Skip to main content

3D Imaging for Craniomaxillofacial Applications in Orthognathic and Facial Surgery Planning

  • Chapter
  • First Online:
Craniomaxillofacial Reconstructive and Corrective Bone Surgery

Abstract

From an anatomical and functional perspective, the human face is a complex part of the human body, which can be divided into three main groups of structures, namely soft tissue (e.g. skin, connective tissue and muscles), hard tissue (e.g. mandible, maxilla, orbitae and zygomata) and dentition (e.g. incisors, canines, premolars and molars). This triad plays a decisive role and in documentation and asessment of craniofacial problems, treatment planning and prediction of surgical outcome in patients with facial deformities and finally also as an objective tool in treatment evaluation. Accurate image acquisition en 3D image fusion of all three structure groups is crusial.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 239.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Breed MD, Moore J. Encyclopedia of Animal Behavior; Elsevier, Philadelphia; 2010.

    Google Scholar 

  2. Lindberg DC. Theories of Vision from Al-Kindi to Kepler. Chicago: University of Chicago Press; 1981. p. 324.

    Google Scholar 

  3. Burton HE. The optics of euclid. J Opt Soc Am. 1945;35(5):357–72.

    Article  Google Scholar 

  4. Zajonc A. Catching the Light: the Entwined History of Light and Mind. Oxford: Oxford University Press; 1995. p. 388.

    Google Scholar 

  5. Russo L. The Forgotten Revolution: How Science was Born in 300 BC and Why it Had to be Reborn. Berlin Heidelberg: Springer; 2004. p. 487.

    Google Scholar 

  6. Da Vinci L. Trattato Della Pittura (Google eBook); 1804.

    Google Scholar 

  7. della Porta G. Magia Naturalis Sive De Miraculis Rerum Naturalium Libri IIII Io. Baptista Porta Neapolitano avctore. Cum indice; 1585. p. 8.

    Google Scholar 

  8. Wheatstone C. Contributions to the Physiology of Vision: On some remarkable and hitherto unobserved, phenomena of binocular vision. Part the second. Richard Taylor; 1852, p. 17.

    Google Scholar 

  9. Lane C, Harrell W. Completing the 3-dimensional picture. Am J Orthod Dentofac Orthop. 2008;133(4):612–20.

    Article  Google Scholar 

  10. Honrado CP, Larrabee WF. Update in three-dimensional imaging in facial plastic surgery. Curr Opin Otolaryngol Head Neck Surg. 2004;12(4):327–31.

    Article  PubMed  Google Scholar 

  11. Maal TJJ, Plooij JM, Rangel FA, Mollemans W, Schutyser FAC, Bergé SJ. The accuracy of matching three-dimensional photographs with skin surfaces derived from cone-beam computed tomography. Int J Oral Maxillofac Surg. 2008;37(7):641–6.

    Article  CAS  PubMed  Google Scholar 

  12. Röntgen W. Über eine neue Art von Strahlen. Ann Phys. 1898;41:55.

    Google Scholar 

  13. Forrai J. History of X-ray in dentistry. História dos raios X em Odontologia. 2007;3(3):205–11.

    Google Scholar 

  14. Frank ZA. Panoramic x-ray apparatus; 1922.

    Google Scholar 

  15. Heckmann K. Die Röntgenperspektive und ihre Umwandlung durch eine neue Aufnahmetechnik. Fortschr Geb Röntgenstr. 1939;60:144–57.

    Google Scholar 

  16. Numata H. Considerations of the parabolic radiography of the dental arch. J Shimizu Stud. 1933;10:13.

    Google Scholar 

  17. Des Plantes B. Een bijzondere methode voor het maken van Röntgenphotos van schedel en wervelkolom, Ned Tijdschr Geneesk; 1931.

    Google Scholar 

  18. Paatero YV. The use of a mobile source of light in radiography. Acta Odontol Scand. 1949;8(3):236–43.

    Article  CAS  PubMed  Google Scholar 

  19. Paatero YV. A new tomographical method for radiographing curved outer surfaces. Acta Radiol. 1949;32(2–3):177–84.

    CAS  PubMed  Google Scholar 

  20. Hallikainen D. History of panoramic radiography. Acta Radiol. 1996;37(3 Pt 2):441–5.

    Article  CAS  PubMed  Google Scholar 

  21. Cormack J, McAlister J. Digital techniques and displays in brain scanning. Neuroradiology. 1972;4(3):171–8.

    Article  CAS  PubMed  Google Scholar 

  22. Hounsfield GN. Computerized transverse axial scanning (tomography): Part 1. Description of system. Br J Radiol. 1973;46(552):1016–22.

    Google Scholar 

  23. Cormack AM. Representation of a function by its line integrals, with some radiological applications. J Appl Phys. 1963;34(9):2722.

    Article  Google Scholar 

  24. Cormack AM. Representation of a function by its line integrals, with some radiological applications. II. J Appl Phys. 1964;35(10):2908.

    Article  Google Scholar 

  25. Oransky I. Sir Godfrey N. Hounsfield. Lancet. 2004;364(9439):1032.

    Article  PubMed  Google Scholar 

  26. Kohl G. The evolution and state-of-the-art principles of multislice computed tomography. Proc Am Thorac Soc. 2012;2(6):499–500.

    Google Scholar 

  27. Robb RA. The dynamic spatial reconstructor: an X-ray video-fluoroscopic CT scanner for dynamic volume imaging of moving organs. IEEE Trans Med Imaging. 1982;1(1):22–33.

    Article  CAS  PubMed  Google Scholar 

  28. Sukovic P. Cone beam computed tomography in craniofacial imaging. Orthod Craniofacial Res. 2003;6(s1):31–6.

    Article  Google Scholar 

  29. Miracle AC, Mukherji SK. Conebeam CT of the head and neck, part 2: clinical applications. AJNR Am J Neuroradiol. 2009;30(7):1285–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Scarfe WC, Farman AG. What is cone-beam CT and how does it work? Dent Clin N Am. 2008;52(4):707–30.

    Article  PubMed  Google Scholar 

  31. Suetens P. Fundamentals of Medical Imaging. 2nd ed. Cambridge University Press; 2009.

    Google Scholar 

  32. Calhoun PS, Kuszyk BS, Heath DG, Carley JC, Fishman EK. Three-dimensional volume rendering of spiral CT data: theory and method. Radiographics. 1999;19(3):745–64.

    Article  CAS  PubMed  Google Scholar 

  33. Feldkamp LA, Davis LC, Kress JW. Practical cone-beam algorithm. J Opt Soc Am A. 1984;1(6):612.

    Article  Google Scholar 

  34. Loubele M, Jacobs R, Maes F, et al. Image quality vs radiation dose of four cone beam computed tomography scanners. Dentomaxillofac Radiol. 2008;37(6):309–18.

    Article  CAS  PubMed  Google Scholar 

  35. Handbook of Medical Imaging, vol. 3. Display and PACS; 2002.

    Google Scholar 

  36. Ludlow JB, Ivanovic M. Comparative dosimetry of dental CBCT devices and 64-slice CT for oral and maxillofacial radiology. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008;106(1):106–14.

    Article  PubMed  Google Scholar 

  37. Ludlow J, Davies-Ludlow L, Brooks S, Howerton W. Dosimetry of 3 CBCT devices for oral and maxillofacial radiology: CB Mercuray, NewTom 3G and i-CAT; 2014.

    Google Scholar 

  38. Schulze D, Heiland M, Thurmann H, Adam G. Radiation exposure during midfacial imaging using 4- and 16-slice computed tomography, cone beam computed tomography systems and conventional radiography. Dentomaxillofac Radiol. 2004;33(2):83–6.

    Article  CAS  PubMed  Google Scholar 

  39. Dula K, Mini R, Lambrecht JT, Stelt PF, Schneeberger P, Clemens G, Sanderink H, Buser D. Hypothetical mortality risk associated with spiral tomography of the maxilla and mandible prior to endosseous implant treatment. Eur J Oral Sci. 1997;105(2):123–9.

    Article  CAS  PubMed  Google Scholar 

  40. Scaf G, Lurie AG, Mosier KM, Kantor ML, Ramsby GR, Freedman ML. Dosimetry and cost of imaging osseointegrated implants with film-based and computed tomography. Oral Surg Oral Med Oral Pathol Oral Radiol Endodontol. 1997;83(1):41–8.

    Article  CAS  Google Scholar 

  41. Deer WA, Zussman J, Howie RA. An Introduction to the Rock-Forming Minerals, 2nd ed.; Pearson, 1996.

    Google Scholar 

  42. Blair V. Report of a case of double resection for the correction of protrusion of the mandible. Dent Cosm. 1906;48:817–20.

    Google Scholar 

  43. Babcock W. The surgical treatment of certain deformities of the jaw associated with malocclusion of the teeth. J Am Med Assoc. 1909;LIII(11):833–9.

    Article  Google Scholar 

  44. Bell W, Jacobs J, Legan H. Treatment of class II deep bite by orthodontic and surgical means. Am J Orthod. 1984;85(1):1–20.

    Article  CAS  PubMed  Google Scholar 

  45. Bell W, Proffit W, White R. Surgical Correction of Dentofacial Deformities vol. 1. St. Louis: Elsevier; 1980.

    Google Scholar 

  46. Alcan T, Ceylanoğlu C, Baysal B. The relationship between digital model accuracy and time-dependent deformation of alginate impressions. Angle Orthod. 2009;79(1):30–6.

    Article  PubMed  Google Scholar 

  47. Harradine N, Suominen R, Stephens C. Holograms as substitutes for orthodontic study casts: a pilot clinical trial. J Orthod. 1990;98(2):110–6.

    CAS  Google Scholar 

  48. Van der Linden F, Boersma H. Three-dimensional analysis of dental casts by means of the Optocom. J Dent Res. 1972;51(4):1100.

    Article  PubMed  Google Scholar 

  49. White A, Fallis D, Vandewalle K. Analysis of intra-arch and interarch measurements from digital models with 2 impression materials and a modeling process based on cone-beam computed. Am J Orthod Dentofac Orthop. 2010;137(4):e1–9.

    Google Scholar 

  50. Nadjmi N, Mollemans W, Daelemans A, Van Hemelen G, Schutyser F, Bergé S. Virtual occlusion in planning orthognathic surgical procedures. Int J Oral Maxillofac Surg. 2010;39(5):457–62.

    Article  CAS  PubMed  Google Scholar 

  51. Uechi J, Okayama M, Shibata T. A novel method for the 3-dimensional simulation of orthognathic surgery by using a multimodal image-fusion technique. Am J Orthod Dentofac Orthop. 2006;130(6):786–198.

    Article  Google Scholar 

  52. Choi J, Song K, Baek S. Virtual model surgery and wafer fabrication for orthognathic surgery. Int J Oral Maxillofac Surg. 2009;38(12):1306–10.

    Article  PubMed  Google Scholar 

  53. Nkenke E, Zachow S, Benz M, Maier T. Fusion of computed tomography data and optical 3D images of the dentition for streak artefact correction in the simulation of orthognathic surgery. Dentomaxillofac Radiol. 2014;33(4):226–32.

    Article  Google Scholar 

  54. Gateno J, Xia JJ, Teichgraeber JF, Christensen AM, Lemoine JJ, Liebschner MAK, Gliddon MJ, Briggs ME. Clinical feasibility of computer-aided surgical simulation (CASS) in the treatment of complex cranio-maxillofacial deformities. J Oral Maxillofac Surg. 2007;65(4):728–34.

    Article  PubMed  Google Scholar 

  55. Swennen G, Mollemans W, De Clercq C, Abeloos J, Lamoral P, Lippens F, Neyt N, Casselman J, Schutyser F. A cone-beam computed tomography triple scan procedure to obtain a three-dimensional augmented virtual skull model appropriate for orthognathic surgery planning. J Craniofac Surg. 2009;20(2):297–307.

    Article  PubMed  Google Scholar 

  56. Andresen V. Three contributions to orthodontological diagnosis. Int J Orthod Oral Surg Radiogr. 1926;12(3):235–51.

    Article  Google Scholar 

  57. Van Loon J. A new method for indicating normal and abnormal relations of the teeth to the facial lines. Dent Cosm. 1915;57:973–83.

    Google Scholar 

  58. Schwarz R. New cephalometric method and apparatus and its application to orthodontia. Int J Orthod Oral Surg Radiogr. 1925;11(11):989–1017.

    Article  Google Scholar 

  59. Simon P. On gnathostatic diagnosis in orthodontics. Int J Orthod Oral Surg Radiogr. 1924;10(12):755–85.

    Article  Google Scholar 

  60. Simon P. Fundamental principles of a systematic diagnosis of dental anomalies: with an explanation of a new classification based upon gnathostatic methods of investigation; 1926.

    Google Scholar 

  61. Broadbent B. A new x-ray technique and its application to orthodontia. Angle Orthod. 1931;1(2):45–66.

    Google Scholar 

  62. Howells DJ, Shaw WC. The validity and reliability of ratings of dental and facial attractiveness for epidemiologic use. Am J Orthod. 1985;88(5):402–8.

    Article  CAS  PubMed  Google Scholar 

  63. Peck H, Peck S. A concept of facial esthetics. Angle Orthod. 1970;40(4):284–317.

    CAS  PubMed  Google Scholar 

  64. Powell SJ, Rayson RK. The profile in facial aesthetics. Br J Orthod. 1976;3(4):207–15.

    Article  CAS  PubMed  Google Scholar 

  65. Obwegeser H. The one time forward movement of the maxilla and backward movement of the mandible for the correction of extreme prognathism. SSO Schweiz Monatsschr Zahnheilkd. 1970;80(5):547–56.

    CAS  PubMed  Google Scholar 

  66. Rabey G. Craniofacial morphanalysis. Proc R Soc Med. 1971;64(2):103–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Rabey G. Morphanalysis of craniofacial dysharmony. Br J Oral Surg. 1977;15(2):110–20.

    Article  CAS  PubMed  Google Scholar 

  68. Farkas LG. Anthropometry of the Head and Face in Medicine; New York, Elsevier, 1981.

    Google Scholar 

  69. Farkas LG. Anthropometry of the Head and Face. New York: Raven Press; 1994. p. 405.

    Google Scholar 

  70. Arnett GW, Bergman RT. Facial keys to orthodontic diagnosis and treatment planning. Part I. Am J Orthod Dentofac Orthop. 1993;103(4):299–312.

    Article  CAS  Google Scholar 

  71. Lines PA, Lines RR, Lines CA. Profilemetrics and facial esthetics. Am J Orthod. 1978;73(6):648–57.

    Article  CAS  PubMed  Google Scholar 

  72. Swennen GRJ, Schutyser F, Barth E-L, De Groeve P, De Mey A. A new method of 3-D cephalometry part I: the anatomic cartesian 3-D reference system. J Craniofac Surg. 2006;17(2):314–25.

    Article  PubMed  Google Scholar 

  73. Kau CH, Richmond S, Zhurov AI, Knox J, Chestnutt I, Hartles F, Playle R. Reliability of measuring facial morphology with a 3-dimensional laser scanning system. Am J Orthod Dentofac Orthop. 2005;128(4):424–30.

    Article  Google Scholar 

  74. McCance AM, Moss JP, Wright WR, Linney AD, James DR. A three-dimensional soft tissue analysis of 16 skeletal class III patients following bimaxillary surgery. Br J Oral Maxillofac Surg. 1992;30(4):221–32.

    Article  CAS  PubMed  Google Scholar 

  75. Ras F, Habets LL, van Ginkel FC, Prahl-Andersen B. Quantification of facial morphology using stereophotogrammetry--demonstration of a new concept. J Dent. 1996;24(5):369–74.

    Article  CAS  PubMed  Google Scholar 

  76. Nanda R, Ghosh J, Bazakidou E. Three-dimensional facial analysis using a video imaging system. Angle Orthod. 1996;66(3):181–8.

    CAS  PubMed  Google Scholar 

  77. Sarver D, Johnston M, Matukas V. Video imaging for planning and counseling in orthognathic surgery. J Oral Maxillofac Surg. 1988;46(11):939–45.

    Article  CAS  PubMed  Google Scholar 

  78. De Groeve P. Registration of 3D photographs with spiral CT images for soft tissue simulation in maxillofacial surgery. Med Image Comput Comput Interv MICCAI 2001. 2001;2208(2001):991–6.

    Google Scholar 

  79. Moss JP, Grindrod SR, Linney AD, Arridge SR, James D. A computer system for the interactive planning and prediction of maxillofacial surgery. Am J Orthod Dentofac Orthop. 1988;94(6):469–75.

