Skip to main content

An Industrial Perspective on Hydrophilic Matrix Tablets Based on Hyproxypropyl Methylcellulose (Hypromellose)

  • Chapter
  • First Online:
Hydrophilic Matrix Tablets for Oral Controlled Release

Abstract

This chapter explores the principal aspects that underpin the industrial design, formulation and manufacturing of hydroxypropyl methylcellulose (HPMC) matrix tablets. It shows how critical polymer attributes such as viscosity grade, substitution, particle size and batch consistency are important variables in matrix performance. The chapter also shows how the choice of excipients, manufacturing process and process variables can also influence matrix tablet properties. The careful control of drug, polymer, excipients and processing parameters is important in order to ensure an in-specification matrix performance. The role of tablet shape and coatings in tailoring drug release profiles is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alderman DA. A review of cellulose ethers in hydrophilic matrices for oral controlled-release dosage forms. Int J Pharm Tech Prod Mfr. 1984;5:1–9.

    CAS  Google Scholar 

  2. Rajabi-Siahboomi A, Jordan MP. Slow release HPMC matrix systems. Eur Pharm Rev. 2000;5(4):21–3.

    Google Scholar 

  3. Kanjickal DG, Lopina ST. Modelling of drug release from polymeric delivery systems—a review. Crit Rev Ther Drug Carrier Syst. 2004;21:345–86.

    PubMed  CAS  Google Scholar 

  4. Li CL, Martini LG, Ford JL, Roberts M. The use of hypromellose in oral drug delivery. J Pharm Pharmacol. 2005;57:533–46.

    PubMed  CAS  Google Scholar 

  5. FDA Inactive Ingredient Database—IID. http://www.accessdata.fda.gov/scripts/cder/iig/getiigWEB.cfm. Accessed 2014.

  6. Viridén A, Wittgren B, Larsson A. Investigation of critical polymer properties for polymer release and swelling of HPMC matrix tablets. Eur J Pharm Sci. 2009;36(2–3):297–309.

    PubMed  Google Scholar 

  7. Melia CD. Hydrophilic matrix sustained release systems based on polysaccharide carriers. Crit Rev Ther Drug Carrier Syst. 1991;8(4):395–421.

    PubMed  CAS  Google Scholar 

  8. Konrad R, Christ A, Zessin G, Cobet U. The use of ultrasound and penetrometer to characterize the advancement of swelling and eroding fronts in HPMC matrices. Int J Pharm. 1998;163(1–2):123–31.

    CAS  Google Scholar 

  9. Rajabi-Siahboomi AR, Bowtell RW, Mansfield P, Davies MC, Melia CD. Structure and behaviour in hydrophilic matrix sustained release dosage forms: 2. Dimensional changes in the gel layer and core of HPMC matrices undergoing hydration. J Controll Release. 1994;31:121–8.

    CAS  Google Scholar 

  10. Rajabi-Siahboomi AR, Bowtell RW, Mansfield P, Davies MC, Melia CD. Structure and behaviour in hydrophilic matrix sustained release dosage forms: 4. Studies of water mobility and diffusion coefficients in the gel layer of HPMC tablets using NMR microscopy. Pharm Res. 1996;13(3):376–80.

    PubMed  CAS  Google Scholar 

  11. Melia CD, Hodsdon AC, Rajabi-Siahboomi AR, Adler J, Mitchell JR. Structure and behaviour in hydrophilic matrix sustained release dosage forms: 1. Origin and mechanism of formation of gas bubbles in the hydrated surface layer. Int J Pharm. 1993;100:263–9.

    CAS  Google Scholar 

  12. Richardson JC, Bowtell RW, Maeder K, Melia CD. Pharmaceutical applications of magnetic resonance imaging (MRI). Adv Drug Deliv Rev. 2005;57:1191–209.

    PubMed  CAS  Google Scholar 

  13. Bajwa GS, Hoebler K, Sammon C, Timmins P, Melia CD. Microstructural imaging of early gel layer formation in HPMC matrices. J Pharm Sci. 2006;95(10):2145–57.

    PubMed  CAS  Google Scholar 

  14. Pygall SR, Whetstone J, Timmins P, Melia CD. Pharmaceutical applications of confocal laser scanning microscopy: the physical characterisation of pharmaceutical systems. Adv Drug Deliv Rev. 2007;59:1434–52.

    PubMed  CAS  Google Scholar 

  15. Melia CD, Crean B, Pygall SR, Williams HD. New imaging methods for dosage form characterisation. In: Florence A, Siepmann J, editors. Modern pharmaceutics. 5th ed. New York: Informa Healthcare; 2009.

    Google Scholar 

  16. Ju RTC, Nixon PR, Patel MV. Drug release from hydrophilic matrices 1. New scaling laws for predicting polymer and drug release based on the polymer disentanglement concentration and the diffusion layer. J Pharm Sci. 1995;84:1455–63.

    PubMed  CAS  Google Scholar 

  17. Rodriguez CF, Bruneau N, Barra J, Alfonso D, Doelker E. Hydrophilic cellulose derivatives as drug delivery carriers: influence of substitution type on the properties of compressed matrix tablets. In: Wise DL, editor. Handbook of pharmaceutical controlled release technology. New York: Dekker; 2000. p. 1–30.

    Google Scholar 

  18. Narasimhan B. Mathematical models describing polymer dissolution: consequences for drug delivery. Adv Drug Deliv Rev. 2001;48:195–210.

    PubMed  CAS  Google Scholar 

  19. Bettini R, Catellani PL, Santi P, Massimo G, Peppas NA, Colombo P. Translocation of drug particles in HPMC matrix gel layer: effect of drug solubility and influence on release rate. J Controll Release. 2001;70(3):383–91.

    CAS  Google Scholar 

  20. Conti S, Maggi L, Segale L, Ochoa Maciste E, Conte U, Grenier P, Vergnault G. Matrices containing NaCMC and HPMC 2. Swelling and release mechanism study. Int J Pharm. 2007;333(1–2):143–51.

    PubMed  CAS  Google Scholar 

  21. Velasco MV, Ford JL, Rowe P, Rajabi-Siahboomi AR. Influence of drug: hydroxypropyl methylcellulose ratio, drug and polymer particle size and compression force on the release of diclofenac sodium from HPMC tablets. J Controll Release. 1999;57:75–85.

    CAS  Google Scholar 

  22. Higuchi T. Mechanism of sustained-action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J Pharm Sci. 1963;52:1145–9.

