Skip to main content

Helpful or a Hindrance: Co-infections with Helminths During Malaria

Part of the Advances in Experimental Medicine and Biology book series (AEMB,volume 828)

Abstract

A significant proportion of disease burden in resource poor tropical communities is due to parasitic infections. Such chronic ailments not only result in higher rates of morbidity and mortality but effects the overall wealth of the country too. Nevertheless, simply the presence and intensity of infection can lead to malnutrition, anaemia, poor school performances and stunted growth. Thankfully, such issues are becoming prominent in discussions about public health and with the continual improvement in diagnostics it is clear that concurrent polyparasitism remains prominent in underdeveloped rural areas. The risk factors and consequences of polyparasitism appear to depend on a multitude of factors including gender, age, geographical setting, infection intensity and the host’s overall physical health. Co-infections of Plasmodium and helminths are widespread due to the similarities in ecological requirements for disease transmission and strongly influence parasitaemia, anaemia and hepatosplenomegaly. The absolute influence on one another however remains unclear although most studies agree that ascariasis “helps” and hookworms “hinder.” The underlying aetiology also requires further investigation but it is hypothesized that the strong Th2 and regulatory networks induced by the helminths control malaria-induced pro-inflammatory reactions. This chapter surveys our current understanding about how helminths, such as schistosomes and filariae, influence Plasmodium infection in endemic areas. In addition, we provide an overview about the immune mechanisms that have been elucidated in appropriate co-infection rodent models. If our future goals are to assist individuals suffering from severe poverty, then it is essential to consider all aspects of their life-styles including the unfortunate health burden of multiple parasitic burden. Furthermore, understanding the influence of parasites will provide more appropriate control measures that include critical variations in economic and ecological factors in a particular endemic area and may reveal that not one glove fits all.

Keywords

  • Malaria
  • Helminth-coinfection
  • Filariasis
  • Schistosomiasis
  • Immune-regulation

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-1489-0_5
  • Chapter length: 31 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-1489-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)
Hardcover Book
USD   119.99
Price excludes VAT (USA)

References

  1. Abanyie FA, McCracken C, Kirwan P et al (2013) TJ. Ascaris co-infection does not alter malaria-induced anaemia in a cohort of Nigerian preschool children. Malar J 12:1

    PubMed  PubMed Central  Google Scholar 

  2. Adegnika AA, Ramharter M, Agnandji ST et al (2010) Epidemiology of parasitic co-infections during pregnancy in Lambarene, Gabon. Trop Med Int Health 15:1204–1209

    PubMed  Google Scholar 

  3. Adjobimey T, Hoerauf A (2010) Induction of immunoglobulin G4 in human filariasis: an indicator of immunoregulation. Ann Trop Med Parasitol 104:455–464

    PubMed  CAS  PubMed Central  Google Scholar 

  4. Alemu A, Shiferaw Y, Ambachew A et al (2012) Hamid H. Malaria helminth co-infections and their contribution for aneamia in febrile patients attending Azzezo health center, Gondar, Northwest Ethiopia: a cross sectional study. Asian Pac J Trop Med 5:803–809

    PubMed  Google Scholar 

  5. Amante FH, Haque A, Stanley AC et al (2010) Immune-mediated mechanisms of parasite tissue sequestration during experimental cerebral malaria. J Immunol 185:3632–3642

    PubMed  CAS  Google Scholar 

  6. Arndts K, Deininger S, Specht S et al (2012) Elevated adaptive immune responses are associated with latent infections of Wuchereria bancrofti. PLoS Negl Trop Dis 6(4):e1611

    PubMed  CAS  PubMed Central  Google Scholar 

  7. Ashton RA, Kyabayinze DJ, Opio T et al (2011) The impact of mass drug administration and longlasting insecticidal net distribution on Wuchereria bancrofti infection in humans and mosquitoes: an observational study in northern Uganda. Parasit Vectors 4:134

    PubMed  PubMed Central  Google Scholar 

  8. Babu S, Blauvelt CP, Kumaraswami V et al (2006) Regulatory networks induced by live parasites impair both Th1 and Th2 pathways in patent lymphatic filariasis: implications for parasite persistence. J Immunol 176:3248–3256

    PubMed  CAS  Google Scholar 

  9. Bailenger J, Lucchese F, Peychaud A et al (1985) Inhibition of Plasmodium berghei in rats infested with Strongyloides ratti or Trichinella spiralis; role of high blood corticosterone in reaction to the development of helminths. Ann Parasitol Hum Comp 60:435–443

    PubMed  CAS  Google Scholar 

  10. Bejon P, Mwangi TW, Lowe B et al (2008) Helminth infection and eosinophilia and the risk of Plasmodium falciparum malaria in 1- to 6-year-old children in a malaria endemic area. PLoS Negl Trop Dis 2:e164

    PubMed  PubMed Central  Google Scholar 

  11. Briand V, Watier L, Le Hesran JY et al (2005) Coinfection with Plasmodium falciparum and schistosoma haematobium: protective effect of schistosomiasis on malaria in senegalese children? Am J Trop Med Hyg 72:702–707

    PubMed  Google Scholar 

  12. Brooker S, Clements AC (2009) Spatial heterogeneity of parasite co-infection: determinants and geostatistical prediction at regional scales. Int J Parasitol 39:591–597

    PubMed  PubMed Central  Google Scholar 

  13. Brooker S, Clements AC, Hotez PJ et al (2006) The co-distribution of Plasmodium falciparum and hookworm among African schoolchildren. Malar J 5:99

    PubMed  PubMed Central  Google Scholar 

  14. Brooker S, Akhwale W, Pullan R et al (2007) Epidemiology of plasmodium-helminth co-infection in Africa: populations at risk, potential impact on anemia, and prospects for combining control. Am J Trop Med Hyg 77:88–98

