Skip to main content

Approaches to Rapid In Vivo Optimization of Hydrophilic Matrix Tablets

  • Chapter
  • First Online:
Hydrophilic Matrix Tablets for Oral Controlled Release

Abstract

The optimisation of hydrophilic matrix tablets to balance formulation, biopharmaceutical, and physiological variables to achieve a target product profile is a complex process. Traditionally this optimisation process has relied upon application of a series of in vitro, preclinical, and clinical experimentation which extend programme timelines and increase cost to the development programme.

The purpose of this chapter is to discuss the formulation and biopharmaceutical variables that can impact the optimisation of a hydrophilic matrix tablet and describe the limitations of in vitro and preclinical models. The chapter will present strategies to overcome these limitations by designing development programmes to accelerate the in vivo optimisation process using a clinical “make-test” paradigm, termed Translational Pharmaceutics, including case studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hauss DJ. Oral lipid-based formulations. Adv Drug Deliv Rev. 2007;59:667–76.

    Article  PubMed  CAS  Google Scholar 

  2. Quotient Clinical, data on file.

    Google Scholar 

  3. Grass GM, Sinko PJ. Physiologically-based pharmacokinetic simulation modelling. Adv Drug Deliv Rev. 2002;54:433–51.

    Article  PubMed  CAS  Google Scholar 

  4. Gao P, Skoug JW, Nixon PR, Ju TR, Stemm NL, Sung KC. Swelling of hydroxypropyl methylcellulose matrix tablets. 2. Mechanistic study of the influence of formulation variables on matrix performance and drug release. J Pharm Sci. 1996;85:732–40.

    Article  PubMed  CAS  Google Scholar 

  5. Patel A, Lin W, Hyman B, Stevens LA, Kucera SU, Wagner K, Scholes PD. Development of a formulation design space to enable real-time optimisation of a Modified Release (MR) tablet composition within a flexible clinical study. In: American Association of Pharmaceutical Scientists Annual Meeting and Exposition. Chicago, IL. 2012.

    Google Scholar 

  6. Korsmeyer RW, Gurny R, Doelker E, Buri P, Peppas NA. Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm. 1983;15:25–35.

    Article  CAS  Google Scholar 

  7. Talukdar MM, Michoel A, Rombaut P, Kinget R. Comparative study on xanthan gum and hydroxypropylmethyl cellulose as matrices for controlled-release drug delivery I. Compaction and in vitro drug release behaviour. Int J Pharm. 1996;129:233–41.

    Article  CAS  Google Scholar 

  8. Tahara K, Yamamoto K, Nishihata T. Application of model-independent and model analysis for the investigation of effect of drug solubility on its release rate from hydroxypropyl methylcellulose sustained-release tablets. Int J Pharm. 1996;133:17–27.

    Article  CAS  Google Scholar 

  9. Bonderoni MC, Caramella C, Sangalli ME, Conte U, Hernandez RM, Pedraz JL. Rheological behaviour of hydrophilic polymers and drug release from erodible matrices. J Control Release. 1992;18:205–12.

    Article  Google Scholar 

  10. Goncalves-Araújo T, Rajabi-Siahboomi AR, Caraballoa I. Application of percolation theory in the study of an extended release erapamil hydrochloride formulation. Int J Pharm. 2008;361:112–7.

    Article  PubMed  Google Scholar 

  11. Levina M, Rajabi-Siahboomi A. The influence of excipients on drug release from hydroxypropyl methylcellulose matrices. J Pharm Sci. 2004;93:2746–54.

    Article  PubMed  CAS  Google Scholar 

  12. Williams RO, Reynolds TD, Cabelka TD, Sykora MA, Mahaguna V. Investigation of excipient type and level on drug release from controlled release tablets containing HPMC. Pharm Dev Technol. 2002;7:181–93.

    Article  PubMed  CAS  Google Scholar 

  13. Missaghi S, Patel P, Tiwari SB, Farrell TP, Rajabi-Siahboomi A. Investigation of the influence of tablet shape, geometry and film coating on drug release from hypromellose extended-release matrices. Drug Deliv Technol. 2010;10:32–41.