    PubMed  CAS  Google Scholar 

  23. Korsmeyer RW, Peppas NA. Swelling-controlled delivery systems for pharmaceutical applications: macromolecular and modelling considerations. In: Mansdorf SZ, Roseman TJ, editors. Controlled release delivery systems. New York: Dekker; 1983. p. 77–90.

    Google Scholar 

  24. Ford JL, Mitchell K, Sawh D, Ramdour S, Armstrong DJ, Elliott PNC, Rostron C, Hogan JE. Hydroxypropyl methylcellulose matrix tablets containing propranolol hydrochloride and sodium dodecyl sulphate. Int J Pharm. 1991;71:213–21.

    CAS  Google Scholar 

  25. Siepmann J, Streubel A, Peppas NA. Understanding and predicting drug delivery from hydrophilic matrix tablets using the “Sequential Layer” model. Pharm Res. 2002;19(3):306–14.

    PubMed  CAS  Google Scholar 

  26. Fu XC, Wang GP, Liang WQ, Chow MSS. Prediction of drug release from HPMC matrices: effect of physicochemical properties of drug and polymer concentration. J Controll Release. 2004;95:209–16.

    CAS  Google Scholar 

  27. Mitchell K, Ford JL, Armstrong DJ, Elliott PNC, Hogan JE, Rostron C. The influence of substitution type on the performance of methylcellulose and hydroxypropyl methylcellulose in gels and matrices. Int J Pharm. 1993;100:143–54.

    CAS  Google Scholar 

  28. Vueba ML, Batista de Carvalho LAE, Veiga F, Sousa JJ, Pina ME. Influence of cellulose ether polymers on ketoprofen release from hydrophilic matrix tablets. Eur J Pharm Biopharm. 2004;58(1):51–9.

    PubMed  CAS  Google Scholar 

  29. Viridén A, Larsson A, Wittgren B. The effect of substitution pattern of HPMC on polymer release from matrix tablets. Int J Pharm. 2010;389:147–56.

    PubMed  Google Scholar 

  30. Dahl TC, Calderwood T, Bormeth K, Trimble K. Influence of physico-chemical properties of hydroxypropyl methylcellulose on naproxen release from sustained release matrix tablets. J Controll Release. 1990;14:1–10.

    CAS  Google Scholar 

  31. Rogers T, Petermann O, Adden R, Knarr M. Investigation and rank-ordering of hypromellose 2208 properties impacting modified release performance of a hydrophilic matrix tablet. 38th Annual Meeting & Exposition of the Controlled Release Society, National Harbor, Maryland, USA; 2011.

    Google Scholar 

  32. Keary CM. Characterization of METHOCEL cellulose ethers by aqueous SEC with multiple detectors. Carbohydr Polym. 2001;45:293–303.

    CAS  Google Scholar 

  33. Rajabi-Siahboomi AR, Adler J, Davies MC, Melia CD. Particle swelling and the mechanism of failure of HPMC matrices. Proc 3rd Assoc UK APS Conf; 1994. p 21.

    Google Scholar 

  34. Bettini R, Colombo P, Massimo G, Catellani PL, Vitali T. Swelling and drug release in hydrogel matrices: polymer viscosity and matrix porosity effects. Eur J Pharm Sci. 1994;2:213–9.

    CAS  Google Scholar 

  35. Reynolds TD, Gehrke SH, Hussain AS, Shenouda LS. Polymer erosion and drug release characterization of hydroxypropyl methylcellulose matrices. J Pharm Sci. 1998;87(9):1115–23.

    PubMed  CAS  Google Scholar 

  36. Vueba ML, Batista de Carvalho LA, Veiga F, Sousa JJ, Pina ME. Role of cellulose ether polymers on ibuprofen release from matrix tablets. Drug Dev Ind Pharm. 2005;31(7):653–65.

    PubMed  CAS  Google Scholar 

  37. Mitchell K, Ford JL, Armstrong DJ, Elliott PNC, Hogan JE, Rostron C. The influence of the particle size of hydroxypropyl methylcellulose K15M on its hydration and performance in matrix tablets. Int J Pharm. 1993;100:175–9.

    CAS  Google Scholar 

  38. Dabbagh MA, Ford JL, Rubenstein MH, Hogan JE. Effect of polymer particle size, compaction pressure and hydrophilic polymers on drug release from matrices containing ethylcellulose. Int J Pharm. 1996;140:85–95.

    CAS  Google Scholar 

  39. Wang SHP, Wah CL, Easterbrook MG, Li X. Investigation of the influence of mean HPMC particle size and number of polymer particles on the release of aspirin from swellable hydrophilic matrix tablets. J Controll Release. 2001;76:39–49.

    Google Scholar 

  40. Mitchell SA, Reynolds TD, Dasbach TP. A compaction process to enhance dissolution of poorly water-soluble drugs utilizing hydroxypropyl methylcellulose. Int J Pharm. 2003;250:3–11.

    PubMed  CAS  Google Scholar 

  41. Miranda A, Millán M, Caraballo I. Study of the critical points of HPMC hydrophilic matrices for controlled drug delivery. Int J Pharm. 2006;311(1–2):75–81.

    PubMed  CAS  Google Scholar 

  42. Miranda A, Millán M, Caraballo I. Investigation of the influence of particle size on the excipient percolation thresholds of HPMC hydrophilic matrix tablets. J Pharm Sci. 2007;96(10):2746–56.

    PubMed  CAS  Google Scholar 

  43. Kabanda L, Lefebvre RA, Van Bree HJ, Remon JP. In vitro and in vivo evaluation in dogs and pigs of a hydrophilic matrix containing propylthiouracil. Pharm Res. 1994;11(11):1663–8.

    PubMed  CAS  Google Scholar 

  44. Mitchell SA, Balwinski KM. Investigation of hypromellose particle size effects on drug release from sustained release hydrophilic matrix tablets. Drug Dev Ind Pharm. 2007;33(9):952–8.

    PubMed  CAS  Google Scholar 

  45. Malamataris S, Karidas T. Effect of particle size and sorbed moisture on the tensile strength of some tableted hydroxypropyl methylcellulose (HPMC) polymers. Int J Pharm. 1994;104:115–23.

    CAS  Google Scholar 

  46. Malamataris S, Karidas T, Goidas P. Effect of particle size and sorbed moisture on the compression behaviour of some hydroxypropyl methylcellulose (HPMC) polymers. Int J Pharm. 1994;103:205–15.