    PubMed  CAS  PubMed Central  Google Scholar 

  15. Brooker SJ, Pullan RL, Gitonga CW et al (2012) Plasmodium-helminth coinfection and its sources of heterogeneity across East Africa. J Infect Dis 205:841–852

    PubMed  PubMed Central  Google Scholar 

  16. Brutus L, Watier L, Briand V et al (2006) Parasitic co-infections: does Ascaris lumbricoides protect against Plasmodium falciparum infection? Am J Trop Med Hyg 75:194–198

    PubMed  Google Scholar 

  17. Brutus L, Watier L, Hanitrasoamampionona V et al (2007) Confirmation of the protective effect of Ascaris lumbricoides on Plasmodium falciparum infection: results of a randomized trial in Madagascar. Am J Trop Med Hyg 77:1091–1095

    PubMed  Google Scholar 

  18. Bucher K, Dietz K, Lackner P et al (2011) Schistosoma co-infection protects against brain pathology but does not prevent severe disease and death in a murine model of cerebral malaria. Int J Parasitol 41:21–31

    PubMed  Google Scholar 

  19. Carter R, Mendis KN (2002) Evolutionary and historical aspects of the burden of malaria. Clin Microbiol Rev 15:564–594

    PubMed  PubMed Central  Google Scholar 

  20. Chadee DD, Rawlins SC, Tiwari TS (2003) Short communication: concomitant malaria and filariasis infections in Georgetown, Guyana. Trop Med Int Health 8:140–143

    PubMed  Google Scholar 

  21. Chakravarty S, Cockburn IA, Kuk S et al (2007) CD8+ T lymphocytes protective against malaria liver stages are primed in skin-draining lymph nodes. Nat Med 13:1035–1041

    PubMed  CAS  Google Scholar 

  22. Chakravarty S, Baldeviano GC, Overstreet MG et al (2008) Effector CD8+ T lymphocytes against malaria liver stages do not require IFN-{gamma} for anti-parasite activity. Infect Immun 76:3628–3631

    PubMed  CAS  PubMed Central  Google Scholar 

  23. Chang KH, Stevenson MM (2004) Malarial anaemia: mechanisms and implications of insufficient erythropoiesis during blood-stage malaria. Int J Parasitol 34:1501–1516

    PubMed  CAS  Google Scholar 

  24. Chaorattanakawee S, Natalang O, Hananantachai H et al (2003) Trichuris trichiura infection is associated with the multiplicity of Plasmodium falciparum infections, in Thailand. Ann Trop Med Parasitol 97:199–202

    PubMed  CAS  Google Scholar 

  25. Cheever AW (1968) A quantitative post-mortem study of Schistosomiasis mansoni in man. Am J Trop Med Hyg 17:38–64

    PubMed  CAS  Google Scholar 

  26. Cheever AW, Andrade ZA (1967) Pathological lesions associated with Schistosoma mansoni infection in man. Trans R Soc Trop Med Hyg 61:626–639

    PubMed  CAS  Google Scholar 

  27. Cheever AW, Lenzi JA, Lenzi HL et al (2002) Experimental models of Schistosoma mansoni infection. Mem Inst Oswaldo Cruz 97:917–940

    PubMed  Google Scholar 

  28. Christensen NO, Nansen P, Fagbemi BO, Monrad J (1987) Heterologous antagonistic and synergistic interactions between helminths and between helminths and protozoans in concurrent experimental infection of mammalian hosts. Parasitol Res 73(5):387–410

    Google Scholar 

  29. Christensen NO, Furu P, Kurtzhals J et al (1988) Heterologous synergistic interactions in concurrent experimental infection in the mouse with Schistosoma mansoni, Echinostoma revolutum, Plasmodium yoelii, Babesia microti, and Trypanosoma brucei. Parasitol Res 74:544–551

    PubMed  CAS  Google Scholar 

  30. Clark IA, Budd AC, Alleva LM et al (2006) Human malarial disease: a consequence of inflammatory cytokine release. Malar J 10(5):85

    Google Scholar 

  31. Craig AG, Grau GE, Janse C et al (2012) The role of animal models for research on severe malaria. PLoS Pathog 8(2):e1002401

    PubMed  CAS  PubMed Central  Google Scholar 

  32. Cowman AF, Magalhaes A, Crabb BS (2006) Invasion of red blood cells by malaria parasites. Cell 124:755–766

    PubMed  CAS  Google Scholar 

  33. de Jesus AR, Miranda DG et al (2004) Association of type 2 cytokines with hepatic fibrosis in human Schistosoma mansoni infection. Infect Immun 72:3391–3397

    PubMed  CAS  Google Scholar 

  34. de Souza B, Helmby H (2008) Concurrent gastro-intestinal nematode infection does not alter the development of experimental cerebral malaria. Microbes Infect 10:916–921

    PubMed  PubMed Central  Google Scholar 

  35. de Souza JB, Riley EM (2002) Cerebral malaria: the contribution of studies in animal models to our understanding of immunopathogenesis. Microbes Infect 4:291–300

    PubMed  Google Scholar 

  36. Degarege A, Animut A, Legesse M et al (2009) Malaria severity status in patients with soil-transmitted helminth infections. Acta Trop 112:8–11

    PubMed  Google Scholar 

  37. Degarege A, Legesse M, Medhin G et al (2012) Malaria and related outcomes in patients with intestinal helminths: a cross-sectional study. BMC Infect Dis 12:291

    PubMed  PubMed Central  Google Scholar 

  38. Demissie F, Kebede A, Shimels T et al (2009) Assessment of public health implication of malaria-geohelminth co-infection with an emphasis on hookworm-malaria anemia among suspected malaria patients in asendabo, southwest Ethiopia. Ethiop Med J 47:153–158

    PubMed  Google Scholar 

  39. Diallo TO, Remoue F, Schacht AM et al (2004) Schistosomiasis co-infection in humans influences inflammatory markers in uncomplicated Plasmodium falciparum malaria. Parasite Immunol 26:365–369

