Skip to main content

Physiologically Based Pharmacokinetic Modeling in the Development and Evaluation of Hydrophilic Matrix Tablets

  • Chapter
  • First Online:
Hydrophilic Matrix Tablets for Oral Controlled Release

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 16))

Abstract

Physiologically based pharmacokinetic (PBPK) modeling has evolved to its present biopharmaceutics approach that makes it useful in the development and evaluation of oral dosage forms including hydrophilic matrix tablets. Useable models involve the detailed representation of the gastrointestinal tract, including how gastric emptying (such as the effect of fed/fasted state) influences drug absorption profiles and how different release rates from matrices interact with this variable, along with overall transit time, role of transporters, and first-pass metabolism to yield the simulated drug pharmacokinetic profile. The need for, and determination of, human intestinal permeability as a key input parameter is described, including the use of radiofrequency-controlled capsules and gamma scintigraphy to determine intestinal and, important, colonic drug permeability. The use of in vitro dissolution data as an input for PBPK modeling is described and the development of an in vitro–in vivo correlation (IVIVC) is covered. Finally, the limitations of PBPK modeling applied to hydrophilic matrix tablets are indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hosseini-Yeganeh, M. Physiologically based pharmacokinetic model for terbenifine in rats and humans. Antimicrob Agents Chemotherapy. 2002;46(7):2219–28.

    Google Scholar 

  2. Agoram B, Woltosz WS, Bolger MB. Predicting the impact of physiological and biochemical processes on oral drug bioavailability. Adv Drug Deliv Rev. 2001;50:S41–67.

    Article  PubMed  CAS  Google Scholar 

  3. Darwich AS, Neuhoff S, Jamei M, Rostami-Hodjegan A. Interplay of metabolism and transport in determining oral drug absorption and gut wall metabolism: a simulation assessment using the “advanced dissolution, absorption, metabolism (ADAM)” model. Curr Drug Metab. 2010;11(9):716–29.

    Article  PubMed  CAS  Google Scholar 

  4. Sugano K. Introduction to computational oral absorption simulation. Expert Opin Drug Metab Toxicol. 2009;5:259–93.

    Article  PubMed  CAS  Google Scholar 

  5. FDA. Guidance for industry, waiver of in vivo bioavailability and bioequivalence studies for immediate-release solid oral dosage forms based on a biopharmaceutics classification system. FDA, Center for Drug Evaluation and Research. August 2000.

    Google Scholar 

  6. FDA. Guidance for industry extended release oral forms: development, evaluation, and application of in vitro/in vivo correlations. FDA, Center for Drug Evaluation and Research. September 1997.

    Google Scholar 

  7. FDA. Guidance for industry, immediate release solid oral dosage forms, scale-up and postapproval changes: chemistry, manufacturing, and controls, in vitro dissolution testing, and in vivo bioequivalence documentation. FDA, Center for Drug Research. November 1995.

    Google Scholar 

  8. FDA. Guidance for industry, SUPAC-MR: modified release solid oral dosage forms, scale-up and postapproval changes: chemistry, manufacturing, and controls; in vitro dissolution testing and in vivo bioequivalence documentation. FDA, Center for Drug Research. September 1997.

    Google Scholar 

  9. Huang S-M, Rowland M. The role of physiologically based pharmacokinetic modelling in regulatory review. Clin Pharmacol Ther. 2012;91:542–9.

    Article  PubMed  CAS  Google Scholar 

  10. Jönsson S, Henningsson A, Edholm M, Salmonson T. Role of modelling and simulation: a European regulatory perspective. Clin Pharmacokinet. 2012;51:69–76.

    Article  PubMed  Google Scholar 

  11. Rowland M, Peck C, Tucker G. Physiologically-based pharmacokinetics in drug development and regulatory science. Annu Rev Pharmacol Toxicol. 2011;51:45–73.

    Article  PubMed  CAS  Google Scholar 

  12. Jiang W, Kim S, Zhang X, et al. The role of predictive biopharmaceutical modelling and simulation in drug development and regulatory evaluation. Int J Pharm. 2011;418:151–60.

    Article  PubMed  CAS  Google Scholar 

  13. Parrott N, Lavé T. Applications of physiologically based absorption models in drug discovery and development. Mol Pharm. 2008;5:760–75.

    Article  PubMed  CAS  Google Scholar 

  14. Parrott N, Lavé T. Computer models for predicting drug absorption. In: Dressman JB, Reppas C, editors. Oral drug absorption, prediction and assessment. 2nd ed. New York: Informa Healthcare; 2010.

    Google Scholar 

  15. Poulin P, Jones RDO, Jones HM, et al. PHRMA CPCDC initiative on predictive models of human pharmacokinetics, part 5: prediction of plasma concentration- time profiles in human by using the physiologically-based pharmacokinetic modelling approach. J Pharm Sci. 2011;100:4127–57.

    Article  CAS  Google Scholar 

  16. Zhang X, Lionberger RA, Davit BM, Yu LX. Utility of physiologically based absorption modelling in implementing quality by design in drug development. AAPS J. 2011;13:59–71.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bolger MB, Fraczkiewicz R, Lukacova V. Simulation of absorption, metabolism and bioavailability. In: van der Waterbeemd H, Lennernäs H, Artusson P, editors. Drug bioavailability: estimation of solubility, permeability, absorption and bioavailability. methods and principles in medicinal chemistry. 2nd ed. Weinheim: Wiley-VCH; 2009.

    Google Scholar 

  18. Lukacova V, Woltosz WS, Bolger MB. Prediction of modified release pharmacokinetics and pharmacodynamics from in vitro, immediate release and intravenous data. AAPS J. 2009;11:323–34.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Watson KJ, Davis J, Jones HM. Application of physiologically based pharmacokinetic modelling to understanding the clinical pharmacokinetics of UK-369003. Drug Metab Dispos. 2011;39:1203–13.

    Article  PubMed  CAS  Google Scholar 

  20. Reddy MD, Connor A, Brennan BJ, et al. Physiological modelling and assessments of regional drug bioavailability of danoprevir to determine whether a controlled release formulation is feasible. Biopharm Drug Dispos. 2011;32:261–75.

    Article  PubMed  CAS  Google Scholar 

  21. Grillo JA, Zhao P, Bullock J, et al. Utility of physiologically-based pharmacokinetic (PBPK) modeling approach to quantitatively predict a complex drug-drug-disease interaction scenario for rivaroxaban during the drug review process: implications for clinical practice. Biopharm Drug Dispos. 2012;33:99–110.

    Article  PubMed  CAS  Google Scholar 

  22. Lalonde RL, Kowalski KG, Hutmacher MM, et al. Model-based drug development. Clin Pharmacol Ther. 2007;982:21–32.

    Article  Google Scholar 

  23. Brown J, Crison JR, Timmins P. Predicting feasibility and characterizing performance of extended release formulations using physiologically-based pharmacokinetic modelling. Ther Deliv. 2013;3:1047–59.

    Article  Google Scholar 

  24. Mathias N, Crison J. The use of modeling tools to drive efficient oral product design. AAPS J. 2012;14(3):591–600.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Davenport HW, editor. Physiology of the digestive tract. 5th ed. Chicago, IL: Year Book Medical Publishers; 1982.

    Google Scholar 

  26. Amidon GL, DeBrincat GA, Najib N. Effects of gravity on gastric emptying, intestinal transit, and drug absorption. J Clin Pharmacol. 1991;31(10):968–73.

    Article  PubMed  CAS  Google Scholar 

  27. Oberle RL, Chen T-S, Lloyd C, Meyer J, Amidon GL. The influence of the interdigestive migrating myoelectric complex on the gastric emptying of liquids. Gastroenterology. 1990;99(5):1275–82.

    PubMed  CAS  Google Scholar 

  28. Meyer JH, Elashoff J, Porter-Fink V, Dressman J, Amidon GL. Human postprandial gastric emptying of 1-3 millimeter spheres. Gastroenterology. 1988;94(6):1315–25.

    PubMed  CAS  Google Scholar 

  29. Meyer JH, Gu Y, Elashoff J, Dressman J, Amidon GL. Effect of viscosity and fluid outflow on postcibal gastric emptying of solids. Am J Physiol. 1986;250(2):13.

    Google Scholar 

  30. Dressman JB. Comparison of canine and human gastrointestinal physiology. Pharm Res. 1986;3(3):123–31.

    Article  PubMed  CAS  Google Scholar 

  31. Urbain JLC, Siegel JA, Charkes ND, Maurer AH, Malmund LS, Fisher RS. The two-compartment stomach: effects of meal particle size on fundal and antral emptying. Eur J Nucl Med. 1989;15:254–9.

    Article  PubMed  CAS  Google Scholar 

  32. Marciani L, Pritchard SE, Heller-Woods C, Costigan C, Hoad CL, Growland PA, Spiller RC. Delayed gastric emptying and reduced postprandial small bowel water content of equicaloric whole meal versus rice meals in healthy subjects: novel MRI insights. Eur J Clin Nutr. 2013;67:754–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Velchik MG, Reynolds JC, Alavi A. The effect of meal energy content on gastric emptying. J Nucl Med. 1989;30:1106–10.

    PubMed  CAS  Google Scholar 

  34. Moore JG, Christian PE, Brown JA, Brophy C, Datz F, Taylor A, Alazraki N. Influence on meal weight and caloric content on gastric emptying of meals in man. Dig Dis Sci. 1984;29(6):513–9.

    Article  PubMed  CAS  Google Scholar 

  35. Roush JA. The role of stomach in drug absorption as observed via absorption rate analysis. Int J Pharm. 2014;47:112–7.

    Article  Google Scholar 

  36. Marathe PH, Wen Y, Norton J, Greene DS, Barhaiya RH, Winding IR. Effect of altered gastric emptying and gastrointestinal motility on metformin absorption. Br J Clin Pharmacol. 2000;50:325–32.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Bergstrand M, Sönderlind E, Eriksson UG, Weitschies W, Karlsson MO. A semi-mechanistic modelling strategy for characterization of regional absorption properties and prospective prediction of plasma concentrations following administration of new modified release formulations. Pharm Res. 2012;29:574–84.

    Article  PubMed  CAS  Google Scholar 

  38. Clear NJ, Milton A, Humphrey A, Henry BT, Wulff M, Nichols DJ, Anziano RJ, Wilding I. Evaluation of the Intellisite capsule to deliver theophylline and furosemide tablets to the small intestine and colon. Eur J Pharm Sci. 2001;13:375–84.

    Article  PubMed  CAS  Google Scholar 

  39. Jones K. New technology combo drives once-daily drug formulation. Innovat Pharmaceut Tech. 2008;26:66–9.

    CAS  Google Scholar 

  40. Amidon GL, Lennernäs H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification, the correlation of in vitro drug dissolution and in vivo bioavailability. Pharm Res. 1995;12:413–20.

    Article  PubMed  CAS  Google Scholar 

  41. Sinko PJ, Leesman GD, Amidon GL. Predicting fraction dose absorbed in humans using a mass balance approach. Pharm Res. 1991;8:979–88.

    Article  PubMed  CAS  Google Scholar 

  42. Oh D-M, Curl RL, Amidon GL. Estimating fraction dose absorbed from suspensions of poorly soluble compounds in humans: a mathematical model. Pharm Res. 1993;10(2):264–70.

    Article  PubMed  CAS  Google Scholar 

  43. Yu LX, Crison JR, Amidon GL. Compartmental transit and dispersion model analysis of small intestinal transit flow in humans. Int J Pharm. 1996;140:111–8.

    Article  CAS  Google Scholar 

  44. Lennernas H, Ahrenstedt O, Hallgren R, Knutson L, Ryde M, Paazow LK. Regional jejunal perfusion, a new in vivo approach to study oral drug absorption in man. Pharm Res. 1992;9(10):1243–51.

    Article  PubMed  CAS  Google Scholar 

  45. Arturrson P, Karlsson J. Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (caco-2) cells. Biochem Biophys Res Commun. 1991;175(3):880–5.

    Article  Google Scholar 

  46. Feng B, Mills JB, Davidson RE, Mireles RJ, Janiszewski JS, Troutman MD, de Morales SM. In vitro P-glycoprotein assays to predict the in vivo interactions of p-glycoprotein with drugs in the central nervous system. Drug Metab Dispos. 2008;26(2):268–75.

    Article  Google Scholar 

  47. Conradi RA, Hilgers AR, Ho NFH, Burton PS. The influence of peptide structure on transport across caco-2 cells. Pharm Res. 1991;8(12):14531460.

    Article  Google Scholar 

  48. Wilson TH, Wiseman G. The use of sacs of everted small intestine for the study of the transference of substrates from the mucosal to the serosal surface. J Physiol. 1954;123:116–25.

    PubMed  CAS  PubMed Central  Google Scholar 

  49. Amidon GL, Sinko PJ, Fleisher D. Estimating human oral fraction dose absorbed: a correlation using rat intestinal membrane permeability for passive and carrier-mediated compounds. Pharm Res. 1988;5(10):651654.

    Article  Google Scholar 

  50. Hirayama H, Xu X, Pang KS. Viability of the perfused, recirculating rat intestine and intestine-liver preparations. Am J Physiol. 1989;257(2 pt1):G249–58.

