Helpful or a Hindrance: Co-infections with Helminths During Malaria

  • Laura E. LaylandEmail author
  • Sabine Specht
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 828)


A significant proportion of disease burden in resource poor tropical communities is due to parasitic infections. Such chronic ailments not only result in higher rates of morbidity and mortality but effects the overall wealth of the country too. Nevertheless, simply the presence and intensity of infection can lead to malnutrition, anaemia, poor school performances and stunted growth. Thankfully, such issues are becoming prominent in discussions about public health and with the continual improvement in diagnostics it is clear that concurrent polyparasitism remains prominent in underdeveloped rural areas. The risk factors and consequences of polyparasitism appear to depend on a multitude of factors including gender, age, geographical setting, infection intensity and the host’s overall physical health. Co-infections of Plasmodium and helminths are widespread due to the similarities in ecological requirements for disease transmission and strongly influence parasitaemia, anaemia and hepatosplenomegaly. The absolute influence on one another however remains unclear although most studies agree that ascariasis “helps” and hookworms “hinder.” The underlying aetiology also requires further investigation but it is hypothesized that the strong Th2 and regulatory networks induced by the helminths control malaria-induced pro-inflammatory reactions. This chapter surveys our current understanding about how helminths, such as schistosomes and filariae, influence Plasmodium infection in endemic areas. In addition, we provide an overview about the immune mechanisms that have been elucidated in appropriate co-infection rodent models. If our future goals are to assist individuals suffering from severe poverty, then it is essential to consider all aspects of their life-styles including the unfortunate health burden of multiple parasitic burden. Furthermore, understanding the influence of parasites will provide more appropriate control measures that include critical variations in economic and ecological factors in a particular endemic area and may reveal that not one glove fits all.


Malaria Helminth-coinfection Filariasis Schistosomiasis Immune-regulation 


  1. 1.
    Abanyie FA, McCracken C, Kirwan P et al (2013) TJ. Ascaris co-infection does not alter malaria-induced anaemia in a cohort of Nigerian preschool children. Malar J 12:1PubMedPubMedCentralGoogle Scholar
  2. 2.
    Adegnika AA, Ramharter M, Agnandji ST et al (2010) Epidemiology of parasitic co-infections during pregnancy in Lambarene, Gabon. Trop Med Int Health 15:1204–1209PubMedGoogle Scholar
  3. 3.
    Adjobimey T, Hoerauf A (2010) Induction of immunoglobulin G4 in human filariasis: an indicator of immunoregulation. Ann Trop Med Parasitol 104:455–464PubMedPubMedCentralGoogle Scholar
  4. 4.
    Alemu A, Shiferaw Y, Ambachew A et al (2012) Hamid H. Malaria helminth co-infections and their contribution for aneamia in febrile patients attending Azzezo health center, Gondar, Northwest Ethiopia: a cross sectional study. Asian Pac J Trop Med 5:803–809PubMedGoogle Scholar
  5. 5.
    Amante FH, Haque A, Stanley AC et al (2010) Immune-mediated mechanisms of parasite tissue sequestration during experimental cerebral malaria. J Immunol 185:3632–3642PubMedGoogle Scholar
  6. 6.
    Arndts K, Deininger S, Specht S et al (2012) Elevated adaptive immune responses are associated with latent infections of Wuchereria bancrofti. PLoS Negl Trop Dis 6(4):e1611PubMedPubMedCentralGoogle Scholar
  7. 7.
    Ashton RA, Kyabayinze DJ, Opio T et al (2011) The impact of mass drug administration and longlasting insecticidal net distribution on Wuchereria bancrofti infection in humans and mosquitoes: an observational study in northern Uganda. Parasit Vectors 4:134PubMedPubMedCentralGoogle Scholar
  8. 8.
    Babu S, Blauvelt CP, Kumaraswami V et al (2006) Regulatory networks induced by live parasites impair both Th1 and Th2 pathways in patent lymphatic filariasis: implications for parasite persistence. J Immunol 176:3248–3256PubMedGoogle Scholar
  9. 9.
    Bailenger J, Lucchese F, Peychaud A et al (1985) Inhibition of Plasmodium berghei in rats infested with Strongyloides ratti or Trichinella spiralis; role of high blood corticosterone in reaction to the development of helminths. Ann Parasitol Hum Comp 60:435–443PubMedGoogle Scholar
  10. 10.
    Bejon P, Mwangi TW, Lowe B et al (2008) Helminth infection and eosinophilia and the risk of Plasmodium falciparum malaria in 1- to 6-year-old children in a malaria endemic area. PLoS Negl Trop Dis 2:e164PubMedPubMedCentralGoogle Scholar
  11. 11.
    Briand V, Watier L, Le Hesran JY et al (2005) Coinfection with Plasmodium falciparum and schistosoma haematobium: protective effect of schistosomiasis on malaria in senegalese children? Am J Trop Med Hyg 72:702–707PubMedGoogle Scholar
  12. 12.
    Brooker S, Clements AC (2009) Spatial heterogeneity of parasite co-infection: determinants and geostatistical prediction at regional scales. Int J Parasitol 39:591–597PubMedPubMedCentralGoogle Scholar
  13. 13.
    Brooker S, Clements AC, Hotez PJ et al (2006) The co-distribution of Plasmodium falciparum and hookworm among African schoolchildren. Malar J 5:99PubMedPubMedCentralGoogle Scholar
  14. 14.
    Brooker S, Akhwale W, Pullan R et al (2007) Epidemiology of plasmodium-helminth co-infection in Africa: populations at risk, potential impact on anemia, and prospects for combining control. Am J Trop Med Hyg 77:88–98PubMedPubMedCentralGoogle Scholar
  15. 15.
    Brooker SJ, Pullan RL, Gitonga CW et al (2012) Plasmodium-helminth coinfection and its sources of heterogeneity across East Africa. J Infect Dis 205:841–852PubMedPubMedCentralGoogle Scholar
  16. 16.
