Skip to main content

Microvascular Craniomaxillofacial Reconstructive Bone Surgery

  • Chapter
  • First Online:

Abstract

The ability to reconstruct defects with free tissue has dramatically improved the outcomes of patients with deficits of the head and neck. These vascularized bone grafts (VBGs) have dramatically improved the potential for reconstruction of complex defects of the mandible and maxilla following tumor ablation or severe trauma. VBGs utilizing microvascular free tissue transfer are at the top of the reconstructive ladder, providing vascularized tissue to defects of substantial size or suboptimal conditions such as areas of radiation, infection, and implantation. These flaps may be used for defects in the maxilla and/or mandible, depending on the defect’s size, location, and local tissues required. Numerous donor sites for free bone flaps have been described for this application, including the fibula, iliac crest, scapula, rib, and radial forearm. In addition to a comprehensive discussion of each, current and future trends in the field, such as CAD-CAM imaging, robotic surgery, and tissue engineering, are described in the present chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   239.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Banerjee AR, Westmore GA. Free rib graft reconstruction of the mandible: a forgotten option? Ann R Coll Surg Engl. 1995;77(4):278–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Taylor GI, Miller GD, Ham FJ. The free vascularized bone graft: a clinical extension of microvascular techniques. Plast Reconstr Surg. 1975;55:533–44.

    Article  CAS  PubMed  Google Scholar 

  3. Buncke JH, Furnas DW, Gordon L, Achauer BM. Free osteo-cutaneous flap from a rib to the tibia. Plast Reconstr Surg. 1977;59:799–804.

    Article  CAS  PubMed  Google Scholar 

  4. McKee DM. Microvascular bone transplantation. Clin Plast Surg. 1978;5:283–92.

    CAS  PubMed  Google Scholar 

  5. Berggren A, Weiland AJ, Dorfman H. Free vascularized bone grafts: factors affecting their survival and ability to heal to recipient bone defects. Plast Reconstr Surg. 1982;69:19–29.

    Article  CAS  PubMed  Google Scholar 

  6. Berggren A, Weiland AJ, Dorfman H. The effect of prolonged ischemia time on osteocyte and osteoblast survival in composite bone grafts revascularized by microvascular anastomoses. Plast Reconstr Surg. 1982;69:290–8.

    Article  CAS  PubMed  Google Scholar 

  7. Moore JB, Mazur JM, Zehr D, Davis PK, Zook EG. A biomechanical comparison of vascularized and conventional autogenous bone grafts. Plast Reconstr Surg. 1984;73:382–6.

    Article  CAS  PubMed  Google Scholar 

  8. Altobelli DE, Lorente CA, Handren JH, Young J, Donoff RB, May JW. Free and microvascular bone grafting in the irradiated dog mandible. J Oral Maxillofac Surg. 1987;45:27–33.

    Article  CAS  PubMed  Google Scholar 

  9. Schliephake H. Revascularized tissue transfer for the repair of complex midfacial defects in oncologic patients. J Oral Maxillofac Surg. 2000;58:1212–8.

    Article  CAS  PubMed  Google Scholar 

  10. Coleman JJ III. Osseous reconstruction of the midface and orbits. Clin Plast Surg. 1994;21:113–24.

    PubMed  Google Scholar 

  11. McCarthy C, Cordeiro P. Microvascular reconstruction of oncologic defects of the face. Plast Reconstr Surg. 2010;126:1947–59.

    Article  CAS  PubMed  Google Scholar 

  12. Bianchi B, Ferri A, Ferrari S, Copelli C, Poli T, Sesenna E. Free and locoregional flap associations in the reconstruction of extensive head and neck defects. Int J Oral Maxillofac Surg. 2008;37(8):723–9.

    Article  CAS  PubMed  Google Scholar 

  13. Finseth F, Kavarana N, Antia N. Complications of free flap transfers to the mouth region. Plast Reconstr Surg. 1975;56:652–3.