    CAS  Google Scholar 

  14. McConnell EL, Fadda HM, Basit AW. Gut instincts: Explorations in intestinal physiology and drug delivery. Int J Pharm. 2008;364:213–26.

    Article  PubMed  CAS  Google Scholar 

  15. Schiller C, Fröhlich C-P, Giessmann T, Siegmund W, Mönnikes H, Hosten N, Weitschies W. Intestinal fluid volumes and transit of dosage forms, as assessed by magnetic resonance imaging. Aliment Pharmacol Ther. 2005;22:971–9.

    Article  PubMed  CAS  Google Scholar 

  16. Zarate N, Mohammed S, O’Shaughnessy E, Newell M, Yazak E, Semler J, Scott SM. Accurate localisation of a fall in pH within the ileo-caecal region. Neurogastroenterol Motil. 2009;21 Suppl 1:43.

    Google Scholar 

  17. Evans DE, Pye G, Bramley R, Clark AG, Dyson TJ, Hardcastle JD. Measurement of gastrointestinal pH profiles in normal ambulant human subjects. Gut. 1988;29:1035–41.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Connor A, Evans P, Church A, McDermott J, Yamaguch S, Yamashita K, Tagashira M, Morimoto S. A phase I study to investigate the impact of gastrointestinal site of delivery, gastrointestinal pH and formulation composition, on the bioavailability of AK106-001616 in healthy subjects. In: American Association of Pharmaceutical Scientists Annual Meeting and Exposition, San Antonio, TX. 2013.

    Google Scholar 

  19. Beaumont K. The importance of gut wall metabolism in determining drug bioavailability. In: van de Waterbeemd H, Lennernäs H, Artursson P, editors. Drug bioavailability. 1st ed. Weinheim, Germany: Wiley-VCH; 2003. p. 311–28.

    Chapter  Google Scholar 

  20. Tubic-Grozdanis M, Hilfinger JM, Amidon GL, Kim JS, Kijek P, Staubach P, Langguth P. Pharmacokinetics of the CYP 3A substrate simvastatin following administration of delayed versus immediate release oral dosage forms. Pharm Res. 2008;25(7):1591–600.

    Article  PubMed  CAS  Google Scholar 

  21. Jones K, Connor A, Paterson M. Development of oral formulations to overcome gut wall metabolism. In: 10th Annual American Association of Pharmaceutical Scientists North East Regional Discussion Group (NERDG) Conference, Connecticut. 2007.

    Google Scholar 

  22. Martin NE, Collison KR, Martin LL, Tardif SJ, Wilding IR, Wray H, Barrett JS. Pharmacoscintigraphic assessment of the regional drug absorption of the dual angiotension-converting enzyme/neutral endopeptidase inhibitor, M100240, in healthy volunteers. J Clin Pharm. 2003;43:529–38.

    Article  CAS  Google Scholar 

  23. Connor A, Evans P, Doto J, Ellis C, Martin DE. An oral human drug absorption study to assess the impact of site of delivery on the bioavailability of bervirimat. J Clin Pharm. 2009;49:606–12.

    Article  CAS  Google Scholar 

  24. Hinderling PH, Karara AH, Tao B, Pawula M, Wilding IR, Lu M. Systemic availability of the active metabolite hydroxyl-fasudil after administration of fasudil to different sites of the human gastrointestinal tract. J Clin Pharm. 2007;47:19–25.

    Article  CAS  Google Scholar 

  25. Limb MC, Starling RD, Connor A, Stevens LA, Evans P, Church A, Paterson M, RobargeMJ, Harrington JJ. Absorption of ATHX-105 phosphate from the human gastrointestinal tract. In: American Association of Pharmaceutical Scientists Annual Meeting and Exposition, Los Angeles, CA. 2009.