    Brutus L, Watier L, Briand V et al (2006) Parasitic co-infections: does Ascaris lumbricoides protect against Plasmodium falciparum infection? Am J Trop Med Hyg 75:194–198PubMedGoogle Scholar
  17. 17.
    Brutus L, Watier L, Hanitrasoamampionona V et al (2007) Confirmation of the protective effect of Ascaris lumbricoides on Plasmodium falciparum infection: results of a randomized trial in Madagascar. Am J Trop Med Hyg 77:1091–1095PubMedGoogle Scholar
  18. 18.
    Bucher K, Dietz K, Lackner P et al (2011) Schistosoma co-infection protects against brain pathology but does not prevent severe disease and death in a murine model of cerebral malaria. Int J Parasitol 41:21–31PubMedGoogle Scholar
  19. 19.
    Carter R, Mendis KN (2002) Evolutionary and historical aspects of the burden of malaria. Clin Microbiol Rev 15:564–594PubMedPubMedCentralGoogle Scholar
  20. 20.
    Chadee DD, Rawlins SC, Tiwari TS (2003) Short communication: concomitant malaria and filariasis infections in Georgetown, Guyana. Trop Med Int Health 8:140–143PubMedGoogle Scholar
  21. 21.
    Chakravarty S, Cockburn IA, Kuk S et al (2007) CD8+ T lymphocytes protective against malaria liver stages are primed in skin-draining lymph nodes. Nat Med 13:1035–1041PubMedGoogle Scholar
  22. 22.
    Chakravarty S, Baldeviano GC, Overstreet MG et al (2008) Effector CD8+ T lymphocytes against malaria liver stages do not require IFN-{gamma} for anti-parasite activity. Infect Immun 76:3628–3631PubMedPubMedCentralGoogle Scholar
  23. 23.
    Chang KH, Stevenson MM (2004) Malarial anaemia: mechanisms and implications of insufficient erythropoiesis during blood-stage malaria. Int J Parasitol 34:1501–1516PubMedGoogle Scholar
  24. 24.
    Chaorattanakawee S, Natalang O, Hananantachai H et al (2003) Trichuris trichiura infection is associated with the multiplicity of Plasmodium falciparum infections, in Thailand. Ann Trop Med Parasitol 97:199–202PubMedGoogle Scholar
  25. 25.
    Cheever AW (1968) A quantitative post-mortem study of Schistosomiasis mansoni in man. Am J Trop Med Hyg 17:38–64PubMedGoogle Scholar
  26. 26.
    Cheever AW, Andrade ZA (1967) Pathological lesions associated with Schistosoma mansoni infection in man. Trans R Soc Trop Med Hyg 61:626–639PubMedGoogle Scholar
  27. 27.
    Cheever AW, Lenzi JA, Lenzi HL et al (2002) Experimental models of Schistosoma mansoni infection. Mem Inst Oswaldo Cruz 97:917–940PubMedGoogle Scholar
  28. 28.
    Christensen NO, Nansen P, Fagbemi BO, Monrad J (1987) Heterologous antagonistic and synergistic interactions between helminths and between helminths and protozoans in concurrent experimental infection of mammalian hosts. Parasitol Res 73(5):387–410Google Scholar
  29. 29.
    Christensen NO, Furu P, Kurtzhals J et al (1988) Heterologous synergistic interactions in concurrent experimental infection in the mouse with Schistosoma mansoni, Echinostoma revolutum, Plasmodium yoelii, Babesia microti, and Trypanosoma brucei. Parasitol Res 74:544–551PubMedGoogle Scholar
  30. 30.
    Clark IA, Budd AC, Alleva LM et al (2006) Human malarial disease: a consequence of inflammatory cytokine release. Malar J 10(5):85Google Scholar
  31. 31.
    Craig AG, Grau GE, Janse C et al (2012) The role of animal models for research on severe malaria. PLoS Pathog 8(2):e1002401PubMedPubMedCentralGoogle Scholar
  32. 32.
    Cowman AF, Magalhaes A, Crabb BS (2006) Invasion of red blood cells by malaria parasites. Cell 124:755–766PubMedGoogle Scholar
  33. 33.
    de Jesus AR, Miranda DG et al (2004) Association of type 2 cytokines with hepatic fibrosis in human Schistosoma mansoni infection. Infect Immun 72:3391–3397PubMedGoogle Scholar
  34. 34.
    de Souza B, Helmby H (2008) Concurrent gastro-intestinal nematode infection does not alter the development of experimental cerebral malaria. Microbes Infect 10:916–921PubMedPubMedCentralGoogle Scholar
  35. 35.
    de Souza JB, Riley EM (2002) Cerebral malaria: the contribution of studies in animal models to our understanding of immunopathogenesis. Microbes Infect 4:291–300PubMedGoogle Scholar
  36. 36.
    Degarege A, Animut A, Legesse M et al (2009) Malaria severity status in patients with soil-transmitted helminth infections. Acta Trop 112:8–11PubMedGoogle Scholar
  37. 37.
    Degarege A, Legesse M, Medhin G et al (2012) Malaria and related outcomes in patients with intestinal helminths: a cross-sectional study. BMC Infect Dis 12:291PubMedPubMedCentralGoogle Scholar
  38. 38.
    Demissie F, Kebede A, Shimels T et al (2009) Assessment of public health implication of malaria-geohelminth co-infection with an emphasis on hookworm-malaria anemia among suspected malaria patients in asendabo, southwest Ethiopia. Ethiop Med J 47:153–158PubMedGoogle Scholar
  39. 39.
    Diallo TO, Remoue F, Schacht AM et al (2004) Schistosomiasis co-infection in humans influences inflammatory markers in uncomplicated Plasmodium falciparum malaria. Parasite Immunol 26:365–369PubMedGoogle Scholar
  40. 40.