    CAS  Google Scholar 

  47. Nokhodchi A, Rubinstein MH, Ford JL. The effect of particle size and viscosity grade on the compaction properties of hydroxypropylmethylcellulose 2208. Int J Pharm. 1995;126:189–97.

    CAS  Google Scholar 

  48. Nokhodchi A, Ford JL, Rowe PH, Rubinstein MH. The effect of moisture on the Heckel and energy analysis of hydroxypropylmethylcellulose 2208 (HPMC K4M). J Pharm Pharmacol. 1996;48:1122–7.

    PubMed  CAS  Google Scholar 

  49. Bonferoni MC, Rossi S, Tamayo M, Pedraz JL, Dominguez-Gil A, Caramella C. On the employment of λ-carrageenan in a matrix system. II. λ-Carrageenan and hydroxypropylmethylcellulose mixtures. J Controll Release. 1994;30:175–82.

    CAS  Google Scholar 

  50. Campos-Aldrete ME, Vallafuerte-Robles L. Influence of the viscosity grade and the particle size of HPMC on metronidazole release from matrix tablets. Eur J Pharm Biopharm. 1997;43:173–8.

    CAS  Google Scholar 

  51. Maderuelo C, Zarzuelo A, Lanao JM. Critical factors in the release of drugs from sustained release hydrophilic matrices. J Controll Release. 2011;154:2–19.

    CAS  Google Scholar 

  52. Viridén A, Wittgren B, Andersson T, Larsson A. The effect of chemical heterogeneity of HPMC on polymer release from matrix tablets. Eur J Pharm Sci. 2009;36:392–400.

    PubMed  Google Scholar 

  53. Novak SD, Šporar E, Baumgartner S, Vrečer F. Characterization of physicochemical properties of hydroxypropyl methylcellulose (HPMC) type 2208 and their influence on prolonged drug release from matrix tablets. J Pharm Biomed Anal. 2012;66:136–43.

    Google Scholar 

  54. Novak SD, Kuhelj V, Vrečer F, Baumgartner S. The influence of HPMC viscosity as FRC parameter on the release of low soluble drug from hydrophylic matrix tablets. Pharm Dev Technol. 2013;18(2):343–7.

    PubMed  CAS  Google Scholar 

  55. Larsson M, Viridén A, Stading M, Larsson A. The influence of HPMC substitution pattern on solid state properties. Carbohydr Polym. 2010;82(4):1074–81.

    CAS  Google Scholar 

  56. Herder J, Adolfsson Å, Larsson A. Initial studies of water granulation of eight grades of hypromellose (HPMC). Int J Pharm. 2006;313:57–65.

    PubMed  CAS  Google Scholar 

  57. Mitchell SA, Balwinski KM. A framework to investigate drug release variability arising from hypromellose viscosity specifications in controlled release matrix tablets. J Pharm Sci. 2008;97(6):2277–85.

    PubMed  CAS  Google Scholar 

  58. Shah NH, Raikar AS, Phuapradit W, Zeng FW, Chen A, Infeld MH, Malick W. Effect of processing techniques in controlling the release rate and mechanical strength of hydroxypropyl methylcellulose based hydrogel matrices. Eur J Pharm Biopharm. 1996;42(3):183–7.

    CAS  Google Scholar 

  59. Viridén A, Wittgren B, Larsson A. The consequence of the chemical composition of HPMC in matrix tablets on the release behaviour of model drug substances having different solubility. Eur J Pharm Biopharm. 2011;77:99–110.

    PubMed  Google Scholar 

  60. Viridén A, Abrahmsén-Alami S, Wittgren B, Larsson A. Release of theophylline and carbamazepine from matrix tablets—consequences of HPMC chemical heterogeneity. Eur J Pharm Biopharm. 2011;78:470–9.

    PubMed  Google Scholar 

  61. Veiga F, Salsa T, Pina ME. Influence of technological variables on the release of theophylline from hydrophilic matrix tablets. Drug Dev Ind Pharm. 1997;23(6):547–51.

    CAS  Google Scholar 

  62. Levina M, Gothoskar A, Rajabi-Siahboomi AR. Application of a modelling system in the formulation of extended release hydrophilic matrices. Pharm Tech Eur. 2006;7:20–6.

    Google Scholar 

  63. Ho H-O, Liu C-H, Lin H-M, Sheu M-T. The development of matrix tablets for diclofenac sodium based on an empirical in vitro and in vivo correlation. J Controll Release. 1997;49:149–56.

    CAS  Google Scholar 

  64. Khanvilkar KH, Huang Y, Moore AD. Influence of hydroxypropylmethylcellulose mixture, apparent viscosity, and tablet hardness on drug release using a 23 full factorial design. Drug Dev Ind Pharm. 2000;28(5):601–8.

    Google Scholar 

  65. Baveja SK, Ranga Rao KV, Singh A, Gombar VK. Release characteristics of some bronchodilators from compressed hydrophilic polymeric matrices and their correlation with molecular geometry. Int J Pharm. 1988;41:55–62.

    CAS  Google Scholar 

  66. Ford JL, Rubinstein MH, Hogan JE. Formulation of sustained release promethazine hydrochloride tablets using hydroxypropylmethylcellulose matrices. Int J Pharm. 1985;24:327–38.

    CAS  Google Scholar 

  67. Ford JL, Rubinstein MH, Hogan JE. Propranolol hydrochloride and aminophylline release from matrix tablets containing hydroxypropylmethylcelloulose. Int J Pharm. 1985;24:339–50.

    CAS  Google Scholar 

  68. Ramos Pezzini B, Gomes FH. Bio-dis and the paddle dissolution apparatuses applied to the release characterization of ketoprofen from hypromellose matrices. AAPS PharmSciTech. 2009;10(3):763–71.

    PubMed  PubMed Central  Google Scholar 

  69. Gabr K. Effect of organic acids on the release patterns of weakly basic drugs from inert sustained release matrix tablets. Eur J Pharm Biopharm. 1992;38:199–202.

    CAS  Google Scholar 

  70. Espinoza-Ramos R, Villafuerte-Robles L. Influence of admixed lactose on pelanserin hydrochloride release from hydroxypropyl methylcellulose matrix tablets. Pharm Acta Helv. 1999;74:65–71.

    CAS  Google Scholar 

  71. Reynolds TD, Dasbach TP, Rosenberg S. Polymer erosion of hydrophilic matrices. Proc Intl Symp Control Release Bioact Mater. 1998;25:928–9.

    Google Scholar 

  72. Aoki S, Ando H, Tatsuishi K, Uesugi K, Ozawa H. Determination of the mechanical impact force in the in vitro dissolution test and evaluation of the correlation between in vivo and in vitro release. Int J Pharm. 1993;95(1–3):67–75.

    CAS  Google Scholar 

  73. Klančar U, Horvat M, Baumgartner S. Correlating cellulose derivative intrinsic viscosity with mechanical susceptibility of swollen hydrophilic matrix tablets. AAPS PharmSciTech. 2012;13(3):903–10.

    PubMed  PubMed Central  Google Scholar 

  74. Asare-Addo K, Levina M, Rajabi-Siahboomi AR, Nokodhchi A. Effect of ionic strength and pH of dissolution media on theophylline release from hypromellose matrix tablets—apparatus USP III, simulated fasted and fed conditions. Carbohydr Polym. 2011;86:85–93.

    CAS  Google Scholar 

  75. Asare-Addo K, Conway BR, Larhrib H, Levina M, Rajabi-Siahboomi AR, Tetteh J, Boateng J, Nokhodchi A. The effect of pH and ionic strength of dissolution media on in-vitro release of two model drugs of different solubilities from HPMC matrices. Colloids Surf B: Biointerfaces. 2013;111:384–91.

    PubMed  CAS  Google Scholar 

  76. Helena Amaral M, Sousa Lobo JM, Ferreira DC. Effect of hydroxypropyl methylcellulose and hydrogenated castor oil on naproxen release from sustained-release tablets. AAPS PharmSciTech. 2001;2(2):14–21.

    PubMed Central  Google Scholar 

  77. Petrovic A, Vukičevic J, Djuric Z. Theophylline release from matrix tablets containing different concentration of Methocel K100M. Proceedings of the 4th World meeting ADRITELF/APGI/APV; 2002. pp 245–46.

    Google Scholar 

  78. Khurahashi H, Kami H, Sunada H. Influence of physic-chemical properties on drug release rate from hydroxypropyl methylcellulose matrices. Chem Pharm Bull. 1996;44:829–32.

    Google Scholar 

  79. Sheskey P, Pacholke K, Sackett G, Maher L, Polli J. Roll compaction granulation of a controlled-release matrix tablet formulation containing HPMC: effect of process scale-up on robustness of tablets and predicted in vivo performance. Pharm Tech. 2000;24(11):30–52.

    Google Scholar 

  80. Gonçalves-Araújo T, Rajabi-Siahboomi AR, Caraballo I. Application of percolation theory in the study of an extended release verapamil hydrochloride formulation. Int J Pharm. 2008;361(1–2):112–7.

    PubMed  Google Scholar 

  81. Tajarobi F, Abrahmsén-Alami S, Hansen M, Larsson A. The impact of dose and solubility of additives on the release from HPMC matrix tablets—identifying critical conditions. Pharm Res. 2009;26(6):1496–503.

    PubMed  CAS  Google Scholar 

  82. Fuertes I, Caraballo I, Miranda A, Millán M. Study of critical points of drugs with different solubilities in hydrophilic matrices. Int J Pharm. 2010;383(1–2):138–46.

    PubMed  CAS  Google Scholar 

  83. Ghimire M, Hodges LA, Band J, O’Mahony B, McInnes FJ, Mullen AB, Stevens HN. In-vitro and in-vivo erosion profiles of hydroxypropylmethylcellulose (HPMC) matrix tablets. J Control Release. 2010;147(1):70–5.

    PubMed  CAS  Google Scholar 

  84. Wilson HC, Cuff GW. Sustained release of isomazole from matrix tablets administered to dogs. J Pharm Sci. 1989;78(7):582–4.

    PubMed  CAS  Google Scholar 

  85. Jamzad S, Tutunji L, Fassihi R. Analysis of macromolecular changes and drug release from hydrophilic matrix systems. Int J Pharm. 2005;292(1–2):75–85.

    PubMed  CAS  Google Scholar 

  86. Levina M. Influence of fillers, compression force, film coatings and storage conditions on performance of hypromellose matrices. Drug Deliv Technol. 2004;4(1):34–42.

    CAS  Google Scholar 

  87. Levina M, Rajabi-Siahboomi AR. The influence of excipients on drug release from hydroxypropyl methylcellulose matrices. J Pharm Sci. 2004;93(11):2746–54.

    PubMed  CAS  Google Scholar 

  88. Lotfipour F, Nokhodchi A, Saeedi M, Norouzi-Sani S, Sharbafi J, Siahi-Shadbad MR. The effect of hydrophilic and lipophilic polymers and fillers on the release rate of atenolol from HPMC matrices. Farmaco. 2004;59(10):819–25.

    PubMed  CAS  Google Scholar 

  89. Vueba ML, Batista de Carvalho LAE, Veiga F, Sousa JJ, Pina ME. Influence of cellulose ether mixtures on ibuprofen release: MC25, HPC and HPMC K100M. Pharm Dev Technol. 2006;11:213–28.

    PubMed  CAS  Google Scholar 

  90. Tajarobi F, Abrahmsén-Alami S, Carlsson AS, Larsson A. Simultaneous probing of swelling, erosion and dissolution by NMR-microimaging—effect of solubility of additives on HPMC matrix tablets. Eur J Pharm Sci. 2009;37(2):89–97.

    PubMed  CAS  Google Scholar 

  91. Tukaram BN, Rajagopalan IV, Shartchandra PSI. The effects of lactose, microcrystalline cellulose and dicalcium phosphate on swelling and erosion of compressed HPMC matrix tablets: texture analyzer. Iran J Pharm Res. 2010;9(4):349–58.

    CAS  Google Scholar 

  92. Michailova V, Titeva S, Kotsilkova R, Krusteva E, Minkov E. Influence of hydrogel structure on the process of water penetration and drug release from mixed hydroxypropylmethyl cellulose/thermally pregelanized waxy maize starch hydrophilic matrices. Int J Pharm. 2001;222:7–17.

    PubMed  CAS  Google Scholar 

  93. Hanselmann R, Burchard W, Ehrat M, Widmer HM. Structural properties of fractionated starch polymers and their dependence of the dissolution process. Macromolecules. 1996;29:3277–82.

    CAS  Google Scholar 

  94. Jans EMJ, Vandecruys RPG. Pregelatinized starch in a controlled release formulation. US 20090191266 A1; 2009.

    Google Scholar 

  95. Williams HD, Ward R, Culy A, Hardy IJ, Melia CD. Designing HPMC matrices with improved resistance to dissolved sugar. Int J Pharm. 2010;401(1–2):51–9.

    PubMed  CAS  Google Scholar 

  96. Alli D, Bolton S, Gaylord NG. Hydroxypropylmethylcellulose—anionic surfactant interactions in aqueous systems. J Appl Polym Sci. 1991;42(4):947–56.

    CAS  Google Scholar 

  97. Nokhodchi A, Norouzi-Sani S, Siahi-Shadbad MR, Lotfipoor F, Saeedi M. The effect of various surfactants on the release rate of propranolol hydrochloride from HPMC-Eudragit matrices. Eur J Pharm Biopharm. 2002;54:349–56.

    PubMed  CAS  Google Scholar 

  98. Turner S, Federici C, Hite M, Fassihi R. Formulation development and human in vitro-in vivo correlation for a novel, monolithic controlled-release matrix system of high load and highly water-soluble drug niacin. Drug Dev Ind Pharm. 2004;30(8):797–807.

    PubMed  CAS  Google Scholar 

  99. Pygall SR, Kujawinski S, Timmins P, Melia CD. Mechanisms of drug release in citrate buffered HPMC matrices. Int J Pharm. 2009;370(1–2):110–20.

    PubMed  CAS  Google Scholar 

  100. Pygall SR, Kujawinski S, Timmins P, Melia CD. The suitability of tris(hydroxylmethyl) aminomethane (THAM) as a buffering system for hydroxypropyl methylcellulose (HPMC) hydrophilic matrices containing a weak acid drug. Int J Pharm. 2010;387(1–2):93–102.

    PubMed  CAS  Google Scholar 

  101. Baveja SK, Ranga Rao KV, Devi KP. Zero-order release hydrophilic matrix tablets of β-adrenergic blockers. Int J Pharm. 1987;39(1–2):39–45.

    CAS  Google Scholar 

  102. Vázquez M-J, Gomes-Amoza JL, Martinez-Pacheco R, Souto C, Concheiro A. Relationships between drug dissolution profile and gelling agent viscosity in tablets prepared with hydroxymethylcellulose (HPMC) and sodium carboxymethylcellulose (NaCMC) mixtures. Drug Dev Ind Pharm. 1995;21(16):1859–74.

    Google Scholar 

  103. Williams III RO, Reynolds TD, Cabelka TD, Sykora MA, Mahaguna V. Investigation of excipient type and level on drug release from controlled release tablets containing HPMC. Pharm Dev Technol. 2002;7(2):181–93.

    PubMed  CAS  Google Scholar 

  104. Bruce HF, Pai MP, Felton LA. In vitro release and in vivo absorption of flucytosine controlled release hydrophilic matrix tablets. Controlled Release Society annual meeting, New York City, NY; July 2008.

    Google Scholar 

  105. Vázquez M-J, Casalderrey M, Duro R, Gómez-Amoza J-L, Martínez-Pacheco R, Souto C, Concheiro A. Atenolol release from hydrophilic matrix tablets with hydroxypropylmethylcellulose (HPMC) mixtures as gelling agent: effects of the viscosity of the HPMC mixture. Eur J Pharm Sci. 1996;4(1):39–48.

    Google Scholar 

  106. Eyjolfsson R. Hydroxypropyl methylcellulose mixtures: effects and kinetics of release of an insoluble drug. Drug Dev Ind Pharm. 1999;25(5):667–9.

    PubMed  CAS  Google Scholar 

  107. Ebube NK, Hikal AH, Wyandt CM, Beer DC, Miller LG, Jones AB. Sustained release of acetaminophen from heterogeneous matrix tablets: influence of polymer ratio, polymer loading, and co-active on drug release. Pharm Dev Technol. 1997;2(2):161–70.

    PubMed  CAS  Google Scholar 

  108. Ebube NK, Jones AB. Sustained release of acetaminophen from a heterogeneous mixture of two hydrophilic non-ionic cellulose ether polymers. Int J Pharm. 2004;272(1–2):19–27.

    PubMed  CAS  Google Scholar 

  109. Gusler G, Berner B, Chau M, Padua A. Optimal polymer mixtures for gastric retentive tablets. 2004. US 6,723,340 B2.

    Google Scholar 

  110. Liu SQ, Fassihi R. Zero-order delivery of a highly soluble, low dose drug alfuzosin hydrochloride via gastro-retentive system. Int J Pharm. 2008;348(1–2):27–34.

    PubMed  CAS  Google Scholar 

  111. Lalloo AK, McConnell EL, Jin L, Elkes R, Seiler C, Wu Y. Decoupling the role of image size and calorie intake on gastric retention of swelling-based gastric retentive formulations: pre-screening in the dog model. Int J Pharm. 2012;431:90–100.

    PubMed  CAS  Google Scholar 

  112. Ranga Rao KV, Padmalatha Devi K, Buri P. Cellulose matrices for zero-order release of soluble drugs. Drug Dev Ind Pharm. 1988;14:2299–320.

    Google Scholar 

  113. Devi KP, Rao KVR, Baveja S, Fathi M, Roth M. Zero-order release formulation of oxprenolol hydrochloride with swelling and erosion control. Pharm Res. 1989;6:313–7.

    PubMed  CAS  Google Scholar 

  114. Bonferoni MC, Caramella C, Sangalli ME, Conte U, Hernandez RM, Pedraz JL. Rheological behaviour of hydrophilic polymers and drug release from erodible matrices. J Control Release. 1992;18:205–12.

    CAS  Google Scholar 

  115. Wan LSC, Heng PWS, Wong LF. Effect of additives on liquid uptake into hydroxypropylmethylcellulose matrices. S.T.P. Pharma Sci. 1994;4(3):213–9.

    Google Scholar 

  116. Dabbagh MA, Ford JL, Rubinstein MH, Hogan JE, Rajabi-Siahboomi AR. Release of propranolol hydrochloride from matrix tablets containing sodium carboxymethylcellulose and hydroxypropylmethylcellulose. Pharm Dev Technol. 1999;4(3):313–24.

    PubMed  CAS  Google Scholar 

  117. Nokhodchi A, Hassan-Zadeh D, Monajjem-Zadeh F, Taghi-Zadeh N. Effect of various surfactants and their concentration on controlled release of captopril from polymeric matrices. Acta Pharm. 2008;58:151–62.

    PubMed  CAS  Google Scholar 

  118. Contreras L, Melgoza LM, Villalobos R, Caraballo I. Study of the critical points of experimental HPMC-NaCMC hydrophilic matrices. Int J Pharm. 2010;386(1–2):52–60.

    PubMed  CAS  Google Scholar 

  119. Timmins P, Delargy AM, Howard JR. Optimization and characterization of a pH-independent extended-release hydrophilic matrix tablet. Pharm Dev Technol. 1997;2(1):25–31.

    PubMed  CAS  Google Scholar 

  120. Howard JR, Timinis P. Controlled release formulation. US Patent 4,792,452. 1998.

    Google Scholar 

  121. Huang Y-B, Tsai Y-H, Lee S-H, Chang J-S, Wu P-C. Optimization of pH-independent release of nicardipine hydrochloride extended-release matrix tablets using response surface methodology. Int J Pharm. 1005;289(1–2):87–95.

    Google Scholar 

  122. Varshosaz J, Tavakoli N, Kheirolahi F. Use of hydrophilic natural gums in formulation of sustained-release matrix tablets of tramadol hydrochloride. AAPS PharmSciTech. 2006;7(1):Article 24.

    Google Scholar 

  123. Varshosaz J, Tavakoli N, Eram SA. Use of natural gums and cellulose derivatives in production of sustained release metoprolol tablets. Drug Deliv. 2006;13(2):113–9.

    PubMed  CAS  Google Scholar 

  124. Gohel MC, Parikh RK, Nagori SA, Jena DG. Fabrication of modified release tablet formulation of metoprolol succinate using hydroxypropyl methylcellulose and xanthan gum. AAPS PharmSciTech. March 2009;10(1).

    Google Scholar 

  125. Mughal MA, Iqbal Z, Neau SH. Guar gum, xanthan gum, and HPMC can define release mechanisms and sustain release of propranolol hydrochloride. AAPS PharmSciTech. 2011;12(1):77–87.

    PubMed  CAS  PubMed Central  Google Scholar 

  126. Abrahamsson B, Alpsten M, Bake B, Larsson A, Sjögren J. In vitro and in vivo erosion of two different hydrophilic gel matrix tablets. Eur J Pharm Biopharm. 1998;46(1):69–75.

    PubMed  CAS  Google Scholar 

  127. Li S, Lin S, Daggy BP, Mirchandani HL, Chien YW. Effect of HPMC and Carbopol on the release and floating properties of gastric floating drug delivery system using factorial design. Int J Pharm. 2003;253(1–2):13–22.

    PubMed  CAS  Google Scholar 

  128. Samani SM, Montaseri H, Kazemi A. The effect of polymer blends on release profiles of diclofenac sodium from matrices. Eur J Pharm Biopharm. 2003;55(3):351–5.

    PubMed  CAS  Google Scholar 

  129. Bravo SA, Lamas MC, Salomón CJ. In-vitro studies of diclofenac sodium controlled-release from biopolymeric hydrophilic matrices. J Pharm Pharm Sci. 2002;5(3):213–9.

    PubMed  CAS  Google Scholar 

  130. Bravo SA, Lamas MC, Salomon CJ. Swellable matrices for the controlled release of diclofenac sodium: formulation and in vitro studies. Pharm Dev Technol. 2004;9(1):75–83.

    PubMed  CAS  Google Scholar 

  131. Tiwari SB, Rajabi-Siahboomi AR. Applications of complimentary polymers in HPMC hydrophilic extended release matrices. Drug Deliv Technol. 2009;9(7):20–7.

    CAS  Google Scholar 

  132. Abrahamsson B, Alpsten M, Bake B, Larsson A, Sjögren J. In vitro and in vivo erosion of two different hydrophilic gel matrix tablets. Eur J Pharm Biopharm. 1998;46(1):69–75.

    PubMed  CAS  Google Scholar 

  133. Nokhodchi A, Hassan-Zadeh D, Monajjem-Zadeh F, Taghi-Zadeh N. Effect of various surfactants and their concentration on controlled release of captopril from polymeric matrices. Acta Pharm. 2008;58:151–62.

    PubMed  CAS  Google Scholar 

  134. Maghsoodi M, Barghi L. Polymer percolation threshold in multi-component HPMC matrices tablets. Adv Pharm Bull. 2011;1(1):27–33.

    PubMed  PubMed Central  Google Scholar 

  135. Takka S, Rajbhandari S, Sakr A. Effect of anionic polymers on the release of propranolol hydrochloride from matrix tablets. Eur J Pharm Biopharm. 2001;52(1):75–82.

    PubMed  CAS  Google Scholar 

  136. Al-Taani BM, Tashtoush M. Effect of microenvironment pH of swellable and erodable buffered matrices on the release characteristics of diclofenac sodium. AAPS PharmSciTech. 2003;4(3):Article 43.

    Google Scholar 

  137. Tatavarti AS, Mehta KA, Augsburger LL, Hoag SW. Influence of methacrylic and acrylic acid polymers on the release performance of weakly basic drugs from sustained release hydrophilic matrices. J Pharm Sci. 2004;93(9):2319–31.

    PubMed  CAS  Google Scholar 

  138. Tatavarti AS, Hoag SW. Microenvironmental pH modulation based release enhancement of a weakly basic drug from hydrophilic matrices. J Pharm Sci. 2006;95(7):1459–68.

    PubMed  CAS  Google Scholar 

  139. Tiwari SB, Rajabi-Siahboomi AR. Modulation of drug release from hydrophilic matrices. Pharm Tech Eur. September 2008.

    Google Scholar 

  140. Tiwari SB, Rajabi-Siahboomi AR. Applications of complimentary polymers in HPMC hydrophilic extended release matrices. Drug Deliv Technol. 2009;9(7):20–7.

    CAS  Google Scholar 

  141. Streubel A, Siepmann J, Dashevsky A, Bodmeier R. pH-independent release of a weakly basic drug from water-insoluble and-soluble matrix tablets. J Control Release. 2000;67:101–10.

    PubMed  CAS  Google Scholar 

  142. Talukdar MM, Michoel A, Rombaut P, Kinget R. Comparative study on xanthan gum and hydroxypropylmethyl cellulose as matrices for controlled-release drug delivery I. Compaction and in vitro drug release behaviour. Int J Pharm. 1996;129(1–2):233–41.