    Article  CAS  PubMed  Google Scholar 

  14. Kim BC, Kim S, Nam W, Cha IH, Kim HJ. Mandibular reconstruction with vascularized osseous free flaps: a review of the literature. Asian Pac J Cancer Prev. 2012;13:553–8.

    Article  PubMed  Google Scholar 

  15. Miles B, Goldstein D, Gilbert R, Gullane P. Mandible reconstruction. Curr Opin Otolaryngol Head Heck Surg. 2010;18:317–22.

    Article  Google Scholar 

  16. Foster RD, Anthoby JP, Sharma A, Pogral MA. Vascularized bone flaps versus nonvascularized bone grafts for mandibular reconstruction: an outcomes analysis of primary bone union and endosseous implant success. Head Neck. 1999;21:66–71.

    Article  CAS  PubMed  Google Scholar 

  17. Bodard AG, Salino S, Bemer J, Lucas R, Breton P. Dental implant placement after mandibular reconstruction by microvascular free fibula flap: current knowledge and remaining questions. Oral Oncol. 2011;47:1099–104.

    Article  Google Scholar 

  18. Odin G, Balaquer T, Salvadelli C, Scortecci G. Immediate functional loading of implant-supported fixed prosthesis at the time of ablative surgery and mandibular reconstruction for squamous cell carcinoma. J Oral Implantol. 2010;36(3):225–30.

    Article  PubMed  Google Scholar 

  19. Disa J, Hidalgo D, Cordeiro P, Winter R, Thaler H. Evaluation of bone height in osseous free flap mandible reconstruction: an indirect measure of bone mass. Plast Reconstr Surg. 1999;103(5):1371–7.

    Article  CAS  PubMed  Google Scholar 

  20. Urken ML. Composite free flaps in oromandibular reconstruction. Arch Otolaryngol Head Neck Surg. 1994;120:633–40.

    Article  CAS  PubMed  Google Scholar 

  21. Weinberg H, Silver L, Chun JK. Current practice and future trends in craniomaxillofacial reconstructive and corrective microvascular bone surgery. In: Greenberg AM, Prein J, editors. Craniomaxillofacial Reconstructive and Corrective Bone Surgery. New York: Springer; 2002. p. 310–6.

    Google Scholar 

  22. Takushima A, Harii K, Asato H, Nakatsuka T, Kimata Y. Mandibular reconstruction using microvascular free flaps: a statistical analysis of 178 cases. Plast Reconstr Surg. 2001;108(6):1555–63.

    Article  CAS  PubMed  Google Scholar 

  23. Hidalgo DA. Fibula free flap: a new method of mandible reconstruction. Plast Reconstr Surg. 1989;115:339–49.

    Google Scholar 

  24. Jones NF, Swartz WM, Mears DC, Jupiter JB, Grossman A. The “double-barrel” free vascularized fibular bone graft. Plast Reconstr Surg. 1988;81:378–85.

    Article  CAS  PubMed  Google Scholar 

  25. Futran ND, Alsarraf R. Microvascular free-flap reconstruction in the head and neck. JAMA. 2000;284:1761–3.

    Article  CAS  PubMed  Google Scholar 

  26. Taylor GI, Townsend P, Corlett R. Superiority of the deep circumflex vessels as the supply for groin flaps. Plast Reconstr Surg. 1979;64(5):595–60.

    Article  CAS  PubMed  Google Scholar 

  27. Brown JS, Rogers SN, McNally DN, Boyle M. A modified classification for the maxillectomy defect. Head Neck. 2000;22:17–26.

    Article  CAS  PubMed  Google Scholar 

  28. Urken ML, Vickery CB, Weinberg H, et al. The interal oblique-iliac crest osseomyocutaneous free flap in oromandibular reconstruction. Report of 20 cases. Ach Otolaryngol Head Neck Surg. 1989;115:339–49.

    Article  CAS  Google Scholar 

  29. Hartman EH, Spauwen PH, Jansen JA. Donor-site complications in vascularized bone flap surgery. J Investig Surg. 2002;15:185–97.