    Google Scholar 

  26. Davis SS, Hardy JG, Fara JW. Transit of pharmaceutical dosage forms through the small intestine. Gut. 1986;27:886–92.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Davis SS, Washington N, Parr GD, Short AH, John VA, Lloyd P, Walker SM. Relationship between the rate of appearance of oxprenolol in the systemic circulation and the location of an oxprenolol Oros 16/260 drug delivery system within the gastrointestinal tract as determined by scintigraphy. Br J Clin Pharmacol. 1988;26:435–43.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Davis J, Burton J, Connor AL, Macrae R, Wilding IR. Scintigraphic study to investigate the effect of food on a HPMC modified release formulation of UK-294,315. J Pharm Sci. 2009;98(4):1568–76.

    Article  PubMed  CAS  Google Scholar 

  29. Brown J, Crison J, Timmins P. Predicting feasibility and characterizing performance of extended-release formulations using physiologically based pharmacokinetic modelling. Ther Deliv. 2012;3(9):1047–59.

    Article  PubMed  CAS  Google Scholar 

  30. Dressman JB. Comparison of canine and human gastrointestinal physiology. Pharm Res. 1986;3(3):123–30.

    Article  PubMed  CAS  Google Scholar 

  31. Abrahamsson B, Poulin P, Sun D, Mager D. Extrapolation preclinical data to predict human pharmacokinetics: Understanding and practice. In: Symposium at: American Association of Pharmaceutical Scientists Annual Meeting and Exposition, Los Angeles, CA. 2009.

    Google Scholar 

  32. Reddy MB, Connor A, Brennan BJ, Morcos PN, Zhou A, McLawhon P, Fretland A, Evans P, Smith P, Tran JQ. Physiological modeling and assessments of regional drug bioavailability of danoprevir to determine whether a controlled release formulation is feasible. Biopharm Drug Dispos. 2011;32(5):261–75.

    Article  PubMed  CAS  Google Scholar 

  33. Brown J, Chien C, Timmins P, Dennis A, Doll W, Sandefer E, Page R, Nettles RE, Zhu L, Grasela D. Compartmental absorption modeling and site of absorption studies to determine feasibility of an extended-release formulation of an HIV-1 attachment inhibitor phosphate ester prodrug. J Pharm Sci. 2013;102(6):1742–51.

    Article  PubMed  CAS  Google Scholar 

  34. Sutton SC. The use of gastrointestinal intubation studies for controlled release development. Br J Clin Pharmacol. 2009;68(3):342–54.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Wilding I, Hirst P, Connor A. Development of an engineering based capsule for human drug absorption studies. Pharm Sci Technol Today. 2000;3(11):385–92.

    Article  PubMed  CAS  Google Scholar 

  36. Hodges LA, Connolly SM, Band J, O'Mahony B, Ugurlu T, Turkoglu M, Wilson CG, Stevens HN. Scintigraphic evaluation of colon targeting pectin-HPMC tablets in healthy volunteers. Int J Pharm. 2009;370(1–2):144–50.

    Article  PubMed  CAS  Google Scholar 

  37. Connor A. Location, location, location: Gastrointestinal delivery site and its impact on absorption. Ther Deliv. 2012;3(5):575–8.

    Article  PubMed  CAS  Google Scholar 

  38. Wilding A, Coupe J, Davis S. The role of γ-scintigraphy in oral drug delivery. Adv Drug Deliv Rev. 2001;46(1–3):103–24.

    Article  PubMed  CAS  Google Scholar 

  39. Connor AL, Wray H, Cottrell J, Wilding IR. A scintigraphic study to investigate the potential for altered gut distribution of loperamide from a loperamide-simethicone formulation in man. Eur J Pharm Sci. 2001;13:369–74.

    Article  PubMed  CAS  Google Scholar 

  40. Katsuma M, Watanabe S, Takemura S, Sako K, Sawada T, Masuda Y, Nakamura K, Fukui M, Connor AL, Wilding IR. Scintigraphic evaluation of novel colon-targeted delivery system (CODESTM) in healthy volunteers. J Pharm Sci. 2004;93(5):1287–99.