    CAS  Google Scholar 

  143. Loggia N, Roe C, Kohya S, Smith JS, Macrae RJ. Low-shear aqueous granulation of a hydrophilic formulation containing a high polymer content. J Pharm Pharmacol. 1999;51(Supplement):309.

    Google Scholar 

  144. Roe C, Wigmore A, Loggia N, Kohya S, Mills A, Smith JS, Macrae RJ. Feasibility of high-shear wet granulation for an oral controlled release formulation containing a high percentage of HPMC. J Pharm Pharmacol. 1999;51(Supplement):230.

    Google Scholar 

  145. Darunkaisorn W, Mahadlek J, Phaechamud T. HPMC matrix granule formation: selection of suitable granulating fluid. Thai Pharm Health Sci J. 2009;4(1):29–45.

    Google Scholar 

  146. Liu C-H, Chen S-C, Kao Y-H, Kao C-C, Sokoloski TD, Sheu M-T. Properties of hydroxypropylmethylcellulose granules produced by water spraying. Int J Pharm. 1993;100:241–8.

    CAS  Google Scholar 

  147. Larsson A, Vogt MH, Herder J, Luukkonen P. Novel mechanistic description of the water granulation process for hydrophilic polymers. Powder Technol. 2008;188(2):139–46.

    CAS  Google Scholar 

  148. Koo OM, Ji J, Li J. Effect of powder substrate on foam drainage and collapse: implications to foam granulation. J Pharm Sci. 2012;101(4):1385–90.

    PubMed  CAS  Google Scholar 

  149. Raikar AM, Schwartz JB. The effect of formulation factors on the moist granulation technique for controlled-release tablets. Drug Dev Ind Pharm. 2001;27(9):893–8.

    Google Scholar 

  150. Kohya S, Mills A, Smith JS, Macrae RJ. Assessment of binary wet granulation of a controlled release hydrophilic matrix tablet formulation. J Pharm Pharmacol. 1999;51(Supplement):294.

    Google Scholar 

  151. Ebube NK, Hikal AH, Wyandt CM, Beer DC, Miller LG, Jones AB. Effect of drug, formulation, and process variables on granulation and compaction characteristics of heterogeneous matrices: Part II. HPMC and PVP systems. Drug Dev Ind Pharm. 1996;22(7):561–7.

    CAS  Google Scholar 

  152. Nellore RV, Rekhi GS, Hussain AS, Tillman LG, Augsburger LL. Development of metoprolol tartrate extended-release matrix tablet formulations for regulatory policy consideration. J Controll Release. 1998;50:247–56.

    CAS  Google Scholar 

  153. Jeon I, Gilli T, Betz G. Evaluation of roll compaction as a preparation method for hydroxypropyl cellulose-based matrix tablets. J Pharm Bioallied Sci. 2011;3(2):213–20.

    PubMed  CAS  PubMed Central  Google Scholar 

  154. Kleinebudde P. Roll compaction/dry granulation: pharmaceutical applications. Eur J Pharm Biopharm. 2004;58(2):317–26.

    PubMed  CAS  Google Scholar 

  155. Teng Y, Qiu Z, Wen H. Systematical approach of formulation and process development using roller compaction. Eur J Pharm Biopharm. 2009;73(2):219–29.

    PubMed  CAS  Google Scholar 

  156. Herting MG, Kleinebudde P. Studies on the reduction of tensile strength of tablets after roll compaction/dry granulation. Eur J Pharm Biopharm. 2008;70:372–9.

    PubMed  CAS  Google Scholar 

  157. Martin L, Tiwari SB, Rajabi-Siahboomi AR. Use of roller compaction in the preparation of verapamil hydrochloride extended release matrix tablets containing hydrophilic polymers. 35th Annual Meeting & Exposition of the Controlled Release Society, New York, NY, USA; 2008.

    Google Scholar 

  158. Sheskey PJ, Hendren J. The effect of roll compaction equipment variables, granulation technique, and HPMC polymer level on a controlled-release matrix model drug formulation. Pharm Technol. 1999;23(3):90–106.

    CAS  Google Scholar 

  159. Sheskey PJ, Sackett G, Maher L. Scale-up of a controlled-release tablet formulation based on hypromellose and manufactured using roll compaction technology. New Orleans, LA: AAPS; 1999.

    Google Scholar 

  160. Akbari J, Adrangui M, Farid Dj, Nokhodchi A, Sahi-Shadbad MR, Saeedi M, Ravanassa F. Effect of diluents type and preparation method on carbamazepine release from HPMC matrices. Proceedings of the 3rd World meeting APV/APGI; 2000. pp. 251–52.

    Google Scholar 

  161. Ford JL, Rubinstein MH, McCaul F, Hogan JE, Edgar PJ. Importance of drug type, tablet shape and added diluents on drug release kinetics from hydroxypropylmethylcellulose matrix tablets. Int J Pharm. 1987;40:223–34.

    CAS  Google Scholar 

  162. Colombo P, Bettini R, Massimo G, Catellani PL, Santi P, Santi P, Peppas NA. Drug diffusion front movement is important in drug release control from swelling matrix tablets. J Pharm Sci. 1995;84(8):991–7.

    PubMed  CAS  Google Scholar 

  163. Gupta P, Bansal AK. Patent opportunities in matrix-based oral controlled release drug delivery systems, Part II. Pharm Technol Eur. 2002;14:47–54.

    CAS  Google Scholar 

  164. Gao P, Nixon PR, Skoug JW. Diffusion in HPMC gels. II. Prediction of drug release rates from hydrophilic matrix extended-release dosage forms. Pharm Res. 1995;12(7):965–71.

    PubMed  CAS  Google Scholar 

  165. Katzhendler I, Hoffman A, Goldberger A, Friedman M. Modeling of drug release from erodible tablets. J Pharm Sci. 1997;86(1):110–5.

    PubMed  CAS  Google Scholar 

  166. Rekhi GS, Nellore RV, Hussain AS, Tillman LG, Malinowski H, Augsburger LL. Identification of critical formulation and processing variables for metoprolol tartrate extended-release (ER) matrix tablets. J Controll Release. 1999;59:327–42.

    CAS  Google Scholar 

  167. Karasulu HY, Ertan G, Köse T. Modeling of theophylline release from different geometrical erodible tablets. Eur J Pharm Biopharm. 2000;49(2):177–82.

    PubMed  CAS  Google Scholar 

  168. Siepmann J, Podual K, Sriwongjanya M, Peppas NA, Bodmeier R. A new model describing the swelling and drug release kinetics from hydroxypropyl methylcellulose tablets. J Pharm Sci. 1999;88:65–72.

    PubMed  CAS  Google Scholar 

  169. Siepmann J, Kranz H, Peppas NA, Bodmeier R. Calculation of the required size and shape of hydroxypropyl methylcellulose matrices to achieve desired drug release profiles. Int J Pharm. 2000;201(2):151–64.

    Google Scholar 

  170. Skoug JW, Borin MT, Fleishaker JC, Cooper AM. In vitro and in vivo evaluation of whole and half tablets of sustained-release adinazolam mesylate. Pharm Res. 1991;8(12):1482–8.

    PubMed  CAS  Google Scholar 

  171. Reynolds TD, Mitchell SA, Balwinski KM. Investigation of the effect of tablet surface area/volume on drug release from hydroxypropylmethylcellulose controlled release matrix tablets. Drug Dev Ind Pharm. 2002;28(4):457–66.

    PubMed  CAS  Google Scholar 

  172. Missaghi S, Patel P, Tiwari S, Farrell T, Rajabi-Siahboomi AR. Investigation of the influence of tablet shape, geometry and film coating on drug release from hypromellose extended-release matrices. Drug Deliv Technol. 2010;10(2):32–41.

    CAS  Google Scholar 

  173. Dasbach T, Davidson J, Martinez H. A comparison study of the effects of polymer characteristics and applied coating level on controlled release matrix systems. AAPS annual meeting and exposition, Boston, MA; 1997.

    Google Scholar 

  174. Palmer F, Vuong H, Levina M, Rajabi-Siahboomi AR. The effect of film coating and storage conditions on the performance of metformin HCl 500 mg extended release hypromellose matrices. 33rd annual meeting and Exposition of the Controlled Release Society, Vienna, Austria; 2006.

    Google Scholar 

  175. Colombo P, Catellani PL, Peppas NA, Maggi L, Conte U. Swelling characteristics of hydrophilic matrices for controlled release. New dimensionless number to describe the swelling and release behaviour. Int J Pharm. 1992;88:99–109.

    CAS  Google Scholar 

  176. Dias VD, Gothoskar AV, Rajabi-Siahboomi AR. Investigation of a venlafaxine HCl (37.5 mg) extended release formulation using hypromellose (HPMC) matrices. 33rd Annual meeting of the Controlled Release Society, Vienna, Austria; 2006.

    Google Scholar 

  177. Dias VD, Gothoskar AV, Fegely K, Rajabi-Siahboomi AR. Modulation of drug release from hypromellose (HPMC) matrices: suppression of the initial burst effect. AAPS annual meeting and Exposition, San Antonio, TX; 2006.

    Google Scholar 

  178. Ayres JW. Coated, platform-generating tablet. Patent US 6,720,005 B1; 2004.

    Google Scholar 

  179. Ayres JW. Coated, platform-generating tablet. Patent US 6,733,784 B1; 2004.

    Google Scholar 

  180. Dias VD, Fegely K, Rajabi-Siahboomi AR. Biphasic drug release from drug layered, extended release hypromellose matrices. AAPS annual meeting and exposition, San Diego, CA; 2007.

    Google Scholar 

  181. Stevens HNE. Chronopharmaceutical drug delivery. In: Redfern P, editor. Chronotherapeutics. UK: Pharmaceutical Press; 2003. p. 283–307.

    Google Scholar 

  182. Alvarez-Fuentes J, Fernández-Arévalo M, González-Rodríguez M, Cirri M, Mura P. Development of enteric-coated timed-release matrix tablets for colon targeting. J Drug Target. 2004;12(9):607–12.

    PubMed  CAS  Google Scholar 

  183. Heng PWS, Li XM, Chan LW, Easterbrook MG. Influence of HPMC particle properties and ethylcellulose coating on the release behaviour of aspirin from matrix tablets. Proceedings of the 28th international symposium on controlled release of bioactive materials and 4th consumer and diversified products conference, CRS; 2001.

    Google Scholar 

  184. Maggi L, Conte U. New tablet design for the bimodal release of drugs. Proceedings of the 16th pharmaceutical technology conference; 1996. vol 2. pp. 38-45.

    Google Scholar 

  185. Ager B, Hojnacka I, Pascal A, Walther M, Whitlock M, Investigation into the effect of alcohol on drug release from hypromellose matrix tablets: influence of drug and filler type. Pfizer Global Research and Development, 36th annual meeting and Exposition of the Controlled Release Society, Copenhagen, Denmark; 2009.

    Google Scholar 

  186. Roberts M, Cespi M, Ford JL, Dyas AM, Martini GL, Crowley PJ. The influence of ethanol on aspirin release from hypromellose matrix tablets. The British pharmaceutical conference and exhibition, Manchester, UK; 2006.

    Google Scholar 

  187. Roberts M, Cespi M, Ford JL, Dyas AM, Downing J, Martini GL, Crowley PJ. Influence of ethanol on aspirin release from hypromellose matrices. Int J Pharm. 2007;332:31–7.

    PubMed  CAS  Google Scholar 

  188. Skalsky B, Gallardo D, Ravishankar H, Assmus M, Petereit H-U, Alcohol influence on drug release—concept for rugged formulations. Degussa, 34th annual meeting and Exposition of the Controlled Release Society, California, USA; 2007.

    Google Scholar 

  189. Levina M, Vuong H, Rajabi-Siahboomi AR. The influence of hydro-alcoholic media on hypromellose matrix systems. Drug Dev Ind Pharm. 2007;33:1125–34.

    PubMed  CAS  Google Scholar 

  190. Levina M, Rajabi-Siahboomi AR. The influence of concomitant use of alcoholic beverages on hypromellose matrix tablets. Pharm Technol Eur. 2008;20:16–20.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Levina Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Levina, M., Rajabi-Siahboomi, A.R. (2014). An Industrial Perspective on Hydrophilic Matrix Tablets Based on Hyproxypropyl Methylcellulose (Hypromellose). In: Timmins, P., Pygall, S., Melia, C. (eds) Hydrophilic Matrix Tablets for Oral Controlled Release. AAPS Advances in the Pharmaceutical Sciences Series, vol 16. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1519-4_3

Download citation

Publish with us

Policies and ethics