    Diallo TO, Remoue F, Gaayeb L et al (2010) Schistosomiasis coinfection in children influences acquired immune response against Plasmodium falciparum malaria antigens. PLoS One 5:e12764PubMedPubMedCentralGoogle Scholar
  41. 41.
    Dolo H, Coulibaly YI, Dembele B et al (2012) Filariasis attenuates anemia and proinflammatory responses associated with clinical malaria: a matched prospective study in children and young adults. PLoS Negl Trop Dis 6(11):e1890PubMedPubMedCentralGoogle Scholar
  42. 42.
    Dunne DW, Pearce EJ (1999) Immunology of hepatosplenic schistosomiasis mansoni: a human perspective. Microbes Infect 1:553–560PubMedGoogle Scholar
  43. 43.
    Engwerda C, Belnoue E, Grüner AC et al (2005) Experimental models of cerebral malaria. Curr Top Microbiol Immunol 297:103–143PubMedGoogle Scholar
  44. 44.
    Escalante AA, Barrio E, Ayala FJ (1995) Evolutionary origin of human and primate malarias: evidence from the circumsporozoite protein gene. Mol Biol EvolGoogle Scholar
  45. 45.
    Fairfax K, Nascimento M, Huang SC et al (2012) Th2 responses in schistosomiasis. Semin Immunopathol 34:863–887PubMedGoogle Scholar
  46. 46.
    Fernandez Ruiz D, Dubben B Saeftel M et al (2009) Filarial infection induces protection against P. berghei liver stages in mice. Microbes Infect 11(2):172–180PubMedGoogle Scholar
  47. 47.
    Florey LS, King CH, Van Dyke MK et al (2012) Partnering parasites: evidence of synergism between heavy Schistosoma haematobium and Plasmodium species infections in Kenyan children. PLoS Negl Trop Dis 6(7):e1723PubMedPubMedCentralGoogle Scholar
  48. 48.
    Glushakova S, Yin D, Li T, Zimmerberg J (2005) Membrane transformation during malaria parasite release from human red blood cells. Curr Biol 15:1645–1650PubMedGoogle Scholar
  49. 49.
    Gong YY, Wilson S, Mwatha JK et al (2012) Aflatoxin exposure may contribute to chronic hepatomegaly in Kenyan school children. Environ Health Perspect 120:893–896PubMedPubMedCentralGoogle Scholar
  50. 50.
    Graham AL, Lamb TJ, Read AF et al (2005) Malaria-filaria coinfection in mice makes malarial disease more severe unless filarial infection achieves patency. J Infect Dis 191:410–421PubMedGoogle Scholar
  51. 51.
    Hartgers FC, Yazdanbakhsh M (2006) Co-infection of helminths and malaria: modulation of the immune responses to malaria. Parasite Immunol 28(10):497–506PubMedGoogle Scholar
  52. 52.
    Helmby H (2009) Gastrointestinal nematode infection exacerbates malaria-induced liver pathology. J Immunol 182:5663–5671PubMedPubMedCentralGoogle Scholar
  53. 53.
    Helmby H, Kullberg M, Troye-Blomberg M et al (1998) Altered immune responses in mice with concomitant Schistosoma mansoni and Plasmodium chabaudi infections. Infect Immun 66:5167–5174PubMedPubMedCentralGoogle Scholar
  54. 54.
    Henri S, Chevillard C, Mergani A et al (2002) Cytokine regulation of periportal fibrosis in humans infected with Schistosoma mansoni: IFN-gamma is associated with protection against fibrosis and TNF-alpha with aggravation of disease. J Immunol 169:929–936PubMedGoogle Scholar
  55. 55.
    Hillier SD, Booth M, Muhangi L et al (2008) Plasmodium falciparum and helminth coinfection in a semi urban population of pregnant women in Uganda. J Infect Dis 198:920–927PubMedPubMedCentralGoogle Scholar
  56. 56.
    Hoerauf A (2008) Filariasis: new drugs and new opportunities for lymphatic filariasis and onchocerciasis. Curr Opin Infect Dis 21:673–681PubMedGoogle Scholar
  57. 57.
    Hoerauf A, Satoguina J, Saeftel M et al (2005) Specht S. Immunomodulation by filarial nematodes. Parasite Immunol 27:417–429PubMedGoogle Scholar
  58. 58.
    Hoerauf A, Pfarr K, Mand S et al (2011) Filariasis in Africa—treatment challenges and prospects. Clin Microbiol Infect 17:977–985PubMedGoogle Scholar
  59. 59.
    Jacobs P, Radzioch D, Stevenson MM et al (1996) A Th1-associated increase in tumor necrosis factor alpha expression in the spleen correlates with resistance to blood-stage malaria in mice. Infect Immun 64:535–541PubMedPubMedCentralGoogle Scholar
  60. 60.
    Kasehagen LJ, Mueller I, McNamara DT et al (2006) Changing patterns of Plasmodium blood-stage infections in the Wosera region of Papua New Guinea monitored by light microscopy and high throughput PCR diagnosis. Am J Trop Med Hyg 75:588–596PubMedPubMedCentralGoogle Scholar
  61. 61.
    King CH (2010) Parasites and poverty: the case of schistosomiasis. Acta Trop 113:95–104PubMedPubMedCentralGoogle Scholar
  62. 62.
    King CH, Dickman K, Tisch DJ (2005) Reassessment of the cost of chronic helmintic infection: a meta-analysis of disability-related outcomes in endemic schistosomiasis. Lancet 365:1561–1569PubMedGoogle Scholar
  63. 63.
    Kirchgatter K, Del Portillo HA (2005) Clinical and molecular aspects of severe malaria. An Acad Bras Cienc 77:455–475PubMedGoogle Scholar
  64. 64.
    Knowles SC (2011) The effect of helminth co-infection on malaria in mice: a meta-analysis. Int J Parasitol 41:1041–1051PubMedGoogle Scholar
  65. 65.
    Kolbaum J, Eschbach ML, Steeg C, Jacobs T, Fleischer B, Breloer M (2012) Efficient control of Plasmodium yoelii infection in BALB/c and C57BL/6 mice with pre-existing Strongyloides ratti infection.Parasite Immunol 34(7):388–393Google Scholar
  66. 66.
    Kolbaum J, Tartz S, Hartmann W et al (2012) Nematode-induced interference with the anti-Plasmodium CD8+ T-cell response can be overcome by optimizing antigen administration. Eur J Immunol 42(4):890–900PubMedGoogle Scholar
  67. 67.
    Kurtzhals JA, Adabayeri V, Goka BQ et al (1998) Low plasma concentrations of interleukin 10 in severe malarial anaemia compared with cerebral and uncomplicated malaria. Lancet 351:1768–1772PubMedGoogle Scholar
  68. 68.
    Kwiatkowski D (1995) Malarial toxins and the regulation of parasite density. Parasitol Today 11:206–212PubMedGoogle Scholar
  69. 69.
    Kwiatkowski D, Bate CA, Scragg IG (1997) The malarial fever response-pathogenesis, polymorphism and prospects for intervention. Ann Trop Med Parasitol 91:533–542PubMedGoogle Scholar
  70. 70.
    Laranjeiras RF, Brant LC, Lima AC, Coelho PM, Braga EM (2008) Reduced protective effect of Plasmodium berghei immunization by concurrent Schistosoma mansoni infection. Mem Inst Oswaldo Cruz 103(7):674–677Google Scholar
  71. 71.
    Layland LE, Rad R, Wagner H (2007) Immunopathology in schistosomiasis is controlled by antigen-specific regulatory T cells primed in the presence of TLR2. Eur J Immunol 37:2174–2184PubMedGoogle Scholar
  72. 72.
    Layland LE, Mages J, Loddenkemper C (2010) Pronounced phenotype in activated regulatory T cells during a chronic helminth infection. J Immunol 184:713–724PubMedGoogle Scholar
  73. 73.
    Le Hensen JY, Akiana A, Ndiayeel HM et al (2004) Severe malaria attack is associated with high prevalence of Ascaris lumbricoides infection among children in rural Senegal. Trans R Soc Trop Med Hyg 98:397–399Google Scholar
  74. 74.
    Legesse M, Erko B, Balcha F (2004) Increased parasitaemia and delayed parasite clearance in Schistosoma mansoni and Plasmodium berghei co-infected mice. Acta Trop 91:161–166PubMedGoogle Scholar
  75. 75.
    Lello J, Boag B, Fenton A et al (2004) Competition and mutualism among the gut helminths of a mammalian host. Nature 428:840–844PubMedGoogle Scholar
  76. 76.
    Lewinsohn R (1975) Anaemia in mice with concomitant Schistosoma mansoni and Plasmodium berghei yoelii infection. Trans R Soc Trop Med Hyg 69:51–56PubMedGoogle Scholar
  77. 77.
    Li C, Seixas E, Langhorne J (2001) Rodent malarias: the mouse as a model for understanding immune responses and pathology induced by the erythrocytic stages of the parasite. Med Microbiol Immunol 189:115–126PubMedGoogle Scholar
  78. 78.
    Lwin M, Last C, Targett GA et al (1982) Infection of mice concurrently with Schistosoma mansoni and rodent malarias: contrasting effects of patent S. mansoni infections on Plasmodium chabaudi, P. yoelii and P. berghei. Ann Trop Med Parasitol 76:265–273PubMedGoogle Scholar
  79. 79.
    Lyke KE, Dicko A, Dabo A et al (2005) Association of Schistosoma haematobium infection with protection against acute Plasmodium falciparum malaria in Malian children. Am J Trop Med Hyg 73:1124–1130PubMedPubMedCentralGoogle Scholar
  80. 80.
    Lyke KE, Dabo A, Sangare L et al (2006) Effects of concomitant Schistosoma haematobium infection on the serum cytokine levels elicited by acute Plasmodium falciparum malaria infection in Malian children. Infect Immun 74:5718–5724PubMedPubMedCentralGoogle Scholar
  81. 81.
    Lyke KE, Dabo A, Arama C et al (2012) Reduced T regulatory cell response during acute Plasmodium falciparum infection in Malian children co-infected with Schistosoma haematobium. PLoS One 7:e31647PubMedPubMedCentralGoogle Scholar
  82. 82.
    Lyke KE, Wang A, Dabo A et al (2012b) Antigen-specific B memory cell responses to Plasmodium falciparum malaria antigens and Schistosoma haematobium antigens in co-infected Malian children. PLoS One 7:e37868Google Scholar
  83. 83.
    Maizels RM, Smith KA (2011) Regulatory T cells in infection. Adv Immunol 112:73–136PubMedGoogle Scholar
  84. 84.
    Maizels RM, Hewitson JP, Murray J et al (2012) Immune modulation and modulators in Heligmosomoides polygyrus infection. Exp Parasitol 132:76–89PubMedGoogle Scholar
  85. 85.
    Malaguarnera L, Musumeci S (2002) The immune response to Plasmodium falciparum malaria. Lancet Infect Dis 2:472–478PubMedGoogle Scholar
  86. 86.
    Mand S, Pfarr K, Sahoo PK et al (2009) Macrofilaricidal activity and amelioration of lymphatic pathology in bancroftian filariasis after 3 weeks of doxycycline followed by single-dose diethylcarbamazine. Am J Trop Med Hyg 81:702–711PubMedGoogle Scholar
  87. 87.
    Mand S, Debrah AY, Klarmann U et al (2011) The role of ultrasonography in the differentiation of the various types of filaricele due to bancroftian filariasis. Acta Trop 120(Suppl 1):S23–S32PubMedGoogle Scholar
  88. 88.
    Mand S, Debrah AY, Klarmann U et al (2012) Doxycycline improves filarial lymphedema independent of active filarial infection: a randomized controlled trial. Clin Infect Dis 55:621–630PubMedPubMedCentralGoogle Scholar
  89. 89.
    Marsh K, Forster D, Waruiru C et al (1995) Indicators of life-threatening malaria in African children. N Engl J Med 332:1399–1404PubMedGoogle Scholar
  90. 90.
    Mboera LE, Shayo EH, Senkoro KP et al (2010) Knowledge, perceptions and practices of farming communities on linkages between malaria and agriculture in Mvomero District, Tanzania. Acta Trop 113:139–144PubMedGoogle Scholar
  91. 91.
    Mboera LE, Senkoro KP, Rumisha SF et al (2011) ayala BK, Shayo EH, Mlozi MR. Tanzania. Plasmodium falciparum and helminth coinfections among schoolchildren in relation to agro-ecosystems in Mvomero District, Tanzania. Acta Trop 120:95–102PubMedGoogle Scholar
  92. 92.
    Melo GC, Reyes-Lecca RC, Vitor-Silva S et al (2010) Concurrent helminthic infection protects schoolchildren with Plasmodium vivax from anemia. PLoS One 5(6):e11206PubMedPubMedCentralGoogle Scholar
  93. 93.
    Metenou S, Dembele B, Konate S et al (2009) Patent filarial infection modulates malaria-specific type 1 cytokine responses in an IL-10-dependent manner in a filaria/malaria-coinfected population. J Immunol 183:916–924PubMedPubMedCentralGoogle Scholar
  94. 94.
    Metenou S, Dembele B, Konate S et al (2010) At homeostasis filarial infections have expanded adaptive T regulatory but not classical Th2 cells. J Immunol 184:5375–5382PubMedPubMedCentralGoogle Scholar
  95. 95.
    Metenou S, Dembele B, Konate S et al (2011) Filarial infection suppresses malaria-specific multifunctional Th1 and Th17 responses in malaria and filarial coinfections. J Immunol 186:4725–4733PubMedPubMedCentralGoogle Scholar
  96. 96.
    Metenou S, Kovacs M, Dembele B et al (2011b) Interferon regulatory factor (IRF) modulation underlies the bystander suppression of malaria antigen-driven IL-12 and IFN-γ in the context of filaria-malaria co-infection. Eur J Immunol 42:1–10Google Scholar
  97. 97.
    Metenou S, Babu S, Nutman TB (2012) Impact of filarial infections on coincident intracellular pathogens: mycobacterium tuberculosis and Plasmodium falciparum. Curr Opin HIV AIDS 3:231–238Google Scholar
  98. 98.
    Midzi N, Sangweme D, Zinyowera S et al (2008) The burden of polyparasitism among primary schoolchildren in rural and farming areas in Zimbabwe. Trans R Soc Trop Med Hyg 102:1039–1045PubMedGoogle Scholar
  99. 99.
    MOH (2006) Annual health statistical abstract. Minsitry of Health and Social Welfare, Dar es Salaam, United Repulic of TanzaniaGoogle Scholar
  100. 100.
    Moore KW, de Waal Malefyt R, Coffmann RL et al (2001) Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 19:683–765PubMedGoogle Scholar
  101. 101.
    Mulu A, Legesse M, Erko B et al (2013) Epidemiological and clinical correlates of malaria-helminth co-infections in Southern Ethiopia. Malar J 12:227PubMedPubMedCentralGoogle Scholar
  102. 102.
    Muok EM, Mwinzi PN, Black CL et al (2009) Short report: childhood coinfections with Plasmodium falciparum and Schistosoma mansoni result in lower percentages of activated T cells and T regulatory memory cells than schistosomiasis only. Am J Trop Med Hyg 80:475–478PubMedPubMedCentralGoogle Scholar
  103. 103.
    Murray MJ, Murray AB, Murray MB et al (1977) Parotid enlargement, forehead edema, and suppression of malaria as nutritional consequences of ascariasis. Am J Clin Nutr 30:2117–2121PubMedGoogle Scholar
  104. 104.
    Murray J, Murray A, Murray M et al (1978) The biological suppression of malaria: an ecological and nutritional interrelationship of a host and two parasites. Am J Clin Nutr 31:1363–1366PubMedGoogle Scholar
  105. 105.
    Mutapi F, Ndhlovu PD, Hagan P, Woolhouse ME (2000) Anti-schistosome antibody responses in children coinfected with malaria. Parasite Immunol 22(4):207–209Google Scholar
  106. 106.
    Muturi EJ, Mbogo CM, Mwangangi JM et al (2006) Concomitant infections of Plasmodium falciparum and Wuchereria bancrofti on the Kenyan coast. Filaria J 5:8PubMedPubMedCentralGoogle Scholar
  107. 107.
    Mwangi TW, Bethony JM, Brooker S (2006) Malaria and helminth interactions in humans: an epidemiological viewpoint. Ann Trop Med Parasitol 100:551–570PubMedPubMedCentralGoogle Scholar
  108. 108.
    Mwatha JK, Kimani G, Kamau T et al (1998) High levels of TNF, soluble TNF receptors, soluble ICAM-1, and IFN-gamma, but low levels of IL-5, are associated with hepatosplenic disease in human schistosomiasis mansoni. J Immunol 160:1992–1999PubMedGoogle Scholar
  109. 109.
    Nacher M (2011) Interactions between worms and malaria: good worms or bad worms? Malar J 12 10:259PubMedPubMedCentralGoogle Scholar
  110. 110.
    Nacher M, Gay F, Singhasivanon P et al (2000) Ascaris lumbricoides infection is associated with protection from cerebral malaria. Parasite Immunol 22:107–113PubMedGoogle Scholar
  111. 111.
    Nacher M, Singhasivanon P, Gay F et al (2001a) Contemporaneous and successive mixed Plasmodium falciparum and Plasmodium vivax infections are associated with Ascaris lumbricoides: an immunomodulating effect? J Parasitol 87:912–915Google Scholar
  112. 112.
    Nacher M, Singhasivanon P, Silachamroon U et al (2001b) Association of helminth infections with increased gametocyte carriage during mild falciparum malaria in Thailand. Am J Trop Med Hyg 65:644–647Google Scholar
  113. 113.
    Nacher M, Singhasivanon P, Gay F et al (2001c) Association of helminth infection with decreased reticulocyte counts and haemoglobin concentration in Thai Falciparum malaria. Am J Trop Med Hyg 65:335–337Google Scholar
  114. 114.
    Nacher M, Singhasivanon P, Silachamroon U et al (2001d) Helminth infections are associated with protection from malaria-related acute renal failure and jaundice in Thailand. Am J Trop Med Hyg 65:834–836Google Scholar
  115. 115.
    Nacher M, Singhasivanon P, Traore B et al (2002a) Helminth infections are associated with protection from cerebral malaria and increased nitrogen derivatives concentrations in Thailand. Am J Trop Med Hyg 66:304–309Google Scholar
  116. 116.
    Nacher M, Singhasivanon P, Yimsamran S et al (2002b) Intestinal helminth infections are associated with increased incidence of Plasmodium falciparum malaria in Thailand. J Parasitol 88:55–58Google Scholar
  117. 117.
    Ngwenya BZ (1982) Enhanced resistance to Plasmodium berghei in mice previously infected with Trichinella spiralis. Parasite Immunol 4:197–207PubMedGoogle Scholar
  118. 118.
    Nkuo-Akenji TK, Chi PC, Cho JF et al (2006) Malaria and helminth co-infection in children living in a malaria endemic setting of mount Cameroon and predictors of anemia. J Parasitol 92:1191–1195PubMedGoogle Scholar
  119. 119.
    Noland GS, Graczyk TK, Fried B et al (2005) Exacerbation of Plasmodium yoelii malaria in Echinostoma caproni infected mice and abatement through anthelmintic treatment. J Parasitol 91:944–948PubMedGoogle Scholar
  120. 120.
    Noland GS, Graczyk TK, Fried B et al (2007) Enhanced malaria parasite transmission from helminth co-infected mice. Am J Trop Med Hyg 76:1052–1056PubMedGoogle Scholar
  121. 121.
    Noland GS, Urban JF Jr, Fried B et al (2008) Counter-regulatory anti-parasite cytokine responses during concurrent Plasmodium yoelii and intestinal helminth infections in mice. Exp Parasitol 119:272–278PubMedPubMedCentralGoogle Scholar
  122. 122.
    Noland GS, Chowdhury DR, Urban JF et al (2010) Helminth infection impairs the immunogenicity of a Plasmodium falciparum DNA vaccine, but not irradiated sporozoites, in mice. Vaccine 28:2917–2923PubMedPubMedCentralGoogle Scholar
  123. 123.
    Pearce EJ, MacDonald AS (2002) The immunobiology of schistosomiasis. Nat Rev Immunol 2:499–511PubMedGoogle Scholar
  124. 124.
    Pedersen AB, Fenton A (2007) Emphasizing the ecology in parasite community ecology. Trends Ecol Evol 22:133–139PubMedGoogle Scholar
  125. 125.
    Pfarr KM, Hoerauf A (2007) A niche for Wolbachia. Trends Parasitol 23:5–7PubMedGoogle Scholar
  126. 126.
    Phillips RS (2001) Current status of malaria and potential for control. Clin Microbiol Rev 14:208–226PubMedPubMedCentralGoogle Scholar
  127. 127.
    Pichyangkul S, Saengkrai P, Webster HK (1994) Plasmodium falciparum pigment induces monocytes to release high levels of tumor necrosis factor-alpha and interleukin-1 beta. Am J Trop Med Hyg 51:430–435PubMedGoogle Scholar
  128. 128.
    Pullan RL, Kabatereine NB, Bukirwa H (2010) Heterogeneities and consequences of Plasmodium species and hookworm coinfection: a population based study in Uganda. J Infect Dis 203:406–417PubMedGoogle Scholar
  129. 129.
    Ravindran B, Sahoo PK, Dash AP (1998) Lymphatic filariasis and malaria: concomitant parasitism in Orissa, India. Trans R Soc Trop Med Hyg 92:21–23PubMedGoogle Scholar
  130. 130.
    Remoue F, Diallo TO, Angeli V, Hervé M, de Clercq D, Schacht AM, Charrier N, Capron M, Vercruysse J, Ly A, Capron A, Riveau G (2003) Malaria co-infection in children influences antibody response to schistosome antigens and inflammatory markers associated with morbidity. Trans R Soc Trop Med Hyg 97(3):361–364Google Scholar
  131. 131.
    Renia L, Howland SW, Claser C et al (2012) Cerebral malaria: mysteries at the blood-brain barrier. Virulence 3:193–201PubMedPubMedCentralGoogle Scholar
  132. 132.
    Reyburn HR, Mbatia C, Drakeley J (2005) Association of transmission intensity and age with clinical manifestations and case fatality of severe Plasmodium falciparum malaria. Jama 293:1461–1470PubMedGoogle Scholar
  133. 133.
    Righetti AA, Glinz D, Adiossan LG et al (2012) Interactions and potential implications of Plasmodium falciparum-hookworm coinfection in different age groups in south-central Côte d’Ivoire. PLoS Negl Trop Dis 6(11):e1889PubMedPubMedCentralGoogle Scholar
  134. 134.
    Rosenberg R, Wirtz I, Schneider I (1990) An estimation of the number of malaria sporozoites ejected by a feeding mosquito. Trans R Soc Trop Med Hyg 84:209–212PubMedGoogle Scholar
  135. 135.
    Roussilhon C, Brasseur P, Agnamey P et al (2010) Understanding human-Plasmodium falciparum immune interactions uncovers the immunological role of worms. PLoS One 5:e9309PubMedPubMedCentralGoogle Scholar
  136. 136.
    Sangweme D, Shiff C, Kumar N (2009) Plasmodium yoelii: adverse outcome of non-lethal P. yoelii malaria during co-infection with Schistosoma mansoni in BALB/c mouse model. Exp Parasitol 122:254–259PubMedPubMedCentralGoogle Scholar
  137. 137.
    Sangweme DT, Midzi N, Zinyowera-Mutapuri S et al (2010) Impact of schistosome infection on Plasmodium falciparum Malariometric indices and immune correlates in school age children in Burma Valley, Zimbabwe. PLoS Negl Trop Dis 4(11):e882PubMedPubMedCentralGoogle Scholar
  138. 138.
    Schofield L, Grau GE (2005) Immunological processes in malaria pathogenesis. Nat Rev Immunol 5:722–735PubMedGoogle Scholar
  139. 139.
    Schofield L, Hackett F (1993) Signal transduction in host cells by a glycosyl phospatidylinositol toxin of malaria parasites. J Exp Med 177:145–153PubMedGoogle Scholar
  140. 140.
    Schuurkamp GJ, Kereu RK, Bulungol PK et al (1994) Diethylcarbamazine in the control of bancroftian filariasis in the Ok Tedi area of Papua New Guinea: phase 2-annual single-dose treatment. P N G Med J 37:65–81PubMedGoogle Scholar
  141. 141.
    Segura M, Matte C, Thawani N et al (2009) Modulation of malaria-induced immunopathology by concurrent gastrointestinal nematode infection in mice. Int J Parasitol 39:1525–1532PubMedGoogle Scholar
  142. 142.
    Semenya AA, Sullivan JS, Barnwell JW et al (2012) Schistosoma mansoni infection impairs antimalaria treatment and immune responses of rhesus macaques infected with mosquito-borne Plasmodium coatneyi. Infect Immun 80:3821–3827PubMedPubMedCentralGoogle Scholar
  143. 143.
    Shapiro AE, Tukahebwa EM, Kasten J et al (2005) Epidemiology of helminth infections and their relationship to clinical malaria in southwest Uganda. Trans R Soc Trop Med Hyg 99:18–24PubMedGoogle Scholar
  144. 144.
    Snapper CM, Paul WE (1987) Interferon-gamma and B cell stimulatory factor-1 reciprocally regulate Ig isotype production. Science 236:944–947PubMedGoogle Scholar
  145. 145.
    Snow RW, Guerra CA, Noor AM et al (2005) The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature 434:214–217PubMedPubMedCentralGoogle Scholar
  146. 146.
    Sokhna C, Le Hesran JY, Mbaye PA et al (2004) Increase of malaria attacks among children presenting concomitant infection by Schistosoma mansoni in Senegal. Malar J 3:43PubMedPubMedCentralGoogle Scholar
  147. 147.
    Sowunmi A (1996) Hepatomegaly in acute falciparum malaria in children. Trans R Soc Trop Med Hyg 90:540–542Google Scholar
  148. 148.
    Specht S, Ruiz DF, Dubben B, Deininger S, Hoerauf A (2010) Filaria-induced IL-10 suppresses murine cerebral malaria. Microbes Infect 12(8-9):635–642Google Scholar
  149. 149.
    Spiegel A, Tall A, Raphenon G et al (2003) Increased frequency of malaria attacks in subjects co-infected by intestinal worms and Plasmodium falciparum malaria. Trans R Soc Trop Med Hyg 97:198–199PubMedGoogle Scholar
  150. 150.
    Stevenson MM, Tam MF (1993) Differential induction of helper T cell subsets during blood-stage Plasmodium chabaudi AS infection in resistant and susceptible mice. Clin Exp Immunol 92:77–83PubMedPubMedCentralGoogle Scholar
  151. 151.
    Stoltzfus RJ, Dreyfuss ML, Chwaya HM et al (1997) Hookworm control as a strategy to prevent iron deficiency. Nutr Rev 55:223–232PubMedGoogle Scholar
  152. 152.
    Stoltzfus RJ, Chwaya HM, Montresor A et al (2000) Malaria, hookworms and recent fever are related to anemia and iron status indicators in 0- to 5-y old Zanzibari children and these relationships change with age. J Nutr 130:1724–1733PubMedGoogle Scholar
  153. 153.
    Su Z, Segura M, Morgan K et al (2005) Impairment of protective immunity to blood-stage malaria by concurrent nematode infection. Infect Immun 73:3531–3539PubMedPubMedCentralGoogle Scholar
  154. 154.
    Su Z, Segura M, Stevenson MM (2006) Reduced protective efficacy of a blood-stage malaria vaccine by concurrent nematode infection. Infect Immun 74:2138–2144PubMedPubMedCentralGoogle Scholar
  155. 155.
    Taylor MJ, Hoerauf A, Bockarie M (2010) Lymphatic filariasis and onchocerciasis. The Lancet 376:1175–1185Google Scholar
  156. 156.
    Taylor MJ, Hoerauf A, Townson S et al (2013) Anti-Wolbachia drug discovery and development: safe macrofilaricides for onchocerciasis and lymphatic filariasis. Parasitology 18:1–9Google Scholar
  157. 157.
    Tetsutani K, Ishiwata K, Torii M et al (2008) Concurrent infection with Heligmosomoides polygyrus modulates murine host response against Plasmodium berghei ANKA infection. Am J Trop Med Hyg 79:819–822PubMedGoogle Scholar
  158. 158.
    Tetsutani K, Ishiwata K, Ishida H et al (2009) Concurrent infection with Heligmosomoides polygyrus suppresses anti-Plasmodium yoelii protection partially by induction of CD4(+)CD25(+)Foxp3(+) Treg in mice. Eur J Immunol 39:2822–2830PubMedGoogle Scholar
  159. 159.