    PubMed  CAS  Google Scholar 

  40. Diallo TO, Remoue F, Gaayeb L et al (2010) Schistosomiasis coinfection in children influences acquired immune response against Plasmodium falciparum malaria antigens. PLoS One 5:e12764

    PubMed  PubMed Central  Google Scholar 

  41. Dolo H, Coulibaly YI, Dembele B et al (2012) Filariasis attenuates anemia and proinflammatory responses associated with clinical malaria: a matched prospective study in children and young adults. PLoS Negl Trop Dis 6(11):e1890

    PubMed  CAS  PubMed Central  Google Scholar 

  42. Dunne DW, Pearce EJ (1999) Immunology of hepatosplenic schistosomiasis mansoni: a human perspective. Microbes Infect 1:553–560

    PubMed  CAS  Google Scholar 

  43. Engwerda C, Belnoue E, Grüner AC et al (2005) Experimental models of cerebral malaria. Curr Top Microbiol Immunol 297:103–143

    PubMed  CAS  Google Scholar 

  44. Escalante AA, Barrio E, Ayala FJ (1995) Evolutionary origin of human and primate malarias: evidence from the circumsporozoite protein gene. Mol Biol Evol

    Google Scholar 

  45. Fairfax K, Nascimento M, Huang SC et al (2012) Th2 responses in schistosomiasis. Semin Immunopathol 34:863–887

    PubMed  Google Scholar 

  46. Fernandez Ruiz D, Dubben B Saeftel M et al (2009) Filarial infection induces protection against P. berghei liver stages in mice. Microbes Infect 11(2):172–180

    PubMed  CAS  Google Scholar 

  47. Florey LS, King CH, Van Dyke MK et al (2012) Partnering parasites: evidence of synergism between heavy Schistosoma haematobium and Plasmodium species infections in Kenyan children. PLoS Negl Trop Dis 6(7):e1723

    PubMed  PubMed Central  Google Scholar 

  48. Glushakova S, Yin D, Li T, Zimmerberg J (2005) Membrane transformation during malaria parasite release from human red blood cells. Curr Biol 15:1645–1650

    PubMed  CAS  Google Scholar 

  49. Gong YY, Wilson S, Mwatha JK et al (2012) Aflatoxin exposure may contribute to chronic hepatomegaly in Kenyan school children. Environ Health Perspect 120:893–896

    PubMed  CAS  PubMed Central  Google Scholar 

  50. Graham AL, Lamb TJ, Read AF et al (2005) Malaria-filaria coinfection in mice makes malarial disease more severe unless filarial infection achieves patency. J Infect Dis 191:410–421

    PubMed  Google Scholar 

  51. Hartgers FC, Yazdanbakhsh M (2006) Co-infection of helminths and malaria: modulation of the immune responses to malaria. Parasite Immunol 28(10):497–506

    PubMed  CAS  Google Scholar 

  52. Helmby H (2009) Gastrointestinal nematode infection exacerbates malaria-induced liver pathology. J Immunol 182:5663–5671

    PubMed  CAS  PubMed Central  Google Scholar 

  53. Helmby H, Kullberg M, Troye-Blomberg M et al (1998) Altered immune responses in mice with concomitant Schistosoma mansoni and Plasmodium chabaudi infections. Infect Immun 66:5167–5174

    PubMed  CAS  PubMed Central  Google Scholar 

  54. Henri S, Chevillard C, Mergani A et al (2002) Cytokine regulation of periportal fibrosis in humans infected with Schistosoma mansoni: IFN-gamma is associated with protection against fibrosis and TNF-alpha with aggravation of disease. J Immunol 169:929–936

    PubMed  CAS  Google Scholar 

  55. Hillier SD, Booth M, Muhangi L et al (2008) Plasmodium falciparum and helminth coinfection in a semi urban population of pregnant women in Uganda. J Infect Dis 198:920–927

    PubMed  PubMed Central  Google Scholar 

  56. Hoerauf A (2008) Filariasis: new drugs and new opportunities for lymphatic filariasis and onchocerciasis. Curr Opin Infect Dis 21:673–681

    PubMed  CAS  Google Scholar 

  57. Hoerauf A, Satoguina J, Saeftel M et al (2005) Specht S. Immunomodulation by filarial nematodes. Parasite Immunol 27:417–429

    PubMed  CAS  Google Scholar 

  58. Hoerauf A, Pfarr K, Mand S et al (2011) Filariasis in Africa—treatment challenges and prospects. Clin Microbiol Infect 17:977–985

    PubMed  CAS  Google Scholar 

  59. Jacobs P, Radzioch D, Stevenson MM et al (1996) A Th1-associated increase in tumor necrosis factor alpha expression in the spleen correlates with resistance to blood-stage malaria in mice. Infect Immun 64:535–541

    PubMed  CAS  PubMed Central  Google Scholar 

  60. Kasehagen LJ, Mueller I, McNamara DT et al (2006) Changing patterns of Plasmodium blood-stage infections in the Wosera region of Papua New Guinea monitored by light microscopy and high throughput PCR diagnosis. Am J Trop Med Hyg 75:588–596

    PubMed  PubMed Central  Google Scholar 

  61. King CH (2010) Parasites and poverty: the case of schistosomiasis. Acta Trop 113:95–104

    PubMed  PubMed Central  Google Scholar 

  62. King CH, Dickman K, Tisch DJ (2005) Reassessment of the cost of chronic helmintic infection: a meta-analysis of disability-related outcomes in endemic schistosomiasis. Lancet 365:1561–1569

    PubMed  Google Scholar 

  63. Kirchgatter K, Del Portillo HA (2005) Clinical and molecular aspects of severe malaria. An Acad Bras Cienc 77:455–475

    PubMed  CAS  Google Scholar 

  64. Knowles SC (2011) The effect of helminth co-infection on malaria in mice: a meta-analysis. Int J Parasitol 41:1041–1051