    Article  PubMed  CAS  Google Scholar 

  41. Cole E, Scott R, Connor A, Wilding I, Petereit H, Schminke C, Beckert T, Cadé D. Enteric coated HPMC capsules designed to achieve intestinal targeting. Int J Pharm. 2002;231(1):83–95.

    Article  PubMed  CAS  Google Scholar 

  42. Basit AW, Podczeck F, Newton JM, Waddington WA, Ell PJ, Lacey LF. The use of formulation technology to assess regional gastrointestinal drug absorption in humans. Eur J Pharm Sci. 2004;21:179–89.

    Article  PubMed  CAS  Google Scholar 

  43. Nicholson SJ, Timmins P, Dockens RC, Connor A, Croop R, Ferrie P, Zeng J, Dennis AB, Wilding I. Development of oral extended release formulations of 6-hydroxybuspirone. Biopharm Drug Dispos. 2012;33(9):522–35.

    Article  PubMed  CAS  Google Scholar 

  44. Lobo ED, Argentine MD, Sperry DC, Connor A, McDermott J, Stevens L, Almaya A. Optimization of LY545694 tosylate controlled release tablets through pharmacoscintigraphy. Pharm Res. 2012;29:2912–25.

    Article  PubMed  CAS  Google Scholar 

  45. Scholes PD, Stevens LA, Paterson M, Egerton M. Translational pharmaceutics—Interactive drug development to enable rapid optimisation of drug products in early development. American Association of Pharmaceutical Scientists Annual Meeting and Exposition. Los Angeles, CA. Poster #2869. 2009.

    Google Scholar 

  46. Haskell RJ, Rades T, Dobry DE, Kress MH. Translational pharmaceutics: Connecting preclinical and clinical enabled formulations. In: Symposium at: American Association of Pharmaceutical Scientists Annual Meeting and Exposition, San Antonio, TX. 2013

    Google Scholar 

  47. International Conference on Harmonization. ICH Q8 (R2) Pharmaceutical Development. 2009. http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q8_R1/Step4/Q8_R2_Guideline.pdf. Accessed 27 May 2014.

  48. International Conference on Harmonization. ICH Q8 (R2) ICH Q1D Bracketing and matrixing designs for stability testing of drug substances and drug products. 2002. http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q1D/Step4/Q1D_Guideline.pdf. Accessed 27 May 2014.

  49. Prince WT, Stewart-Campbell A, Tong W, Sweetnam P, Rosen R, Goldstein I, Willett MS, Roesch BG, Garcia WD. SLx-2010, a new long-acting PDE5 inhibitor: Preliminary safety, tolerability, pharmacokinetics and endothelial function effects in healthy subjects. In: Sexual Medicine Society of North America Fall Meeting, New York, NY. 2005.

    Google Scholar 

  50. Lin W, Schueller O, Patel A, McDermott J, Sweetnam P, Scholes P. Formulation design space for SLx-2101 modified release tablets to enable a flexible phase I pharmacokinetic study. In: Controlled Release Society Annual Meeting and Exposition. Portland, OR. 2010.

    Google Scholar 

  51. Food and Drug Administration. FDA guidance for industry extended release oral dosage forms: Development, evaluation, and application of in vitro/in vivo correlations. 1997. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm070239.pdf. Accessed 27 May 2014.

  52. European Medicines Agency. Guideline on quality of oral modified release products, EMA/492713/2012. 2012. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2012/09/WC500132403.pdf

  53. Kane Z, Stevens LA, McDermott J, Scholes P. Impact of differences in regional bioavailability on IVIVC development for modified release drug products. In: American Association of Pharmaceutical Scientists Annual Meeting and Exposition, San Antonio, TX. 2013.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John McDermott Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

McDermott, J., Scholes, P., Lin, W., Connor, A. (2014). Approaches to Rapid In Vivo Optimization of Hydrophilic Matrix Tablets. In: Timmins, P., Pygall, S., Melia, C. (eds) Hydrophilic Matrix Tablets for Oral Controlled Release. AAPS Advances in the Pharmaceutical Sciences Series, vol 16. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1519-4_9

Download citation

Publish with us

Policies and ethics