    PubMed  CAS  Google Scholar 

  51. Stewart BH, Chan HO, Lu RH, Reyner EL, Schmid HL, Hamilton HW, Steinbaugh BA, Taylor MD. Comparison of intestinal permeabilities determined in multiple in vitro and in situ models: relationships to absorption in humans. Pharm Res. 1995;12(5):693699.

    Article  Google Scholar 

  52. Raoof A, Moriarty D, Brayden D, et al. Comparison of methodologies for evaluating regional intestinal permeability. In: Young D, Devane JG, Butler J, editors. In vitro–in vivo correlations. New York: Plenum; 1997.

    Google Scholar 

  53. Ungell A-L, Nylander S, Bergstrand S, Sjöberg Å, Lennernäs H. Membrane transport of drugs in different regions of the intestinal tract of the rat. J Pharm Sci. 1998;87:360–6.

    Article  PubMed  CAS  Google Scholar 

  54. Berggren S, Lennernäs P, Ekelund M, Weström B, Hoogstraate J, Lennernäs H. Regional transport and metabolism of ropivacaine and its CYP3A4 metabolite PPX in human intestine. J Pharm Pharmacol. 2003;55:963–72.

    Article  PubMed  CAS  Google Scholar 

  55. Lui CY, Amidon GL, Berardi RR, Fleisher D, Youngberg C, Dressman JB. Comparison of gastrointestinal pH in dogs and humans: implications on use of the beagle dog as a model for oral absorption in humans. J Pharm Sci. 1986;75(3):271–4.

    Article  PubMed  CAS  Google Scholar 

  56. Sirois PJ, Amidon GL, Meyer JH, Doty J, Dressman JB. Gastric emptying of nondigestible solids in dogs: a hydrodynamic correlation. Am Phys Soc. 1989;258:G65–72.

    Google Scholar 

  57. Fagerholm U, Lindahl A, Lennernäs H. Regional intestinal permeability differences in rats of compounds with different physicochemical properties and transport mechanisms. J Pharm Pharmacol. 1997;49:687–90.

    Article  PubMed  CAS  Google Scholar 

  58. Tannergren C, Bergendal A, Lennernäs H, Abrahamsson B. Toward an increasing understanding of the barriers to colonic drug absorption in humans: implications for early controlled release candidate assessment. Mol Pharm. 2009;6:60–73.

    Article  PubMed  CAS  Google Scholar 

  59. Lennernäs H. Modeling gastrointestinal drug absorption requires more in vivo biopharmaceutical data: experience from in vivo dissolution and permeability studies in humans. Curr Drug Metab. 2007;8:645–57.

    Article  PubMed  Google Scholar 

  60. Kortejarvi H, Urtti A, Yliperttula M. Pharmacokinetic simulation of biowaiver criteria: the effects of gastric emptying, dissolution, absorption, and elimination rates. Eur J Pharm Sci. 2007;30(2):155–66.

    Article  PubMed  CAS  Google Scholar 

  61. Higuchi T. Rate of release of medicaments from an ointment base containing drugs in suspension. J Pharm Sci. 1961;50(10):874–5.

    Article  PubMed  CAS  Google Scholar 

  62. Noyes AA, Whitney WR. The rate of solution of solid substances in their own solutions. J Am Chem Soc. 1897;19:930–4.

    Article  Google Scholar 

  63. Hixson AW, Crowell JH. Dependence of reaction velocity upon surface and agitation. Ind Eng Chem. 1931;23:923–31.

    Article  CAS  Google Scholar 

  64. Wagner J, Nelson E. Per cent adsorbed time plots derived from blood and/or urinary excretion data. J Pharm Sci. 1963;52(6):610–1.

    Article  PubMed  CAS  Google Scholar 

  65. Bergstrand M, Söderlind E, Eriksson UG, Weitschies W, Karlsson MO. A semi-mechanistic modelling strategy to link in vitro and in vivo drug release for modified release formulations. Pharm Res. 2012;29:695–706.

    Article  PubMed  CAS  Google Scholar 

  66. Crison JR, Timmins P, Keung A, Upreti VV, Boulton DW, Scheer BJ. Biowaiver approach for biopharmaceutics classification system class 3 compound metformin hydrochloride using in silico modeling. J Pharm Sci. 2012;101(5):1773–82.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John R. Crison Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Crison, J.R. (2014). Physiologically Based Pharmacokinetic Modeling in the Development and Evaluation of Hydrophilic Matrix Tablets. In: Timmins, P., Pygall, S., Melia, C. (eds) Hydrophilic Matrix Tablets for Oral Controlled Release. AAPS Advances in the Pharmaceutical Sciences Series, vol 16. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1519-4_8

Download citation

Publish with us

Policies and ethics