    PubMed  Google Scholar 

  65. Kolbaum J, Eschbach ML, Steeg C, Jacobs T, Fleischer B, Breloer M (2012) Efficient control of Plasmodium yoelii infection in BALB/c and C57BL/6 mice with pre-existing Strongyloides ratti infection.Parasite Immunol 34(7):388–393

    CAS  Google Scholar 

  66. Kolbaum J, Tartz S, Hartmann W et al (2012) Nematode-induced interference with the anti-Plasmodium CD8+ T-cell response can be overcome by optimizing antigen administration. Eur J Immunol 42(4):890–900

    PubMed  CAS  Google Scholar 

  67. Kurtzhals JA, Adabayeri V, Goka BQ et al (1998) Low plasma concentrations of interleukin 10 in severe malarial anaemia compared with cerebral and uncomplicated malaria. Lancet 351:1768–1772

    PubMed  CAS  Google Scholar 

  68. Kwiatkowski D (1995) Malarial toxins and the regulation of parasite density. Parasitol Today 11:206–212

    PubMed  CAS  Google Scholar 

  69. Kwiatkowski D, Bate CA, Scragg IG (1997) The malarial fever response-pathogenesis, polymorphism and prospects for intervention. Ann Trop Med Parasitol 91:533–542

    PubMed  CAS  Google Scholar 

  70. Laranjeiras RF, Brant LC, Lima AC, Coelho PM, Braga EM (2008) Reduced protective effect of Plasmodium berghei immunization by concurrent Schistosoma mansoni infection. Mem Inst Oswaldo Cruz 103(7):674–677

    Google Scholar 

  71. Layland LE, Rad R, Wagner H (2007) Immunopathology in schistosomiasis is controlled by antigen-specific regulatory T cells primed in the presence of TLR2. Eur J Immunol 37:2174–2184

    PubMed  CAS  Google Scholar 

  72. Layland LE, Mages J, Loddenkemper C (2010) Pronounced phenotype in activated regulatory T cells during a chronic helminth infection. J Immunol 184:713–724

    PubMed  CAS  Google Scholar 

  73. Le Hensen JY, Akiana A, Ndiayeel HM et al (2004) Severe malaria attack is associated with high prevalence of Ascaris lumbricoides infection among children in rural Senegal. Trans R Soc Trop Med Hyg 98:397–399

    Google Scholar 

  74. Legesse M, Erko B, Balcha F (2004) Increased parasitaemia and delayed parasite clearance in Schistosoma mansoni and Plasmodium berghei co-infected mice. Acta Trop 91:161–166

    PubMed  Google Scholar 

  75. Lello J, Boag B, Fenton A et al (2004) Competition and mutualism among the gut helminths of a mammalian host. Nature 428:840–844

    PubMed  CAS  Google Scholar 

  76. Lewinsohn R (1975) Anaemia in mice with concomitant Schistosoma mansoni and Plasmodium berghei yoelii infection. Trans R Soc Trop Med Hyg 69:51–56

    PubMed  CAS  Google Scholar 

  77. Li C, Seixas E, Langhorne J (2001) Rodent malarias: the mouse as a model for understanding immune responses and pathology induced by the erythrocytic stages of the parasite. Med Microbiol Immunol 189:115–126

    PubMed  CAS  Google Scholar 

  78. Lwin M, Last C, Targett GA et al (1982) Infection of mice concurrently with Schistosoma mansoni and rodent malarias: contrasting effects of patent S. mansoni infections on Plasmodium chabaudi, P. yoelii and P. berghei. Ann Trop Med Parasitol 76:265–273

    PubMed  CAS  Google Scholar 

  79. Lyke KE, Dicko A, Dabo A et al (2005) Association of Schistosoma haematobium infection with protection against acute Plasmodium falciparum malaria in Malian children. Am J Trop Med Hyg 73:1124–1130

    PubMed  PubMed Central  Google Scholar 

  80. Lyke KE, Dabo A, Sangare L et al (2006) Effects of concomitant Schistosoma haematobium infection on the serum cytokine levels elicited by acute Plasmodium falciparum malaria infection in Malian children. Infect Immun 74:5718–5724

    PubMed  CAS  PubMed Central  Google Scholar 

  81. Lyke KE, Dabo A, Arama C et al (2012) Reduced T regulatory cell response during acute Plasmodium falciparum infection in Malian children co-infected with Schistosoma haematobium. PLoS One 7:e31647

    PubMed  CAS  PubMed Central  Google Scholar 

  82. Lyke KE, Wang A, Dabo A et al (2012b) Antigen-specific B memory cell responses to Plasmodium falciparum malaria antigens and Schistosoma haematobium antigens in co-infected Malian children. PLoS One 7:e37868

    CAS  Google Scholar 

  83. Maizels RM, Smith KA (2011) Regulatory T cells in infection. Adv Immunol 112:73–136

    PubMed  Google Scholar 

  84. Maizels RM, Hewitson JP, Murray J et al (2012) Immune modulation and modulators in Heligmosomoides polygyrus infection. Exp Parasitol 132:76–89

    PubMed  CAS  Google Scholar 

  85. Malaguarnera L, Musumeci S (2002) The immune response to Plasmodium falciparum malaria. Lancet Infect Dis 2:472–478

    PubMed  Google Scholar 

  86. Mand S, Pfarr K, Sahoo PK et al (2009) Macrofilaricidal activity and amelioration of lymphatic pathology in bancroftian filariasis after 3 weeks of doxycycline followed by single-dose diethylcarbamazine. Am J Trop Med Hyg 81:702–711

    PubMed  CAS  Google Scholar 

  87. Mand S, Debrah AY, Klarmann U et al (2011) The role of ultrasonography in the differentiation of the various types of filaricele due to bancroftian filariasis. Acta Trop 120(Suppl 1):S23–S32

    PubMed  Google Scholar 

  88. Mand S, Debrah AY, Klarmann U et al (2012) Doxycycline improves filarial lymphedema independent of active filarial infection: a randomized controlled trial. Clin Infect Dis 55:621–630

    PubMed  CAS  PubMed Central  Google Scholar 

  89. Marsh K, Forster D, Waruiru C et al (1995) Indicators of life-threatening malaria in African children. N Engl J Med 332:1399–1404

    PubMed  CAS  Google Scholar 

  90. Mboera LE, Shayo EH, Senkoro KP et al (2010) Knowledge, perceptions and practices of farming communities on linkages between malaria and agriculture in Mvomero District, Tanzania. Acta Trop 113:139–144

    PubMed  Google Scholar 

  91. Mboera LE, Senkoro KP, Rumisha SF et al (2011) ayala BK, Shayo EH, Mlozi MR. Tanzania. Plasmodium falciparum and helminth coinfections among schoolchildren in relation to agro-ecosystems in Mvomero District, Tanzania. Acta Trop 120:95–102

    PubMed  Google Scholar 

  92. Melo GC, Reyes-Lecca RC, Vitor-Silva S et al (2010) Concurrent helminthic infection protects schoolchildren with Plasmodium vivax from anemia. PLoS One 5(6):e11206

    PubMed  PubMed Central  Google Scholar 

  93. Metenou S, Dembele B, Konate S et al (2009) Patent filarial infection modulates malaria-specific type 1 cytokine responses in an IL-10-dependent manner in a filaria/malaria-coinfected population. J Immunol 183:916–924

    PubMed  CAS  PubMed Central  Google Scholar 

  94. Metenou S, Dembele B, Konate S et al (2010) At homeostasis filarial infections have expanded adaptive T regulatory but not classical Th2 cells. J Immunol 184:5375–5382

    PubMed  CAS  PubMed Central  Google Scholar 

  95. Metenou S, Dembele B, Konate S et al (2011) Filarial infection suppresses malaria-specific multifunctional Th1 and Th17 responses in malaria and filarial coinfections. J Immunol 186:4725–4733

    PubMed  CAS  PubMed Central  Google Scholar 

  96. Metenou S, Kovacs M, Dembele B et al (2011b) Interferon regulatory factor (IRF) modulation underlies the bystander suppression of malaria antigen-driven IL-12 and IFN-γ in the context of filaria-malaria co-infection. Eur J Immunol 42:1–10

    Google Scholar 

  97. Metenou S, Babu S, Nutman TB (2012) Impact of filarial infections on coincident intracellular pathogens: mycobacterium tuberculosis and Plasmodium falciparum. Curr Opin HIV AIDS 3:231–238

    Google Scholar 

  98. Midzi N, Sangweme D, Zinyowera S et al (2008) The burden of polyparasitism among primary schoolchildren in rural and farming areas in Zimbabwe. Trans R Soc Trop Med Hyg 102:1039–1045

    PubMed  CAS  Google Scholar 

  99. MOH (2006) Annual health statistical abstract. Minsitry of Health and Social Welfare, Dar es Salaam, United Repulic of Tanzania

    Google Scholar 

  100. Moore KW, de Waal Malefyt R, Coffmann RL et al (2001) Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 19:683–765

    PubMed  CAS  Google Scholar 

  101. Mulu A, Legesse M, Erko B et al (2013) Epidemiological and clinical correlates of malaria-helminth co-infections in Southern Ethiopia. Malar J 12:227

    PubMed  PubMed Central  Google Scholar 

  102. Muok EM, Mwinzi PN, Black CL et al (2009) Short report: childhood coinfections with Plasmodium falciparum and Schistosoma mansoni result in lower percentages of activated T cells and T regulatory memory cells than schistosomiasis only. Am J Trop Med Hyg 80:475–478

    PubMed  PubMed Central  Google Scholar 

  103. Murray MJ, Murray AB, Murray MB et al (1977) Parotid enlargement, forehead edema, and suppression of malaria as nutritional consequences of ascariasis. Am J Clin Nutr 30:2117–2121

    PubMed  CAS  Google Scholar 

  104. Murray J, Murray A, Murray M et al (1978) The biological suppression of malaria: an ecological and nutritional interrelationship of a host and two parasites. Am J Clin Nutr 31:1363–1366

    PubMed  CAS  Google Scholar 

  105. Mutapi F, Ndhlovu PD, Hagan P, Woolhouse ME (2000) Anti-schistosome antibody responses in children coinfected with malaria. Parasite Immunol 22(4):207–209

    Google Scholar 

  106. Muturi EJ, Mbogo CM, Mwangangi JM et al (2006) Concomitant infections of Plasmodium falciparum and Wuchereria bancrofti on the Kenyan coast. Filaria J 5:8

    PubMed  PubMed Central  Google Scholar 

  107. Mwangi TW, Bethony JM, Brooker S (2006) Malaria and helminth interactions in humans: an epidemiological viewpoint. Ann Trop Med Parasitol 100:551–570

    PubMed  CAS  PubMed Central  Google Scholar 

  108. Mwatha JK, Kimani G, Kamau T et al (1998) High levels of TNF, soluble TNF receptors, soluble ICAM-1, and IFN-gamma, but low levels of IL-5, are associated with hepatosplenic disease in human schistosomiasis mansoni. J Immunol 160:1992–1999

    PubMed  CAS  Google Scholar 

  109. Nacher M (2011) Interactions between worms and malaria: good worms or bad worms? Malar J 12 10:259

    PubMed  PubMed Central  Google Scholar 

  110. Nacher M, Gay F, Singhasivanon P et al (2000) Ascaris lumbricoides infection is associated with protection from cerebral malaria. Parasite Immunol 22:107–113

    PubMed  CAS  Google Scholar 

  111. Nacher M, Singhasivanon P, Gay F et al (2001a) Contemporaneous and successive mixed Plasmodium falciparum and Plasmodium vivax infections are associated with Ascaris lumbricoides: an immunomodulating effect? J Parasitol 87:912–915

    CAS  Google Scholar 

  112. Nacher M, Singhasivanon P, Silachamroon U et al (2001b) Association of helminth infections with increased gametocyte carriage during mild falciparum malaria in Thailand. Am J Trop Med Hyg 65:644–647

    CAS  Google Scholar 

  113. Nacher M, Singhasivanon P, Gay F et al (2001c) Association of helminth infection with decreased reticulocyte counts and haemoglobin concentration in Thai Falciparum malaria. Am J Trop Med Hyg 65:335–337

    CAS  Google Scholar 

  114. Nacher M, Singhasivanon P, Silachamroon U et al (2001d) Helminth infections are associated with protection from malaria-related acute renal failure and jaundice in Thailand. Am J Trop Med Hyg 65:834–836

    CAS  Google Scholar 

  115. Nacher M, Singhasivanon P, Traore B et al (2002a) Helminth infections are associated with protection from cerebral malaria and increased nitrogen derivatives concentrations in Thailand. Am J Trop Med Hyg 66:304–309

    CAS  Google Scholar 

  116. Nacher M, Singhasivanon P, Yimsamran S et al (2002b) Intestinal helminth infections are associated with increased incidence of Plasmodium falciparum malaria in Thailand. J Parasitol 88:55–58

    CAS  Google Scholar 

  117. Ngwenya BZ (1982) Enhanced resistance to Plasmodium berghei in mice previously infected with Trichinella spiralis. Parasite Immunol 4:197–207

    PubMed  CAS  Google Scholar 

  118. Nkuo-Akenji TK, Chi PC, Cho JF et al (2006) Malaria and helminth co-infection in children living in a malaria endemic setting of mount Cameroon and predictors of anemia. J Parasitol 92:1191–1195

    PubMed  Google Scholar 

  119. Noland GS, Graczyk TK, Fried B et al (2005) Exacerbation of Plasmodium yoelii malaria in Echinostoma caproni infected mice and abatement through anthelmintic treatment. J Parasitol 91:944–948

    PubMed  Google Scholar 

  120. Noland GS, Graczyk TK, Fried B et al (2007) Enhanced malaria parasite transmission from helminth co-infected mice. Am J Trop Med Hyg 76:1052–1056

    PubMed  Google Scholar 

  121. Noland GS, Urban JF Jr, Fried B et al (2008) Counter-regulatory anti-parasite cytokine responses during concurrent Plasmodium yoelii and intestinal helminth infections in mice. Exp Parasitol 119:272–278

    PubMed  CAS  PubMed Central  Google Scholar 

  122. Noland GS, Chowdhury DR, Urban JF et al (2010) Helminth infection impairs the immunogenicity of a Plasmodium falciparum DNA vaccine, but not irradiated sporozoites, in mice. Vaccine 28:2917–2923

    PubMed  CAS  PubMed Central  Google Scholar 

  123. Pearce EJ, MacDonald AS (2002) The immunobiology of schistosomiasis. Nat Rev Immunol 2:499–511

    PubMed  CAS  Google Scholar 

  124. Pedersen AB, Fenton A (2007) Emphasizing the ecology in parasite community ecology. Trends Ecol Evol 22:133–139

    PubMed  Google Scholar 

  125. Pfarr KM, Hoerauf A (2007) A niche for Wolbachia. Trends Parasitol 23:5–7

    PubMed  Google Scholar 

  126. Phillips RS (2001) Current status of malaria and potential for control. Clin Microbiol Rev 14:208–226

    PubMed  CAS  PubMed Central  Google Scholar 

  127. Pichyangkul S, Saengkrai P, Webster HK (1994) Plasmodium falciparum pigment induces monocytes to release high levels of tumor necrosis factor-alpha and interleukin-1 beta. Am J Trop Med Hyg 51:430–435

    PubMed  CAS  Google Scholar 

  128. Pullan RL, Kabatereine NB, Bukirwa H (2010) Heterogeneities and consequences of Plasmodium species and hookworm coinfection: a population based study in Uganda. J Infect Dis 203:406–417

    PubMed  Google Scholar 

  129. Ravindran B, Sahoo PK, Dash AP (1998) Lymphatic filariasis and malaria: concomitant parasitism in Orissa, India. Trans R Soc Trop Med Hyg 92:21–23

    PubMed  CAS  Google Scholar 

  130. Remoue F, Diallo TO, Angeli V, Hervé M, de Clercq D, Schacht AM, Charrier N, Capron M, Vercruysse J, Ly A, Capron A, Riveau G (2003) Malaria co-infection in children influences antibody response to schistosome antigens and inflammatory markers associated with morbidity. Trans R Soc Trop Med Hyg 97(3):361–364

    Google Scholar 

  131. Renia L, Howland SW, Claser C et al (2012) Cerebral malaria: mysteries at the blood-brain barrier. Virulence 3:193–201

    PubMed  PubMed Central  Google Scholar 

  132. Reyburn HR, Mbatia C, Drakeley J (2005) Association of transmission intensity and age with clinical manifestations and case fatality of severe Plasmodium falciparum malaria. Jama 293:1461–1470

    PubMed  CAS  Google Scholar 

  133. Righetti AA, Glinz D, Adiossan LG et al (2012) Interactions and potential implications of Plasmodium falciparum-hookworm coinfection in different age groups in south-central Côte d’Ivoire. PLoS Negl Trop Dis 6(11):e1889

    PubMed  PubMed Central  Google Scholar 

  134. Rosenberg R, Wirtz I, Schneider I (1990) An estimation of the number of malaria sporozoites ejected by a feeding mosquito. Trans R Soc Trop Med Hyg 84:209–212

    PubMed  CAS  Google Scholar 

  135. Roussilhon C, Brasseur P, Agnamey P et al (2010) Understanding human-Plasmodium falciparum immune interactions uncovers the immunological role of worms. PLoS One 5:e9309

    PubMed  PubMed Central  Google Scholar 

  136. Sangweme D, Shiff C, Kumar N (2009) Plasmodium yoelii: adverse outcome of non-lethal P. yoelii malaria during co-infection with Schistosoma mansoni in BALB/c mouse model. Exp Parasitol 122:254–259

    PubMed  PubMed Central  Google Scholar 

  137. Sangweme DT, Midzi N, Zinyowera-Mutapuri S et al (2010) Impact of schistosome infection on Plasmodium falciparum Malariometric indices and immune correlates in school age children in Burma Valley, Zimbabwe. PLoS Negl Trop Dis 4(11):e882

    PubMed  PubMed Central  Google Scholar 

  138. Schofield L, Grau GE (2005) Immunological processes in malaria pathogenesis. Nat Rev Immunol 5:722–735

    PubMed  CAS  Google Scholar 

  139. Schofield L, Hackett F (1993) Signal transduction in host cells by a glycosyl phospatidylinositol toxin of malaria parasites. J Exp Med 177:145–153

    PubMed  CAS  Google Scholar 

  140. Schuurkamp GJ, Kereu RK, Bulungol PK et al (1994) Diethylcarbamazine in the control of bancroftian filariasis in the Ok Tedi area of Papua New Guinea: phase 2-annual single-dose treatment. P N G Med J 37:65–81

    PubMed  CAS  Google Scholar 

  141. Segura M, Matte C, Thawani N et al (2009) Modulation of malaria-induced immunopathology by concurrent gastrointestinal nematode infection in mice. Int J Parasitol 39:1525–1532

    PubMed  CAS  Google Scholar 

  142. Semenya AA, Sullivan JS, Barnwell JW et al (2012) Schistosoma mansoni infection impairs antimalaria treatment and immune responses of rhesus macaques infected with mosquito-borne Plasmodium coatneyi. Infect Immun 80:3821–3827

    PubMed  CAS  PubMed Central  Google Scholar 

  143. Shapiro AE, Tukahebwa EM, Kasten J et al (2005) Epidemiology of helminth infections and their relationship to clinical malaria in southwest Uganda. Trans R Soc Trop Med Hyg 99:18–24

    PubMed  Google Scholar 

  144. Snapper CM, Paul WE (1987) Interferon-gamma and B cell stimulatory factor-1 reciprocally regulate Ig isotype production. Science 236:944–947

    PubMed  CAS  Google Scholar 

  145. Snow RW, Guerra CA, Noor AM et al (2005) The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature 434:214–217

    PubMed  CAS  PubMed Central  Google Scholar 

  146. Sokhna C, Le Hesran JY, Mbaye PA et al (2004) Increase of malaria attacks among children presenting concomitant infection by Schistosoma mansoni in Senegal. Malar J 3:43

    PubMed  PubMed Central  Google Scholar 

  147. Sowunmi A (1996) Hepatomegaly in acute falciparum malaria in children. Trans R Soc Trop Med Hyg 90:540–542

    Google Scholar 

  148. Specht S, Ruiz DF, Dubben B, Deininger S, Hoerauf A (2010) Filaria-induced IL-10 suppresses murine cerebral malaria. Microbes Infect 12(8-9):635–642

    Google Scholar 

  149. Spiegel A, Tall A, Raphenon G et al (2003) Increased frequency of malaria attacks in subjects co-infected by intestinal worms and Plasmodium falciparum malaria. Trans R Soc Trop Med Hyg 97:198–199

    PubMed  Google Scholar 

  150. Stevenson MM, Tam MF (1993) Differential induction of helper T cell subsets during blood-stage Plasmodium chabaudi AS infection in resistant and susceptible mice. Clin Exp Immunol 92:77–83

    PubMed  CAS  PubMed Central  Google Scholar 

  151. Stoltzfus RJ, Dreyfuss ML, Chwaya HM et al (1997) Hookworm control as a strategy to prevent iron deficiency. Nutr Rev 55:223–232

    PubMed  CAS  Google Scholar 

  152. Stoltzfus RJ, Chwaya HM, Montresor A et al (2000) Malaria, hookworms and recent fever are related to anemia and iron status indicators in 0- to 5-y old Zanzibari children and these relationships change with age. J Nutr 130:1724–1733

    PubMed  CAS  Google Scholar 

  153. Su Z, Segura M, Morgan K et al (2005) Impairment of protective immunity to blood-stage malaria by concurrent nematode infection. Infect Immun 73:3531–3539

    PubMed  CAS  PubMed Central  Google Scholar 

  154. Su Z, Segura M, Stevenson MM (2006) Reduced protective efficacy of a blood-stage malaria vaccine by concurrent nematode infection. Infect Immun 74:2138–2144

    PubMed  CAS  PubMed Central  Google Scholar 

  155. Taylor MJ, Hoerauf A, Bockarie M (2010) Lymphatic filariasis and onchocerciasis. The Lancet 376:1175–1185

    Google Scholar 

  156. Taylor MJ, Hoerauf A, Townson S et al (2013) Anti-Wolbachia drug discovery and development: safe macrofilaricides for onchocerciasis and lymphatic filariasis. Parasitology 18:1–9

    Google Scholar 

  157. Tetsutani K, Ishiwata K, Torii M et al (2008) Concurrent infection with Heligmosomoides polygyrus modulates murine host response against Plasmodium berghei ANKA infection. Am J Trop Med Hyg 79:819–822

    PubMed  Google Scholar 

  158. Tetsutani K, Ishiwata K, Ishida H et al (2009) Concurrent infection with Heligmosomoides polygyrus suppresses anti-Plasmodium yoelii protection partially by induction of CD4(+)CD25(+)Foxp3(+) Treg in mice. Eur J Immunol 39:2822–2830

    PubMed  CAS  Google Scholar 

  159. Tindall NR, Wilson PA (1988) Criteria for a proof of migration routes of immature parasites inside hosts exemplified by studies of Strongyloides ratti in the rat. Parasitology 96:551–563

    PubMed  Google Scholar 

  160. Tshikuka JG, Scott ME, Gray-Donald K et al (1996) Multiple infection with Plasmodium and helminths in communities of low and relatively high socio-economic status. Ann Trop Med Parasitol 90:277–293

    PubMed  CAS  Google Scholar 

  161. Turner P, Copeman B, Gerisi D et al (1993) A comparison of the Og4C3 antigen capture ELISA, the Knott test, an IgG4 assay and clinical signs, in the diagnosis of Bancroftian filariasis. Trop Med Parasitol 44:45–48

    PubMed  CAS  Google Scholar 

  162. Turner JD, Tendongfor N, Esum M et al (2010) Macrofilaricidal activity after doxycycline only treatment of Onchocerca volvulus in an area of Loa loa co-endemicity: a randomized controlled trial. PLoS Negl Trop Dis 13 4(4):e660

    Google Scholar 

  163. van de Sand C, Horstmann S, Schmidt A et al (2005) The liver stage of Plasmodium berghei inhibits host cell apoptosis. Mol Microbiol 58:731–742

    PubMed  Google Scholar 

  164. Waknine-Grinberg JH, Gold D, Ohayon A et al (2010) Schistosoma mansoni infection reduces the incidence of murine cerebral malaria. Malar J 9:5

    PubMed  PubMed Central  Google Scholar 

  165. Wammes LJ, Hamid F, Wiria AE et al (2010) Regulatory T cells in human geohelminth infection suppress immune responses to BCG and Plasmodium falciparum. Eur J Immunol 40(2):437–442

    PubMed  CAS  Google Scholar 

  166. Wang ML, Cao YM, Luo EJ et al (2013) Pre-existing Schistosoma japonicum infection alters the immune response to Plasmodium berghei infection in C57BL/6 mice. Malar J 12(1):322

    PubMed  CAS  PubMed Central  Google Scholar 

  167. Wickramasinghe SN, Abdalla SH (2000) Blood and bone marrow changes in malaria. Baillieres Best Pract Res Clin Haematol 13:277–299

    PubMed  CAS  Google Scholar 

  168. Wilson RA, Coulson PS (2009) Immune effector mechanisms against schistosomiasis: looking for a chink in the parasite’s armour. Trends Parasitol 25:423–431

    PubMed  CAS  PubMed Central  Google Scholar 

  169. Wilson S, Jones FM, Mwatha JK et al (2008) Hepatosplenomegaly is associated with low regulatory and Th2 responses to schistosome antigens in childhood schistosomiasis and malaria coinfection. Infect Immun 76:2212–2218

    PubMed  CAS  PubMed Central  Google Scholar 

  170. Wilson S, Jones FM, Mwatha JK et al (2009) Hepatosplenomegaly associated with chronic malaria exposure: evidence for a pro-inflammatory mechanism exacerbated by schistosomiasis. Parasite Immunol 31:64–71

    Google Scholar 

  171. Wilson S, Vennervald BJ, Kadzo H, Ireri E, Amaganga C, Booth M, Kariuki HC, Mwatha JK, Kimani G, Ouma JH, Muchiri E, Dunne DW (2007) Hepatosplenomegaly in Kenyan schoolchildren: exacerbation by concurrent chronic exposure to malaria and Schistosoma mansoni infection. Trop Med Int Health (12):1442–1449

    Google Scholar 

  172. Wilson S, Vennervald BJ, Kadzo H et al (2010) Health implications of chronic hepatosplenomegaly in Kenyan school-aged children chronically exposed to malarial infections and schistosomiasis mansoni. Trans R Soc Trop Med Hyg 104:110–116

    PubMed  PubMed Central  Google Scholar 

  173. Wilson S, Vennervald BJ, Dunne DW (2011) Chronic hepatosplenomegaly in African school children: a common but neglected morbidity associated with schistosomiasis and malaria. PLoS Negl Trop Dis 5:e1149

    PubMed  PubMed Central  Google Scholar 

  174. Winkler S, Willheim M, Baier K et al (1999) Increased frequency of Th2-type cytokine-producing T cells in microfilaremic loiasis. Am J Trop Med Hyg 60:680–686

    PubMed  CAS  Google Scholar 

  175. WHO (2011) Global programme to Eliminate Lymphatic Filariasis: progress report on mass drug administration, 2010. Weekly epidemiological record 86(35):377–388

    Google Scholar 

  176. World Malaria Report 2012. Geneva, World Health Organization,

    Google Scholar 

  177. Xiao N, Furuta T, Kiguchi T, Kojima S (2000) [Effect of Nippostrongylus brasiliensis induced alterations in T helper cell subsets on Plasmodium berghei infection in mice]. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi 18(5):286–290 (Chinese)

    Google Scholar 

  178. Yan Y, Inuo G, Akao N et al (1997) Down-regulation of murine susceptibility to cerebral malaria by inoculation with third-stage larvae of the filarial nematode Brugia pahangi. Parasitology 114:333–338

    PubMed  Google Scholar 

  179. Yatich NJ, Yi J, Agbenyega T et al (2009) Malaria and intestinal helminth co-infection among pregnant women in Ghana: prevalence and risk factors. Am J Trop Med Hyg 80:896–901

    PubMed  Google Scholar 

  180. Yoshida A, Maruyama H, Kumagai T et al (2000) Schistosoma mansoni infection cancels the susceptibility to Plasmodium chabaudi through induction of type 1 immune responses in A/J mice. Int Immunol 12:1117–1125

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura E. Layland Msc, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Layland, L., Specht, S. (2014). Helpful or a Hindrance: Co-infections with Helminths During Malaria. In: Horsnell, W. (eds) How Helminths Alter Immunity to Infection. Advances in Experimental Medicine and Biology, vol 828. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1489-0_5

Download citation