    Article  CAS  Google Scholar 

  80. Mozzo P, Procacci C, Tacconi A, Martini PT, Andreis IA. A new volumetric CT machine for dental imaging based on the cone-beam technique: preliminary results. Eur Radiol. 1998;8(9):1558–64.

    Article  CAS  PubMed  Google Scholar 

  81. Swennen G, Schutyser F, Hausamen JE. Three dimensional cephalometry: a color atlas and manual. Springer Verlag, Berlin; 2006.

    Google Scholar 

  82. Goto TK, Nishida S, Nakamura Y, Tokumori K, Nakamura Y, Kobayashi K, Yoshida Y, Yoshiura K. Accuracy of 3-dimensional magnetic resonance 3D vibe images of the mandible: an in vitro comparison of magnetic resonance imaging and computed tomography. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2007;103(4):550–9.

    Article  PubMed  Google Scholar 

  83. Kuroda T, Motohashi N, Tominaga R, Iwata K. Three-dimensional dental cast analyzing system using laser scanning. Am J Orthod Dentofac Orthop. 1996;110(4):365–9.

    Article  CAS  Google Scholar 

  84. Peluso M, Josell S, Levine S, Lorei B. Digital models: an introduction. Semin Orthod. 2004;10(3):226–38.

    Article  Google Scholar 

  85. Quimby ML, Vig KWL, Rashid RG, Firestone AR. The accuracy and reliability of measurements made on computer-based digital models. Angle Orthod. 2004;74(3):298–303.

    PubMed  Google Scholar 

  86. Burk DL, Mears DC, Cooperstein LA, Herman GT, Udupa JK. Acetabular fractures: three-dimensional computer tomographic imaging and interactive surgical planning. J Comput Tomogr. 1986;10(1):1–10.

    Article  PubMed  Google Scholar 

  87. Schutyser F, Van Cleynenbreugel J, Ferrant M, Schoenaers J, Suetens P. Image-based 3D planning of maxillofacial distraction procedures including soft tissue implications. Med Image Comput Comput Interv MICCAI 2000. 2000;1935(2000):999–1007.

    Google Scholar 

  88. Hajeer M, Millett D, Ayoub A, Siebert J. Current products and practices applications of 3D imaging in orthodontics: part I. J Orthod. 2004;31(1):62–70.

    Article  CAS  PubMed  Google Scholar 

  89. Dirksen D, Diederichs S, Runte C, von Bally G, Bollmann F. Three-dimensional acquisition and visualization of dental arch features from optically digitized models. J Orofac Orthop. 1999;60(2):152–9.

    Article  CAS  PubMed  Google Scholar 

  90. Khambay B, Nebel J-C, Bowman J, Walker F, Hadley DM, Ayoub A. 3D stereophotogrammetric image superimposition onto 3D CT scan images: the future of orthognathic surgery. A pilot study. Int J Adult Orthodon Orthognath Surg. 2002;17(4):331–41.

    PubMed  Google Scholar 

  91. Swennen GRJ, Mollemans W, Schutyser F. Three-dimensional treatment planning of orthognathic surgery in the era of virtual imaging. J Oral Maxillofac Surg. 2009;67(10):2080–92.

    Article  PubMed  Google Scholar 

  92. Plooij J, van Loon B, Maal TJ, de Koning M, Borstlap WA, Berge SJ. Comparisons of 3d preoperative planning and surgical outcome in bimaxillary procedurese. In: 20th Congress of Cranio-Maxillo-Facial Surgery Bruges; 2010.

    Google Scholar 

  93. M. Zinser, Computer-assisted orthognatic surgery based on 3D cephalometry: a new approach with 3D surgical wavers, J Oral Maxillofac Surg, 2007, 65.9: 42-e3.

    Google Scholar 

  94. Kretschmer WB, Zoder W, Baciut G, Bacuit M, Wangerin K. Accuracy of maxillary positioning in bimaxillary surgery. Br J Oral Maxillofac Surg. 2009;47(6):446–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Jan Jaap Maal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maal, T.J.J., Klijn, R.J., Bergé, S.J. (2019). 3D Imaging for Craniomaxillofacial Applications in Orthognathic and Facial Surgery Planning. In: Greenberg, A., Schmelzeisen, R. (eds) Craniomaxillofacial Reconstructive and Corrective Bone Surgery. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1529-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1529-3_20

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1528-6

  • Online ISBN: 978-1-4939-1529-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics