. 63.
    Pluijmers BI, Caron CJJM, Dunaway DJ, Wolvius EB, Koudstaal MJ. Mandibular reconstruction in the growing patient with unilateral craniofacial microsomia: a systematic review. Int J Oral Maxillofac Surg. 2014;43(3):286–95.CrossRefGoogle Scholar
  64. 64.
    Khetani MA, Collett BR, Speltz ML, Werler MM. Health-related quality of life in children with hemifacial microsomia: parent and child perspectives. J Dev Behav Pediatr. 2013;34(9):661–8.CrossRefGoogle Scholar
  65. 65.
    Chen Y, Niu F, Yu B, Liu J, Wang M, Gui L. Three-dimensional preoperative design of distraction osteogenesis for hemifacial microsomia. J Craniofac Surg. 2014;25(1):184–8.CrossRefGoogle Scholar
  66. 66.
    Paeng J-Y, Lee J-H, Lee J-H, Kim M-J. Condyle as the point of rotation for 3-D planning of distraction osteogenesis for hemifacial microsomia. J Craniomaxillofac Surg. 2007;35(2):91–102.CrossRefGoogle Scholar
  67. 67.
    Sun H, Li B, Zhao Z, Zhang L, Shen SGF, Wang X. Error analysis of a CAD/CAM method for unidirectional mandibular distraction osteogenesis in the treatment of hemifacial microsomia. Br J Oral Maxillofac Surg. 2013;51(8):892–7.CrossRefGoogle Scholar
  68. 68.
    Ducic Y, Young L. Improving aesthetic outcomes in pediatric free tissue oromandibular reconstruction. Arch Facial Plast Surg. 2011;13(3):180–4.CrossRefGoogle Scholar
  69. 69.
    Stirling Craig E, Yuhasz M, Shah A, Blumberg J, Salomon J, Lowlicht R, et al. Simulated surgery and cutting guides enhance spatial positioning in free fibular mandibular reconstruction. Microsurgery. 2014;35:29–33.CrossRefGoogle Scholar
  70. 70.
    Liu X, Gui L, Mao C, Peng X, Yu G. Applying computer techniques in maxillofacial reconstruction using a fibula flap: a messenger and an evaluation method. J Craniofac Surg. 2009;20(2):372–7.CrossRefGoogle Scholar
  71. 71.
    Schepers RH, Raghoebar GM, Vissink A, Lahoda LU, Van der Meer WJ, Roodenburg JL, et al. Fully 3-dimensional digitally planned reconstruction of a mandible with a free vascularized fibula and immediate placement of an implant-supported prosthetic construction. Head Neck. 2013;35(4):E109–14.CrossRefGoogle Scholar
  72. 72.
    Freudlsperger C, Bodem JP, Engel E, Hoffmann J. Mandibular reconstruction with a prefabricated free vascularized fibula and implant-supported prosthesis based on fully three-dimensional virtual planning. J Craniofac Surg. 2014;25(3):980–2.CrossRefGoogle Scholar
  73. 73.
    Metzger MC, Hohlweg-Majert B, Schwarz U, Teschner M, Hammer B, Schmelzeisen R. Manufacturing splints for orthognathic surgery using a three-dimensional printer. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008;105(2):e1–7.CrossRefGoogle Scholar
  74. 74.
    Choi J-Y, Song K-G, Baek S-H. Virtual model surgery and wafer fabrication for orthognathic surgery. Int J Oral Maxillofac Surg. 2009;38(12):1306–10.CrossRefGoogle Scholar
  75. 75.
    Aboul-Hosn Centenero S, Hernández-Alfaro F. 3D planning in orthognathic surgery: CAD/CAM surgical splints and prediction of the soft and hard tissues results - our experience in 16 cases. J Craniomaxillofac Surg. 2012;40(2):162–8.CrossRefGoogle Scholar
  76. 76.
    Sun Y, Luebbers H-T, Agbaje JO, Schepers S, Vrielinck L, Lambrichts I, et al. Accuracy of upper jaw positioning with intermediate splint fabrication after virtual planning in bimaxillary orthognathic surgery. J Craniofac Surg. 2013;24(6):1871–6.CrossRefGoogle Scholar
  77. 77.
    Tsuji M, Noguchi N, Shigematsu M, Yamashita Y, Ihara K, Shikimori M, et al. A new navigation system based on cephalograms and dental casts for oral and maxillofacial surgery. Int J Oral Maxillofac Surg. 2006;35(9):828–36.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Samer Elia Haber
    • 1
  • Anup Patel
    • 2
  • Derek M. Steinbacher
    • 3
  1. 1.Plastic and Maxillofacial Surgery DepartmentHôtel Dieu de France HospitalBeirutLebanon
  2. 2.Yale Plastic SurgeryNew HavenUSA
  3. 3.Craniomaxillofacial SurgeryYale University School of MedicineNew HavenUSA

Personalised recommendations