    Article  Google Scholar 

  30. Swartz WM, Banis JC, Newton ED, Ramasastry SS, Johns NF, Acland R. The osteocutaneous scapular flap for mandibular and maxillary reconstruction. Plast Reconstr Surg. 1986;77:530–45.

    Article  CAS  PubMed  Google Scholar 

  31. Jedrzejewski P, Maciejewski A, Szymczyk C, Wierzgon J. Maxillary reconstruction using a multi-element free fibula flap based on a three-dimensional polyacrylic resin model. Pol Przegl Chir. 2012;84:49–55.

    Article  PubMed  Google Scholar 

  32. Frodel JL Jr, et al. Osseointegrated implants: a comparative study of bone thickness in four vascularized bone flaps. Plast Reconstr Surg. 1993;92(3):449–55.

    Article  PubMed  Google Scholar 

  33. Genden E. Reconstruction of the mandible and maxilla: the evolution of surgical technique. Arch Facial Plast Surg. 2010;12(2):87–90.

    Article  PubMed  Google Scholar 

  34. Kim PD, Blackwell KE. Latissimus-serratus-rib free flap for oromandibular and maxillary reconstruction. Arch Otolaryngol Head Neck Surg. 2007;133(8):791–5.

    Article  PubMed  Google Scholar 

  35. Levine JP, et al. Computer-aided design and manufacturing in craniomaxillofacial surgery: the new state of the art. J Craniofac Surg. 2012;23(1):288–93.

    Article  PubMed  Google Scholar 

  36. Markiewicz MR, Bell RB. Modern concepts in computer-assisted craniomaxillofacial reconstruction. Curr Opin Otolaryngol Head Neck Surg. 2011;19:295–301.

    Article  PubMed  Google Scholar 

  37. Cohen A, Laviv A, Berman P, et al. Mandibular reconstruction using stereolithographic 3-dimensional printing technology. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;108:661–6.

    Article  PubMed  Google Scholar 

  38. Siemionow M, Ozer K, Siemionow W, Lister G. Robotic assistance in microsurgery. J Reconstr Microsurg. 2000;16(8):643–9.

    Article  CAS  PubMed  Google Scholar 

  39. Katz RD, Rosson GD, Taylor JA, Singh NK. Robotics in microsurgery: use of a robot arm to perform a free flap in a pig. Microsurgery. 2005;25(7):566–9.

    Article  PubMed  Google Scholar 

  40. Selber JC. Transoral robotic reconstruction of oropharyngeal defects: a case series. Plast Reconstr Surg. 2010;126:1978–87.

    Article  CAS  PubMed  Google Scholar 

  41. Selber JC. Robotic surgery (editorial). J Reconstr Microsurg. 2012;28(7):433–4.

    Article  PubMed  Google Scholar 

  42. Liu YF, Zhu FD, Dong XT, Peng W. Digital design of scaffold for mandibular defect repair based on tissue engineering. J Zhejiang Univ Sci B. 2011;12(9):769–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang WB, Zheng LW, Chua DT, Cheung LK. Treatment of irradiated mandibles with mesenchymal stem cells transfected with bone morphogenic protein 2/7. Oral Maxillofac Surg. 2012;70(7):1711–6.

    Article  Google Scholar 

  44. Castro-Govea Y, et al. Human bone morphogenic protein 2-transduced mesenchymal stem cells improve bone regeneration in a model of mandible distraction surgery. J Craniofac Surg. 2012;23(2):392–6.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Taub .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Taub, P.J., Yao, A.S. (2019). Microvascular Craniomaxillofacial Reconstructive Bone Surgery. In: Greenberg, A., Schmelzeisen, R. (eds) Craniomaxillofacial Reconstructive and Corrective Bone Surgery. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1529-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1529-3_25

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1528-6

  • Online ISBN: 978-1-4939-1529-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics