Skip to main content

Helminth-M. Tb Co-Infection

  • Chapter
  • First Online:
How Helminths Alter Immunity to Infection

Abstract

Tuberculosis (TB) and helminthiasis are each responsible for a high public health burden in the developing world, especially in sub-Saharan Africa, where approximately one third of the population is infected with Mycobacterium tuberculosis and the greatest number of helminth infections occur. M. tb infection is classically described as a TH1 pathology and there is much interest in exploring how concurrent worm infections might alter immune responses to mycobacterial infections. In the mammalian host, polarised mycobacterium-specific TH1 immune responses correlate with protection, whereas helminth infection induces TH2 immunity. Theoretically, immunomodulation elicited by helminths could attenuate host immune responses against a concomitant mycobacterial infection. Our current understanding of the immunology of helminth infections suggests that interaction with anti-TB immune responses could exacerbate the effects of M. tb infection. Although preliminary results suggest that helminth infections might alter immune responses against bacilli, necessitating altered therapeutic approaches, the full impact of helminth-induced immune responses on the development of protective immunity to mycobacteria remains ambiguous and the implication of helminth co-infection on the natural and vaccine-induced protection against major infectious diseases remains complex and requires further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. WHO (2012) Global tuberculosis report 2012. WHO. http://www.who.int/tb/publications/global_report/en/. Accessed 18 Dec 2012

  2. Lönnroth K, Jaramillo E, Williams BG, Dye C, Raviglione M (2009) Drivers of tuberculosis epidemics: the role of risk factors and social determinants. Social Sci Med 68(12):2240–2246

    Google Scholar 

  3. Maizels RM, Pearce EJ, Artis D, Yazdanbakhsh M, Wynn TA (2009) Regulation of pathogenesis and immunity in helminth infections. J Exp Med 206(10):2059–2066

    PubMed  CAS  PubMed Central  Google Scholar 

  4. Gause WC, Urban JF Jr, Stadecker MJ (2003) The immune response to parasitic helminths: insights from murine models. Trends Immunol 24(5):269–277

    PubMed  CAS  Google Scholar 

  5. Moreau E, Chauvin A (2010) Immunity against helminths: interactions with the host and the intercurrent infections. J Biomed Biotechnol 2010:1–10

    Google Scholar 

  6. Didierlaurent A, Goulding J, Hussell T (2007) The impact of successive infections on the lung microenvironment. Immunology 122(4):457–465

    PubMed  CAS  PubMed Central  Google Scholar 

  7. Elias D, Britton S, Kassu A, Akuffo H (2007) Chronic helminth infections may negatively influence immunity against tuberculosis and other diseases of public health importance. Expert Rev Anti-infect Ther 5:475–484

    PubMed  Google Scholar 

  8. Rafi W, Ribeiro-Rodrigues R, Ellner JJ, Salgame P (2012) Coinfection-helminthes and tuberculosis. Current opinion in HIV and AIDS. http://www.ncbi.nlm.nih.gov/pubmed/22411453. Accessed 22 March 2012

  9. Diniz LM, Zandonade E, Dietze R, Pereira FE, Ribeiro-Rodrigues R (2001) Short report: do intestinal nematodes increase the risk for multibacillary leprosy? Am J Trop Med Hyg 65(6):852–854

    PubMed  CAS  Google Scholar 

  10. Diniz LM, Magalhães EFL, Pereira FEL, Dietze R, Ribeiro-Rodrigues R (2010) Presence of intestinal helminths decreases T helper type 1 responses in tuberculoid leprosy patients and may increase the risk for multi-bacillary leprosy. Clin Exp Immunol 161(1):142–150

    PubMed  CAS  PubMed Central  Google Scholar 

  11. Resende Co T, Hirsch CS, Toossi Z, Dietze R, Ribeiro-Rodrigues R (2007) Intestinal helminth co-infection has a negative impact on both anti-Mycobacterium tuberculosis immunity and clinical response to tuberculosis therapy. Clin Exp Immunol 147(1):45–52

    PubMed  CAS  PubMed Central  Google Scholar 

  12. Babu S, Blauvelt CP, Kumaraswami V, Nutman TB (2005) Diminished expression and function of TLR in lymphatic filariasis: a novel mechanism of immune dysregulation. J Immunol 175(2):1170–1176

    PubMed  CAS  Google Scholar 

  13. Elias D, Wolday D, Akuffo H, Petros B, Bronner U, Britton S (2001) Effect of deworming on human T cell responses to mycobacterial antigens in helminth‐exposed individuals before and after bacille Calmette-Guérin (BCG) vaccination. Clin Exp Immunol 123(2):219–225

    PubMed  CAS  PubMed Central  Google Scholar 

  14. Hübner MP, Killoran KE, Rajnik M, Wilson S, Yim KC, Torrero MN et al (2012). Chronic helminth infection does not exacerbate Mycobacterium tuberculosis infection. PLoS Negl Trop Dis 6(12):e1970

    PubMed  PubMed Central  Google Scholar 

  15. Fenwick A (2012) The global burden of neglected tropical diseases. Public Health 126(3):233–236

    PubMed  CAS  Google Scholar 

  16. IDEA Research (2011) Dissecting the immunological interplay between poverty related diseases and Helminth infections. http://www.idearesearch.eu/index.php?id=2. Accessed 7 Oct 2011

  17. Gelaw A, Abate E, Idh J, Mulu A, Anagaw B, Belyhun Y et al (2012) Plasma IgE level and eosinophil count in smear positive tuberculosis patients with and without helminthic infections at Gondar University Hospital, Northwest Ethiopia. Eur J Exp Biol 2(6):2010–2014

    CAS  Google Scholar 

  18. Augustynowicz-Kopeć E, Jagielski T, Kozińska M, Kremer K, Van Soolingen D, Bielecki J et al (2012) Transmission of tuberculosis within family-households. J Infect 64(6): 596–608

    PubMed  Google Scholar 

  19. Forrester JE, Scott ME, Bundy DA, Golden MHN (1988) Clustering of Ascaris lumbricoides and Trichuris trichiura infections within households. Trans Royal Soc Tropical Med Hygiene 82(2):282–288

    CAS  Google Scholar 

  20. Raso G, Luginbühl A, Adjoua CA, Tian-Bi NT, Silué KD, Matthys B et al (2004) Multiple parasite infections and their relationship to self-reported morbidity in a community of rural Côte d’Ivoire. Int J Epidemiol 33(5):1092–1102

    PubMed  Google Scholar 

  21. Tristão-Sá R, Ribeiro-Rodrigues R, Johnson LT, Pereira FEL, Dietze R. (2002) Intestinal nematodes and pulmonary tuberculosis. Revista da Sociedade Brasileira de Medicina Tropical 35(5):533–535

    PubMed  Google Scholar 

  22. Elliott AM, Kyosiimire J, Quigley MA, Nakiyingi J, Watera C, Brown M et al (2003) Eosinophilia and progression to active tuberculosis in HIV-1-infected Ugandans. Trans Royal Soc Trop Med Hyg 97(4):477–480

    Google Scholar 

  23. Brown M, Miiro G, Nkurunziza P, Watera C, Quigley MA, Dunne DW et al (2006) Schistosoma mansoni, nematode infections, and progression to active tuberculosis among Hiv-1-infected Ugandans. Am J Trop Med Hyg 74(5):819–825

    PubMed  Google Scholar 

  24. Soelen N van, Mandalakas AM, Kirchner HL, Walzl G, Grewal HMS, Jacobsen M et al (2012) Effect of Ascaris lumbricoides specific IgE on tuberculin skin test responses in children in a high-burden setting: a cross-sectional community-based study. BMC Infectious Dis 12(1):211

    Google Scholar 

  25. Kritzinger FE, Den Boon S, Verver S, Enarson DA, Lombard CJ, Borgdorff MW et al (2009) No decrease in annual risk of tuberculosis infection in endemic area in Cape Town, South Africa. Trop Med Int Health 14(2):136–142

    PubMed  Google Scholar 

  26. Adams VJ, Lombard CJ, Dhansay MA, Markus MB, Fincham JE (2004) Efficacy of albendazole against the whipworm trichuris trichiura-a randomised, controlled trial. South Afr Med J 94(12):972–976

    CAS  Google Scholar 

  27. Bentwich Z, Kalinkovich A, Weisman Z, Borkow G, Beyers N, Beyers AD (1999) Can eradication of helminthic infections change the face of AIDS and tuberculosis? Immunol Today 20(11):485–487

    PubMed  CAS  Google Scholar 

  28. Abate E, Belayneh M, Gelaw A, Idh J, Getachew A, Alemu S et al (2012) The impact of asymptomatic helminth co-infection in patients with newly diagnosed tuberculosis in north-West Ethiopia. PLoS ONE 7(8):e42901

    PubMed  CAS  PubMed Central  Google Scholar 

  29. Elias D, Akuffo H, Britton S (2006) Helminthes could influence the outcome of vaccines against TB in the tropics. Parasite Immunol 28(10):507–513

    PubMed  CAS  Google Scholar 

  30. Borkow G, Weisman Z, Leng Q, Stein M, Kalinkovich A, Wolday D et al (2001) Helminths, human immunodeficiency virus and tuberculosis. Scand J Infect Dis 33(8):568–571

    PubMed  CAS  Google Scholar 

  31. Zevallos K, Vergara KC, Vergara A, Vidal C, Garcia HH, Evans CA (2010) Tuberculin skin-test reactions are unaffected by the severity of hyperendemic intestinal helminth infections and co-infections. Am J Trop Med Hyg 83(2):319–325

    PubMed  PubMed Central  Google Scholar 

  32. Wiria AE, Djuardi Y, Supali T, Sartono E, Yazdanbakhsh M (2012) Helminth infection in populations undergoing epidemiological transition: a friend or foe? Semin Immunopathol 34(6):889–901

    PubMed  Google Scholar 

  33. Ugbomoiko US, Dalumo V, Ofoezie IE, Obiezue RNN (2009) Socio-environmental factors and ascariasis infection among school-aged children in Ilobu, Osun State, Nigeria. Trans R Soc Trop Med Hyg 103(3):223–228

    PubMed  CAS  Google Scholar 

  34. A school-based helminth control programme successfully implemented in KwaZulu-Natal | Appleton | Southern African Journal of Epidemiology and Infection (2008). http://www.sajei.co.za/index.php/SAJEI/article/view/42. Accessed 21 Sept 2011

  35. Glinz D, Silué KD, Knopp S, Lohourignon LK, Yao KP, Steinmann P et al (2010) Comparing diagnostic accuracy of Kato-Katz, Koga Agar plate, ether-concentration, and FLOTAC for Schistosoma mansoni and soil-transmitted helminths. PLoS Negl Trop Dis 4(7):e754

    PubMed  PubMed Central  Google Scholar 

  36. Dacombe RJ, Crampin AC, Floyd S, Randall A, Ndhlovu R, Bickle Q et al (2007) Time delays between patient and laboratory selectively affect accuracy of helminth diagnosis. Trans R Soc Trop Med Hyg 101(2):140–145

    PubMed  CAS  Google Scholar 

  37. Levy H, Feldman C, Sacho H, Van der Meulen H, Kallenbach J, Koornhof H (1989) A reevaluation of sputum microscopy and culture in the diagnosis of pulmonary tuberculosis. Chest 95(6):1193–1197

    PubMed  CAS  Google Scholar 

  38. Pai M (2011) Improving TB diagnosis: difference between knowing the path and walking the path. Expert Rev Mol Diagn 11(3):241–244

    PubMed  Google Scholar 

  39. Van Riet E, Hartgers FC, Yazdanbakhsh M (2007) Chronic helminth infections induce immunomodulation: consequences and mechanisms. Immunobiology 212(6):475–490

    PubMed  CAS  Google Scholar 

  40. Graham AL (2008) Ecological rules governing helminth-microparasite coinfection. Proc Natl Acad Sci U S A 105(2):566–570

    PubMed  CAS  PubMed Central  Google Scholar 

  41. Benoit M, Desnues B, Mege J-L (2008) Macrophage polarization in bacterial infections. J Immunol 181(6):3733–3739

    PubMed  CAS  Google Scholar 

  42. Gordon S (2003) Alternative activation of macrophages. Nat Rev Immunol 3(1):23–35

    PubMed  CAS  Google Scholar 

  43. Modolell M, Corraliza IM, Link F, Soler G, Eichmann K (1995) Reciprocal regulation of the nitric oxide synthase/arginase balance in mouse bone marrow-derived macrophages by TH1 and TH2 cytokines. Eur J Immunol 25(4):1101–1104

    PubMed  CAS  Google Scholar 

  44. Mylonas KJ, Nair MG, Prieto-Lafuente L, Paape D, Allen JE (2009) Alternatively activated macrophages elicited by helminth infection can be reprogrammed to enable microbial killing. J Immunol 182(5):3084–3094

    PubMed  CAS  Google Scholar 

  45. Kreider T, Anthony RM, Urban JF Jr, Gause WC (2007) Alternatively activated macrophages in helminth infections. Curr Opin Immunol 19(4):448–453

    PubMed  CAS  PubMed Central  Google Scholar 

  46. Kahnert A, Seiler P, Stein M, Bandermann S, Hahnke K, Mollenkopf H et al (2006) Alternative activation deprives macrophages of a coordinated defense program to Mycobacterium tuberculosis. Eur J Immunol 36(3):631–647

    PubMed  CAS  Google Scholar 

  47. Talaat KR, Bonawitz RE, Domenech P, Nutman TB (2006) Preexposure to live Brugia malayi microfilariae alters the innate response of human dendritic cells to Mycobacterium tuberculosis. J Infect Dis 193(2):196–204

    PubMed  CAS  Google Scholar 

  48. Marino S, Pawar S, Fuller CL, Reinhart TA, Flynn JL, Kirschner DE (2004) Dendritic cell trafficking and antigen presentation in the human immune response to Mycobacterium tuberculosis. J Immunol 173(1):494–506

    PubMed  CAS  Google Scholar 

  49. Henderson RA, Watkins SC, Flynn JL (1997) Activation of human dendritic cells following infection with Mycobacterium tuberculosis. J Immunol 159(2):635–643

    PubMed  CAS  Google Scholar 

  50. Giacomini E, Iona E, Ferroni L, Miettinen M, Fattorini L, Orefici G et al (2001) Infection of human macrophages and dendritic cells with Mycobacterium tuberculosis induces a differential cytokine gene expression that modulates T cell response. J Immunol 166(12):7033–7041

    PubMed  CAS  Google Scholar 

  51. Tailleux L, Schwartz O, Herrmann J-L, Pivert E, Jackson M, Amara A et al (2003) DC-SIGN is the major Mycobacterium tuberculosis receptor on human dendritic cells. J Exp Med 197(1):121–127

    PubMed  CAS  PubMed Central  Google Scholar 

  52. Iwasaki A, Medzhitov R (2010) Regulation of adaptive immunity by the innate immune system. Science 327(5963):291–295

    PubMed  CAS  PubMed Central  Google Scholar 

  53. Medzhitov R, Janeway CA Jr (1997) Innate immunity: impact on the adaptive immune response. Curr Opin Immunol 9(1):4–9

    PubMed  CAS  Google Scholar 

  54. Balic A, Harcus Y, Holland MJ, Maizels RM (2004) Selective maturation of dendritic cells by Nippostrongylus brasiliensis-secreted proteins drives Th2 immune responses. Eur J Immunol 34(11):3047–3059

    PubMed  CAS  Google Scholar 

  55. Demangel C, Bertolino P, Britton WJ (2002) Autocrine IL-10 impairs dendritic cell (DC)-derived immune responses to mycobacterial infection by suppressing DC trafficking to draining lymph nodes and local IL-12 production. Eur J Immunol 32(4):994–1002

    PubMed  CAS  Google Scholar 

  56. Liu Z, Liu Q, Bleich D, Salgame P, Gause WC (2010) Regulation of type 1 diabetes, tuberculosis, and asthma by parasites. J Mol Med 88(1):27–38

    PubMed  PubMed Central  Google Scholar 

  57. Everts B, LUMC (2010) Molecular interplay between dendritic cells and schistosomes : consequences for immune polarization. https://openaccess.leidenuniv.nl/handle/1887/15222. Accessed 16 Jan 2013

  58. Yang X, Gao X (2011) Role of dendritic cells: a step forward for the hygiene hypothesis. Cell Mol Immunol 8(1):12–18

    PubMed  PubMed Central  Google Scholar 

  59. Martinez FO, Helming L, Gordon S (2009) Alternative activation of macrophages: an immunologic functional perspective. Ann Rev Immunol 27:451–483

    CAS  Google Scholar 

  60. Couper KN, Blount DG, Riley EM (2008) IL-10: the master regulator of immunity to infection. J Immunol 180(9):5771–5777

    PubMed  CAS  Google Scholar 

  61. Potian JA, Rafi W, Bhatt K, McBride A, Gause WC, Salgame P (2011) Preexisting helminth infection induces inhibition of innate pulmonary anti-tuberculosis defense by engaging the IL-4 receptor pathway. J Exp Med 208(9):1863–1874

    PubMed  CAS  PubMed Central  Google Scholar 

  62. Du Plessis N, Kleynhans L, Thiart L, Van Helden PD, Brombacher F, Horsnell WGC et al (2012) Acute helminth infection enhances early macrophage mediated control of mycobacterial infection. Mucosal Immunol 6:931–941

    Google Scholar 

  63. Flynn JL, Goldstein MM, Chan J, Triebold KJ, Pfeffer K, Lowenstein CJ et al (1995) Tumor necrosis factor-alpha is required in the protective immune response against Mycobacterium tuberculosis in mice. Immunity 2(6):561–572

    PubMed  CAS  Google Scholar 

  64. Flesch IE, Kaufmann SH (1993) Role of cytokines in tuberculosis. Immunobiology 189(3-4):316–339

    PubMed  CAS  Google Scholar 

  65. Flynn JL, Chan J, Triebold KJ, Dalton DK, Stewart TA, Bloom BR (1993) An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection. J Exp Med 178(6):2249–54

    PubMed  CAS  Google Scholar 

  66. Cooper AM, Adams LB, Dalton DK, Appelberg R, Ehlers S (2002) IFN-gamma and NO in mycobacterial disease: new jobs for old hands. Trends Microbiol 10(5):221–226

    PubMed  CAS  Google Scholar 

  67. Cooper AM, Dalton DK, Stewart TA, Griffin JP, Russell DG, Orme IM (1993) Disseminated tuberculosis in interferon gamma gene-disrupted mice. J Exp Med 178(6):2243–2247

    PubMed  CAS  Google Scholar 

  68. Newport MJ, Huxley CM, Huston S, Hawrylowicz CM, Oostra BA, Williamson R et al (1996) A mutation in the interferon-γ -receptor gene and susceptibility to mycobacterial infection. New England J Med 335(26):1941–1949

    CAS  Google Scholar 

  69. López-Maderuelo D, Arnalich F, Serantes R, González A, Codoceo R, Madero R et al (2003) Interferon-γ and interleukin-10 gene polymorphisms in pulmonary tuberculosis. Am J Respir Crit Care Med 67(7):970–975

    Google Scholar 

  70. Mosmann TR, Coffman RL (1989) TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Ann Rev Immunol 7(1):145–173

    CAS  Google Scholar 

  71. Scanga CA, Mohan VP, Yu K, Joseph H, Tanaka K, Chan J et al (2000) Depletion of Cd4 +  T cells causes reactivation of murine persistent tuberculosis despite continued expression of interferon γ and nitric oxide synthase 2. J Exp Med 192(3):347–58

    PubMed  CAS  PubMed Central  Google Scholar 

  72. Botha T, Ryffel B (2003) Reactivation of latent tuberculosis infection in TNF-deficient mice. J Immunol 171(6):3110–3118

    PubMed  CAS  Google Scholar 

  73. Demissie A, Abebe M, Aseffa A, Rook G, Fletcher H, Zumla A et al (2004) Healthy individuals that control a latent infection with Mycobacterium tuberculosis express high levels of Th1 cytokines and the IL-4 antagonist IL-4delta2. J Immunol 172(11):6938–6943

    PubMed  CAS  Google Scholar 

  74. Howard AD, Zwilling BS (1999) Reactivation of tuberculosis is associated with a shift from type 1 to type 2 cytokines. Clin Exp Immunol 115(3):428–434

    Google Scholar 

  75. Seah GT, Rook GA (2001) High levels of mRNA encoding IL-4 in unstimulated peripheral blood mononuclear cells from tuberculosis patients revealed by quantitative nested reverse transcriptase-polymerase chain reaction; correlations with serum IgE levels. Scand J Infect Dis 33(2):106–109

    PubMed  CAS  Google Scholar 

  76. Fletcher HA, Owiafe P, Jeffries D, Hill P, Rook GAW, Zumla A et al (2004) Increased expression of mRNA encoding interleukin (IL)-4 and its splice variant IL-4delta2 in cells from contacts of Mycobacterium tuberculosis, in the absence of in vitro stimulation. Immunology 112(4):669–673

    PubMed  CAS  PubMed Central  Google Scholar 

  77. Hussain R, Talat N, Shahid F, Dawood G (2007) Longitudinal tracking of cytokines after acute exposure to tuberculosis: association of distinct cytokine patterns with protection and disease development. Clin Vaccine Immunol 14(12):1578–1586

    PubMed  CAS  PubMed Central  Google Scholar 

  78. Borkow G, Bentwich Z (2004) Chronic immune activation associated with chronic helminthic and human immunodeficiency virus infections: role of hyporesponsiveness and anergy. Clin Microbiol Rev 17(4):1012–1030

    PubMed  CAS  PubMed Central  Google Scholar 

  79. Bentwich Z, Teicher CL, Borkow G (2008) The helminth HIV connection: time to act. AIDS 22:1611–1614

    PubMed  Google Scholar 

  80. Mahanty S, Mollis SN, Ravichandran M, Abrams JS, Kumaraswami V, Jayaraman K et al (1996) High levels of spontaneous and parasite antigen-driven interleukin-10 production are associated with antigen-specific hyporesponsiveness in human lymphatic filariasis. J Infect Dis 173(3):769–673

    PubMed  CAS  Google Scholar 

  81. Doetze A, Satoguina J, Burchard G, Rau T, Löliger C, Fleischer B et al (2000) Antigen-specific cellular hyporesponsiveness in a chronic human helminth infection is mediated by Th3/Tr1-type cytokines IL-10 and transforming growth factor-β but not by a Th1 to Th2 shift. Int Immunol 12(5):623–630

    PubMed  CAS  Google Scholar 

  82. Almeida CA, Romano-Silva MA, Goes AM (1998) Inhibition of protein kinases prevents lymphocyte activation by Schistosoma mansoni antigens and reduces in vitro [correction of in vivo] granuloma reaction. Immunol Lett 62(3):137–143

    PubMed  CAS  Google Scholar 

  83. Sugawara I, Yamada H, Mizuno S, Iwakura Y (2000) IL-4 is required for defense against mycobacterial infection. Microbiol Immunol 44(12):971–979

    PubMed  CAS  Google Scholar 

  84. Al-Riyami L, Wilson EH, Watson CA, Harnett W (2009) T-helper type 1 responses to the BCG vaccine component PPD in mice are unaffected by the filarial nematode immunomodulatory molecule ES-62. J Parasitol 95(5):1201–1204

    PubMed  CAS  Google Scholar 

  85. Stewart GR, Boussinesq M, Coulson T, Elson L, Nutman T, Bradley JE (1999) Onchocerciasis modulates the immune response to mycobacterial antigens. Clin Exp Immunol 117(3):517–523

    PubMed  CAS  PubMed Central  Google Scholar 

  86. Elias D, Akuffo H, Thors C, Pawlowski A, Britton S. Low dose chronic Schistosoma mansoni infection increases susceptibility to Mycobacterium bovis BCG infection in mice. Clin Exp Immunol 139(3):398–404

    Google Scholar 

  87. Fujita M, Harada E, Matsumoto T, Mizuta Y, Ikegame S, Ouchi H et al (2010) Impaired host defence against Mycobacterium avium in mice with chronic granulomatous disease. Clin Exp Immunol 160(3):457–460

    PubMed  CAS  PubMed Central  Google Scholar 

  88. Pearlman E, Kazura JW, Hazlett FE, Boom WH (1993) Modulation of murine cytokine responses to mycobacterial antigens by helminth-induced T helper 2 cell responses. J Immunol 151(9):4857–4864

    PubMed  CAS  Google Scholar 

  89. Salgame PBK Nippostrongylus brasiliensis infection modeultaed Mycobacterium tuberculosis induced Th1 response. Cell Respons Pathogens 43(1):43–56

    Google Scholar 

  90. Salgame P (2005) Host innate and Th1 responses and the bacterial factors that control Mycobacterium tuberculosis infection. Curr Opin Immunol 17(4 Spec. Iss.):374–380

    PubMed  CAS  Google Scholar 

  91. Frantz FG, Rosada RS, Turato WM, Peres CM, Coelho-Castelo AAM, Ramos SG et al (2007) The immune response to toxocariasis does not modify susceptibility to Mycobacterium tuberculosis infection in BALB/C mice. Am J Trop Med Hyg 77(4):691–698

    PubMed  CAS  Google Scholar 

  92. Neto LMS, de Oliveira RVC, Totino PR, Sant’Anna FM, de Coelho VO, Rolla VC et al (2009) Enteroparasitosis prevalence and parasitism influence in clinical outcomes of tuberculosis patients with or without HIV co-infection in a reference hospital in Rio de Janeiro (2000–2006). Braz J Infect Dis 13(6):427–432

    PubMed  Google Scholar 

  93. Ehlers S (2009) Lazy, dynamic or minimally recrudescent? On the elusive nature and location of the mycobacterium responsible for latent tuberculosis. Infection 37(2):87–95

    PubMed  CAS  Google Scholar 

  94. Khader SA, Bell GK, Pearl JE, Fountain JJ, Rangel-Moreno J, Cilley GE et al (2007) IL-23 and IL-17 in the establishment of protective pulmonary CD4 +  T cell responses after vaccination and during Mycobacterium tuberculosis challenge. Nat Immunol 8(4):369–377

    PubMed  CAS  Google Scholar 

  95. Liang SC, Long AJ, Bennett F, Whitters MJ, Karim R, Collins M et al (2007) An IL-17F/A heterodimer protein is produced by mouse Th17 cells and induces airway neutrophil recruitment. J Immunol 179(11):7791–7799

    PubMed  CAS  Google Scholar 

  96. Cheung PFY, Wong CK, Lam CWK (2008) Molecular mechanisms of cytokine and chemokine release from eosinophils activated by IL-17A, IL-17F, and IL-23: implication for Th17 lymphocytes-mediated allergic inflammation. J Immunol 180(8):5625–5635

    PubMed  CAS  Google Scholar 

  97. Umemura M, Yahagi A, Hamada S, Begum MD, Watanabe H, Kawakami K et al IL-17-mediated regulation of innate and acquired immune response against pulmonary Mycobacterium bovis bacille Calmette-Guerin infection. J Immunol 178(6):3786–3796

    Google Scholar 

  98. Babu S, Bhat SQ, Pavan Kumar N, Lipira AB, Kumar S, Karthik C et al (2009) Filarial lymphedema is characterized by antigen-specific Th1 and th17 proinflammatory responses and a lack of regulatory T cells. PLoS Negl Trop Dis 3(4):e420

    PubMed  PubMed Central  Google Scholar 

  99. Park H, Li Z, Yang XO, Chang SH, Nurieva R, Wang Y-H et al A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat. Immunol 6(11):1133–1141

    Google Scholar 

  100. Cooney LA, Towery K, Endres J, Fox DA (2011) Sensitivity and resistance to regulation by IL-4 during Th17 maturation. J Immunol 187(9):4440–4450

    PubMed  CAS  PubMed Central  Google Scholar 

  101. Finney CAM, Taylor MD, Wilson MS, Maizels RM (2007) Expansion and activation of CD4+ CD25+  regulatory T cells in Heligmosomoides polygyrus infection. Eur J Immunol 37(7):1874–1886

    PubMed  CAS  PubMed Central  Google Scholar 

  102. Grainger JR, Smith KA, Hewitson JP, McSorley HJ, Harcus Y, Filbey KJ et al (2010) Helminth secretions induce de novo T cell Foxp3 expression and regulatory function through the TGF-β pathway. J Exp Med 207(11):2331–2341

    PubMed  CAS  PubMed Central  Google Scholar 

  103. Arnold IC, Dehzad N, Reuter S, Martin H, Becher B, Taube C et al (2011) Helicobacter pylori infection prevents allergic asthma in mouse models through the induction of regulatory T cells. J Clin Invest 121(8):3088–3093

    PubMed  CAS  PubMed Central  Google Scholar 

  104. Dittrich AM, Erbacher A, Specht S, Diesner F, Krokowski M, Avagyan A et al (2008) Helminth Infection with Litomosoides sigmodontis induces regulatory T cells and inhibits allergic sensitization, airway inflammation, and hyperreactivity in a murine asthma model. J Immunol 180(3):1792–1799

    PubMed  CAS  Google Scholar 

  105. Pacífico LGG, Marinho FAV, Fonseca CT, Barsante MM, Pinho V, Sales-Junior PA et al Schistosoma mansoni antigens modulate experimental allergic asthma in a murine model: a major role for CD4+ CD25+ Foxp3+  T cells independent of interleukin-10. Infect Immun 77(1):98–107

    Google Scholar 

  106. Shevach EM (2009) Mechanisms of Foxp3 +  T regulatory cell-mediated suppression. Immunity 30(5):636–645

    PubMed  CAS  Google Scholar 

  107. Tetsutani K, Ishiwata K, Ishida H, Tu L, Torii M, Hamano S et al (2009) Concurrent infection with Heligmosomoides polygyrus suppresses anti-Plasmodium Yoelii protection partially by induction of CD4+ CD25+ Foxp3+  Treg in mice. Eur J Immunol 39(10):2822–2230

    PubMed  CAS  Google Scholar 

  108. Guyot-Revol V, Innes JA, Hackforth S, Hinks T, Lalvani A (2006) Regulatory T cells are expanded in blood and disease sites in patients with tuberculosis. Am J Respir Crit Care Med 173(7):803–810

    PubMed  CAS  Google Scholar 

  109. Green AM, Mattila JT, Bigbee CL, Bongers KS, Lin PL, Flynn JL (2010) CD4 +  regulatory T cells in a cynomolgus macaque model of Mycobacterium tuberculosis infection. J Infect Dis 202(4):533–541

    PubMed  CAS  PubMed Central  Google Scholar 

  110. Olobo JO, Geletu M, Demissie A, Eguale T, Hiwot K, Aderaye G et al (2001) Circulating TNF-alpha, TGF-beta, and IL-10 in tuberculosis patients and healthy contacts. Scand J Immunol 53(1):85–91

    PubMed  CAS  Google Scholar 

  111. Gong JH, Zhang M, Modlin RL, Linsley PS, Iyer D, Lin Y et al (1996) Interleukin-10 downregulates Mycobacterium tuberculosis-induced Th1 responses and CTLA-4 expression. Infect Immun 64(3):913–918

    PubMed  CAS  PubMed Central  Google Scholar 

  112. Elias D, Britton S, Aseffa A, Engers H, Akuffo H (2008) Poor immunogenicity of BCG in helminth infected population is associated with increased in vitro TGF-beta production. Vaccine 26(31):3897–3902

    PubMed  CAS  Google Scholar 

  113. Wammes LJ, Hamid F, Wiria AE, De Gier B, Sartono E, Maizels RM et al (2010) Regulatory T cells in human geohelminth infection suppress immune responses to BCG and Plasmodium falciparum. Eur J Immunol 40(2):437–442

    PubMed  CAS  Google Scholar 

  114. Osborne J, Devaney E (1999) Interleukin-10 and antigen-presenting cells actively suppress Th1 cells in BALB/c Mice infected with the filarial parasite Brugia pahangi. Infect Immun 67(4):1599–1605

    PubMed  CAS  PubMed Central  Google Scholar 

  115. Silveira MR, Nunes KP, Cara DC, Souza DG, Corrêa A, Teixeira MM et al (2002) Infection with Strongyloides venezuelensis induces transient airway eosinophilic inflammation, an increase in immunoglobulin E, and hyperresponsiveness. Rats. Infect Immun 70(11):6263–6272

    PubMed  CAS  PubMed Central  Google Scholar 

  116. Abraham D, Leon O, Schnyder-Candrian S, Wang CC, Galioto AM, Kerepesi LA et al (2004) Immunoglobulin E and eosinophil-dependent protective immunity to larval Onchocerca volvulus in mice immunized with irradiated larvae. Infect Immun 72(2):810–817

    PubMed  CAS  PubMed Central  Google Scholar 

  117. McSharry C, Xia Y, Holland CV, Kennedy MW (1999) Natural immunity to ascaris lumbricoides associated with immunoglobulin E antibody to ABA-1 allergen and inflammation indicators in children. Infect Immun 67(2):484–489

    PubMed  CAS  PubMed Central  Google Scholar 

  118. Ahmad A, Wang CH, Bell RG (1991) A role for IgE in intestinal immunity:eExpression of rapid expulsion of Trichinella spiralis in rats transfused with IgE and thoracic duct lymphocytes. J Immunol 146(10):3563–3570

    PubMed  CAS  Google Scholar 

  119. Yamada M, Nakazawa M, Matsumoto Y, Arizono N (1991) IgE antibody production in rats against multiple components of excretory-secretory products of the nematode Nippostrongylus brasiliensis. Immunology 72(1):104–108

    PubMed  CAS  PubMed Central  Google Scholar 

  120. Hagan P (1993) IgE and protective immunity to helminth infections. Parasite Immunol 15(1):1–4

    PubMed  CAS  Google Scholar 

  121. Dunne DW, Butterworth AE, Fulford AJ, Ouma JH, Sturrock RF (1992) Human IgE responses to Schistosoma mansoni and resistance to reinfection. Mem Inst Oswaldo Cruz 87(Suppl 4):99–103

    PubMed  Google Scholar 

  122. Hussain R, Shiratsuchi H, Ellner JJ, Wallis RS (2000) PPD-specific IgG1 antibody subclass upregulate tumour necrosis factor expression in PPD-stimulated monocytes: possible link with disease pathogenesis in tuberculosis. Clin Exp Immunol 119(3):449–455

    PubMed  CAS  PubMed Central  Google Scholar 

  123. Hussain R, Shiratsuchi H, Phillips M, Ellner J, Wallis RS (2001) Opsonizing antibodies (IgG1) up-regulate monocyte proinflammatory cytokines tumour necrosis factor-alpha (TNF-alpha) and IL-6 but not anti-inflammatory cytokine IL-10 in mycobacterial antigen-stimulated monocytes-implications for pathogenesis. Clin Exp Immunol 123(2):210–218

    PubMed  CAS  PubMed Central  Google Scholar 

  124. Thakurdas SM, Hasan Z, Hussain R (2004) IgG1 antimycobacterial antibodies can reverse the inhibitory effect of pentoxifylline on tumour necrosis factor alpha (TNF-α) secreted by mycobacterial antigen-stimulated adherent cells. Clin Exp Immunol 136(2):320–327

    PubMed  CAS  PubMed Central  Google Scholar 

  125. Adams JF, Schölvinck EH, Gie RP, Potter PC, Beyers N, Beyers AD (1999) Decline in total serum IgE after treatment for tuberculosis. Lancet 353(9169):2030–2033

    PubMed  CAS  Google Scholar 

  126. Obihara CC, Beyers N, Gie RP, Hoekstra MO, Fincham JE, Marais BJ et al (2006) Respiratory atopic disease, Ascaris-immunoglobulin E and tuberculin testing in urban South African children. Clin Exp Allergy 36(5):640–648

    PubMed  CAS  Google Scholar 

  127. Sacco R, Hagen M, Sandor M, Weinstock JV, Lynch RG (2002) Established T(H1) granulomatous responses induced by active Mycobacterium avium infection switch to T(H2) following challenge with Schistosoma mansoni. Clin Immunol 104(3):274–281

    PubMed  CAS  Google Scholar 

  128. Bosio CM, Gardner D, Elkins KL (2000) Infection of B cell-deficient mice with CDC 1551, a clinical isolate of Mycobacterium tuberculosis: delay in dissemination and development of lung pathology. J Immunol 164(12):6417–6425

    PubMed  CAS  Google Scholar 

  129. Vordermeier HM, Venkataprasad N, Harris DP, Ivanyi J (1996) Increase of tuberculous infection in the organs of B cell-deficient mice. Clin Exp Immunol 106(2):312–316

    PubMed  CAS  PubMed Central  Google Scholar 

  130. Fillatreau S, Sweenie CH, McGeachy MJ, Gray D, Anderton SM (2002) B cells regulate autoimmunity by provision of IL-10. Nat Immunol 3(10):944–950

    PubMed  CAS  Google Scholar 

  131. Mizoguchi A, Mizoguchi E, Takedatsu H, Blumberg RS, Bhan AK (2002) Chronic intestinal inflammatory condition generates IL-10-producing regulatory B cell subset characterized by CD1d upregulation. Immunity 16(2):219–230

    PubMed  CAS  Google Scholar 

  132. WHO (2013) BCG—the current vaccine for tuberculosis. WHO. http://www.who.int/vaccine_research/diseases/tb/vaccine_development/bcg/en/. Accessed 18 Jan 2013

  133. Elias D, Akuffo H, Britton S (2006) Helminthes could influence the outcome of vaccines against TB in the tropics. Parasite Immunol 28(10):507–513

    PubMed  CAS  Google Scholar 

  134. Ferreira AP, Aarestrup FM, Bonecini-Almeida MG, Souza EE, Gomes EA, Corrêa JO et al (1999) Effect of the injection of an extract of Ascaris suum on macrophage activation during the early phase of Mycobacterium bovis BCG infection in C57Bl/6 mice. Braz J Med Biol Res 32(11):1429–1436

    PubMed  CAS  Google Scholar 

  135. Ferreira AP, Aguiar AS, Fava MWB, Corrêa JOA, Teixeira FM, Teixeira HC (2002) Can the efficacy of Bacille Calmette-Guérin tuberculosis vaccine be affected by intestinal parasitic infections? J Infect Dis 186(3):441–442

    PubMed  Google Scholar 

  136. Elias D, Akuffo H, Pawlowski A, Haile M, SchÃn T, Britton S (2005) Schistosoma mansoni infection reduces the protective efficacy of BCG vaccination against virulent Mycobacterium tuberculosis. Vaccine 23(11):1326–1334

    PubMed  CAS  Google Scholar 

  137. Grove DI, Civil RH (1978) Trichinella spiralis: effects on the host-parasite relationship in mice of BCG (attenuated Mycobacterium bovis). Exp Parasitol 44(2):181–189

    PubMed  CAS  Google Scholar 

  138. Bundy D, Sher A, Michael E (2000) Good worms or bad worms: do worm infections affect the epidemiological patterns of other diseases? Parasitol Today (Regul. Ed.). 16(7):273–274

    PubMed  CAS  Google Scholar 

  139. Blackwell AD, Gurven MD, Sugiyama LS, Madimenos FC, Liebert MA, Martin MA et al (2011) Evidence for a Peak Shift in a humoral response to helminths: age profiles of IgE in the Shuar of Ecuador, the Tsimane of Bolivia, and the U.S. NHANES. PLoS Negl Trop Dis. 5(6). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3125146/. Accessed 18 Jan 2013

  140. Knopp S, Mohammed KA, Stothard JR, Khamis IS, Rollinson D, Marti H et al (2010) Patterns and risk factors of helminthiasis and anemia in a rural and a peri-urban community in Zanzibar, in the context of helminth control programs. PLoS Negl Trop Dis 4(5):e681

    PubMed  PubMed Central  Google Scholar 

  141. Pit DSS, Polderman AM, Schulz-key H, Soboslay PT (2000) Prenatal immune priming with helminth infections: parasite-specific cellular reactivity and Th1 and Th2 cytokine responses in neonates. Allergy 55(8):732–739

    PubMed  CAS  Google Scholar 

  142. Malhotra I, Ouma J, Wamachi A, Kioko J, Mungai P, Omollo A et al (1997) In utero exposure to helminth and mycobacterial antigens generates cytokine responses similar to that observed in adults. J Clin Invest 99(7):1759–1766

    PubMed  CAS  PubMed Central  Google Scholar 

  143. King CL, Malhotra I, Mungai P, Wamachi A, Kioko J, Ouma JH et al (1998) B cell sensitization to helminthic infection develops in utero in humans. J Immunol 160(7):3578–3584

    PubMed  CAS  Google Scholar 

  144. Labeaud AD, Malhotra I, King MJ, King CL, King CH (2009) Do antenatal parasite infections devalue childhood vaccination? PLoS Negl Trop Dis 3(5):e442

    PubMed  PubMed Central  Google Scholar 

  145. Malhotra I, Mungai P, Wamachi A, Kioko J, Ouma JH, Kazura JW et al (1999) Helminth- and Bacillus Calmette-Guérin-induced immunity in children sensitized in utero to filariasis and schistosomiasis. J Immunol 162(11):6843–6848

    PubMed  CAS  Google Scholar 

  146. Colditz GA, Brewer TF, Berkey CS, Wilson ME, Burdick E, Fineberg HV et al (1994) Efficacy of BCG vaccine in the prevention of tuberculosis: meta-analysis of the published literature. JAMA 271(9):698–702

    PubMed  CAS  Google Scholar 

  147. Markus MB, Fincham JE (2001) Implications for neonatal HIV/AIDS and TB of sensitization in utero to helminths. Trends Parasitol 17(1):8

    PubMed  CAS  Google Scholar 

  148. Elliott AM, Kizza M, Quigley MA, Ndibazza J, Nampijja M, Muhangi L et al (2007) The impact of helminths on the response to immunization and on the incidence of infection and disease in childhood in Uganda: design of a randomized, double-blind, placebo-controlled, factorial trial of deworming interventions delivered in pregnancy and early childhood [ISRCTN32849447]. Clin Trials 4(1):42–57

    PubMed  PubMed Central  Google Scholar 

  149. Frantz FG, Rosada RS, Peres-Buzalaf C, Perusso FRT, Rodrigues V, Ramos SG et al (2010) Helminth coinfection does not affect therapeutic effect of a DNA vaccine in mice harboring tuberculosis. PLoS Negl Trop Dis 4(6):e700

    PubMed  PubMed Central  Google Scholar 

  150. Griffin JF, Mackintosh CG, Buchan GS (1995) Animal models of protective immunity in tuberculosis to evaluate candidate vaccines. Trends Microbiol 3(11):418–424

    PubMed  CAS  Google Scholar 

  151. Erb KJ, Trujillo C, Fugate M, Moll H (2002) Infection with the Helminth Nippostrongylus brasiliensis does not interfere with efficient elimination of Mycobacterium bovis BCG from the lungs of mice. Clin Diagn Lab Immunol 9(3):727–730

    PubMed  PubMed Central  Google Scholar 

  152. Elwood RL, Wilson S, Blanco JCG, Yim K, Pletneva L, Nikonenko B et al (2007) The American cotton rat: a novel model for pulmonary tuberculosis. Tuberculosis (Edinb) 87(2):145–154

    CAS  Google Scholar 

  153. Flynn RJ, Mulcahy G, Welsh M, Cassidy JP, Corbett D, Milligan C et al (2009) Co-Infection of cattle with Fasciola hepatica and Mycobacterium bovis- immunological consequences. Transbound Emerg Dis 56(6–7):269–274

    PubMed  CAS  Google Scholar 

  154. Harris J, De Haro SA, Master SS, Keane J, Roberts EA, Delgado M et al (2007) T helper 2 cytokines inhibit autophagic control of intracellular Mycobacterium tuberculosis. Immunity 27(3):505–517

    PubMed  CAS  Google Scholar 

  155. Qualls JE, Neale G, Smith AM, Koo M-S, DeFreitas AA, Zhang H et al (2010) Arginine usage in mycobacteria-infected macrophages depends on autocrine-paracrine cytokine signaling. Sci Signal 3(135):ra62

    PubMed  PubMed Central  Google Scholar 

  156. Kasmi KCE, Qualls JE, Pesce JT, Smith AM, Thompson RW, Henao-Tamayo M et al (2008) Toll-like receptor-induced arginase 1 in macrophages thwarts effective immunity against intracellular pathogens. Nature Immunol 9(12):1399–1406

    Google Scholar 

  157. Pesce JT, Ramalingam TR, Mentink-Kane MM, Wilson MS, El Kasmi KC, Smith AM et al (2009) Arginase-1-expressing macrophages suppress Th2 cytokine-driven inflammation and fibrosis. PLoS Pathog 5(4):e1000371

    PubMed  PubMed Central  Google Scholar 

  158. Verreck FAW, de Boer T, Langenberg DML, van der Zanden L, Ottenhoff THM (2006) Phenotypic and functional profiling of human proinflammatory type-1 and anti-inflammatory type-2 macrophages in response to microbial antigens and IFN-γ- and CD40 L-mediated costimulation. J Leukoc Biol 79(2):285–293

    PubMed  CAS  Google Scholar 

  159. Sandler NG, Mentink-Kane MM, Cheever AW, Wynn TA (2003) Global gene expression profiles during acute pathogen-induced pulmonary inflammation reveal divergent roles for Th1 and Th2 responses in tissue repair. J Immunol 171(7):3655–3667

    PubMed  CAS  Google Scholar 

  160. Troidl C, Möllmann H, Nef H, Masseli F, Voss S, Szardien S et al (2009) Classically and alternatively activated macrophages contribute to tissue remodelling after myocardial infarction. J Cell Mol Med 13(9b):3485–3496

    PubMed  CAS  Google Scholar 

  161. Pearce EJ, Pedras-Vasconcelos J (1997) Schistosoma mansoni infection induces a type 1 CD8+  cell response. Behring Inst Mitt 99:79–84

    PubMed  CAS  Google Scholar 

  162. Zhang YL, Jia K, Zhao BP, Li Y, Yuan CX, Yang JM et al (2012) Identification of Th1 epitopes within molecules from the lung-stage schistosomulum of Schistosoma japonicum by combining prediction analysis of the transcriptome with experimental validation. Parasitol Int 61(4):586–593

    PubMed  CAS  Google Scholar 

  163. Chen Y, Boros DL (2001) The Schistosoma mansoni egg-derived r38 peptide-induced Th1 response affects the synchronous pulmonary but not the asynchronous hepatic granuloma growth. Parasite Immunol. 23(1):43–50

    PubMed  CAS  Google Scholar 

  164. Thakar J, Pathak AK, Murphy L, Albert R, Cattadori IM (2012) Network model of immune responses reveals key effectors to single and co-infection dynamics by a respiratory bacterium and a gastrointestinal helminth. PLoS Comput Biol 8(1):e1002345

    PubMed  CAS  PubMed Central  Google Scholar 

  165. Ezenwa VO, Jolles AE (2011) From host immunity to pathogen invasion: the effects of helminth coinfection on the dynamics of microparasites. Integr Comp Biol 51(4):540–551

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nelita du Plessis PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

du Plessis, N., Walzl, G. (2014). Helminth-M. Tb Co-Infection. In: Horsnell, W. (eds) How Helminths Alter Immunity to Infection. Advances in Experimental Medicine and Biology, vol 828. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1489-0_3

Download citation

Publish with us

Policies and ethics