    Tindall NR, Wilson PA (1988) Criteria for a proof of migration routes of immature parasites inside hosts exemplified by studies of Strongyloides ratti in the rat. Parasitology 96:551–563PubMedGoogle Scholar
  160. 160.
    Tshikuka JG, Scott ME, Gray-Donald K et al (1996) Multiple infection with Plasmodium and helminths in communities of low and relatively high socio-economic status. Ann Trop Med Parasitol 90:277–293PubMedGoogle Scholar
  161. 161.
    Turner P, Copeman B, Gerisi D et al (1993) A comparison of the Og4C3 antigen capture ELISA, the Knott test, an IgG4 assay and clinical signs, in the diagnosis of Bancroftian filariasis. Trop Med Parasitol 44:45–48PubMedGoogle Scholar
  162. 162.
    Turner JD, Tendongfor N, Esum M et al (2010) Macrofilaricidal activity after doxycycline only treatment of Onchocerca volvulus in an area of Loa loa co-endemicity: a randomized controlled trial. PLoS Negl Trop Dis 13 4(4):e660Google Scholar
  163. 163.
    van de Sand C, Horstmann S, Schmidt A et al (2005) The liver stage of Plasmodium berghei inhibits host cell apoptosis. Mol Microbiol 58:731–742PubMedGoogle Scholar
  164. 164.
    Waknine-Grinberg JH, Gold D, Ohayon A et al (2010) Schistosoma mansoni infection reduces the incidence of murine cerebral malaria. Malar J 9:5PubMedPubMedCentralGoogle Scholar
  165. 165.
    Wammes LJ, Hamid F, Wiria AE et al (2010) Regulatory T cells in human geohelminth infection suppress immune responses to BCG and Plasmodium falciparum. Eur J Immunol 40(2):437–442PubMedGoogle Scholar
  166. 166.
    Wang ML, Cao YM, Luo EJ et al (2013) Pre-existing Schistosoma japonicum infection alters the immune response to Plasmodium berghei infection in C57BL/6 mice. Malar J 12(1):322PubMedPubMedCentralGoogle Scholar
  167. 167.
    Wickramasinghe SN, Abdalla SH (2000) Blood and bone marrow changes in malaria. Baillieres Best Pract Res Clin Haematol 13:277–299PubMedGoogle Scholar
  168. 168.
    Wilson RA, Coulson PS (2009) Immune effector mechanisms against schistosomiasis: looking for a chink in the parasite’s armour. Trends Parasitol 25:423–431PubMedPubMedCentralGoogle Scholar
  169. 169.
    Wilson S, Jones FM, Mwatha JK et al (2008) Hepatosplenomegaly is associated with low regulatory and Th2 responses to schistosome antigens in childhood schistosomiasis and malaria coinfection. Infect Immun 76:2212–2218PubMedPubMedCentralGoogle Scholar
  170. 170.
    Wilson S, Jones FM, Mwatha JK et al (2009) Hepatosplenomegaly associated with chronic malaria exposure: evidence for a pro-inflammatory mechanism exacerbated by schistosomiasis. Parasite Immunol 31:64–71Google Scholar
  171. 171.
    Wilson S, Vennervald BJ, Kadzo H, Ireri E, Amaganga C, Booth M, Kariuki HC, Mwatha JK, Kimani G, Ouma JH, Muchiri E, Dunne DW (2007) Hepatosplenomegaly in Kenyan schoolchildren: exacerbation by concurrent chronic exposure to malaria and Schistosoma mansoni infection. Trop Med Int Health (12):1442–1449Google Scholar
  172. 172.
    Wilson S, Vennervald BJ, Kadzo H et al (2010) Health implications of chronic hepatosplenomegaly in Kenyan school-aged children chronically exposed to malarial infections and schistosomiasis mansoni. Trans R Soc Trop Med Hyg 104:110–116PubMedPubMedCentralGoogle Scholar
  173. 173.
    Wilson S, Vennervald BJ, Dunne DW (2011) Chronic hepatosplenomegaly in African school children: a common but neglected morbidity associated with schistosomiasis and malaria. PLoS Negl Trop Dis 5:e1149PubMedPubMedCentralGoogle Scholar
  174. 174.
    Winkler S, Willheim M, Baier K et al (1999) Increased frequency of Th2-type cytokine-producing T cells in microfilaremic loiasis. Am J Trop Med Hyg 60:680–686PubMedGoogle Scholar
  175. 175.
    WHO (2011) Global programme to Eliminate Lymphatic Filariasis: progress report on mass drug administration, 2010. Weekly epidemiological record 86(35):377–388Google Scholar
  176. 176.
    World Malaria Report 2012. Geneva, World Health Organization,Google Scholar
  177. 177.
    Xiao N, Furuta T, Kiguchi T, Kojima S (2000) [Effect of Nippostrongylus brasiliensis induced alterations in T helper cell subsets on Plasmodium berghei infection in mice]. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi 18(5):286–290 (Chinese)Google Scholar
  178. 178.
    Yan Y, Inuo G, Akao N et al (1997) Down-regulation of murine susceptibility to cerebral malaria by inoculation with third-stage larvae of the filarial nematode Brugia pahangi. Parasitology 114:333–338PubMedGoogle Scholar
  179. 179.
    Yatich NJ, Yi J, Agbenyega T et al (2009) Malaria and intestinal helminth co-infection among pregnant women in Ghana: prevalence and risk factors. Am J Trop Med Hyg 80:896–901PubMedGoogle Scholar
  180. 180.
    Yoshida A, Maruyama H, Kumagai T et al (2000) Schistosoma mansoni infection cancels the susceptibility to Plasmodium chabaudi through induction of type 1 immune responses in A/J mice. Int Immunol 12:1117–1125PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Institute of Medical Microbiology, Immunology and Parasitology (IMMIP)University Hospital BonnBonnGermany

Personalised recommendations