Advertisement

Helminth-M. Tb Co-Infection

  • Nelita du PlessisEmail author
  • Gerhard Walzl
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 828)

Abstract

Tuberculosis (TB) and helminthiasis are each responsible for a high public health burden in the developing world, especially in sub-Saharan Africa, where approximately one third of the population is infected with Mycobacterium tuberculosis and the greatest number of helminth infections occur. M. tb infection is classically described as a TH1 pathology and there is much interest in exploring how concurrent worm infections might alter immune responses to mycobacterial infections. In the mammalian host, polarised mycobacterium-specific TH1 immune responses correlate with protection, whereas helminth infection induces TH2 immunity. Theoretically, immunomodulation elicited by helminths could attenuate host immune responses against a concomitant mycobacterial infection. Our current understanding of the immunology of helminth infections suggests that interaction with anti-TB immune responses could exacerbate the effects of M. tb infection. Although preliminary results suggest that helminth infections might alter immune responses against bacilli, necessitating altered therapeutic approaches, the full impact of helminth-induced immune responses on the development of protective immunity to mycobacteria remains ambiguous and the implication of helminth co-infection on the natural and vaccine-induced protection against major infectious diseases remains complex and requires further investigation.

Keywords

Helminth Mycobacterium Co-infection Tuberculosis Immunomodulation 

References

  1. 1.
    WHO (2012) Global tuberculosis report 2012. WHO. http://www.who.int/tb/publications/global_report/en/. Accessed 18 Dec 2012
  2. 2.
    Lönnroth K, Jaramillo E, Williams BG, Dye C, Raviglione M (2009) Drivers of tuberculosis epidemics: the role of risk factors and social determinants. Social Sci Med 68(12):2240–2246Google Scholar
  3. 3.
    Maizels RM, Pearce EJ, Artis D, Yazdanbakhsh M, Wynn TA (2009) Regulation of pathogenesis and immunity in helminth infections. J Exp Med 206(10):2059–2066PubMedPubMedCentralGoogle Scholar
  4. 4.
    Gause WC, Urban JF Jr, Stadecker MJ (2003) The immune response to parasitic helminths: insights from murine models. Trends Immunol 24(5):269–277PubMedGoogle Scholar
  5. 5.
    Moreau E, Chauvin A (2010) Immunity against helminths: interactions with the host and the intercurrent infections. J Biomed Biotechnol 2010:1–10Google Scholar
  6. 6.
    Didierlaurent A, Goulding J, Hussell T (2007) The impact of successive infections on the lung microenvironment. Immunology 122(4):457–465PubMedPubMedCentralGoogle Scholar
  7. 7.
    Elias D, Britton S, Kassu A, Akuffo H (2007) Chronic helminth infections may negatively influence immunity against tuberculosis and other diseases of public health importance. Expert Rev Anti-infect Ther 5:475–484PubMedGoogle Scholar
  8. 8.
    Rafi W, Ribeiro-Rodrigues R, Ellner JJ, Salgame P (2012) Coinfection-helminthes and tuberculosis. Current opinion in HIV and AIDS. http://www.ncbi.nlm.nih.gov/pubmed/22411453. Accessed 22 March 2012
  9. 9.
    Diniz LM, Zandonade E, Dietze R, Pereira FE, Ribeiro-Rodrigues R (2001) Short report: do intestinal nematodes increase the risk for multibacillary leprosy? Am J Trop Med Hyg 65(6):852–854PubMedGoogle Scholar
  10. 10.
    Diniz LM, Magalhães EFL, Pereira FEL, Dietze R, Ribeiro-Rodrigues R (2010) Presence of intestinal helminths decreases T helper type 1 responses in tuberculoid leprosy patients and may increase the risk for multi-bacillary leprosy. Clin Exp Immunol 161(1):142–150PubMedPubMedCentralGoogle Scholar
  11. 11.
    Resende Co T, Hirsch CS, Toossi Z, Dietze R, Ribeiro-Rodrigues R (2007) Intestinal helminth co-infection has a negative impact on both anti-Mycobacterium tuberculosis immunity and clinical response to tuberculosis therapy. Clin Exp Immunol 147(1):45–52PubMedPubMedCentralGoogle Scholar
  12. 12.
    Babu S, Blauvelt CP, Kumaraswami V, Nutman TB (2005) Diminished expression and function of TLR in lymphatic filariasis: a novel mechanism of immune dysregulation. J Immunol 175(2):1170–1176PubMedGoogle Scholar
  13. 13.
    Elias D, Wolday D, Akuffo H, Petros B, Bronner U, Britton S (2001) Effect of deworming on human T cell responses to mycobacterial antigens in helminth‐exposed individuals before and after bacille Calmette-Guérin (BCG) vaccination. Clin Exp Immunol 123(2):219–225PubMedPubMedCentralGoogle Scholar
  14. 14.
    Hübner MP, Killoran KE, Rajnik M, Wilson S, Yim KC, Torrero MN et al (2012). Chronic helminth infection does not exacerbate Mycobacterium tuberculosis infection. PLoS Negl Trop Dis 6(12):e1970PubMedPubMedCentralGoogle Scholar
  15. 15.
    Fenwick A (2012) The global burden of neglected tropical diseases. Public Health 126(3):233–236PubMedGoogle Scholar
  16. 16.
    IDEA Research (2011) Dissecting the immunological interplay between poverty related diseases and Helminth infections. http://www.idearesearch.eu/index.php?id=2. Accessed 7 Oct 2011
  17. 17.
    Gelaw A, Abate E, Idh J, Mulu A, Anagaw B, Belyhun Y et al (2012) Plasma IgE level and eosinophil count in smear positive tuberculosis patients with and without helminthic infections at Gondar University Hospital, Northwest Ethiopia. Eur J Exp Biol 2(6):2010–2014Google Scholar
  18. 18.
    Augustynowicz-Kopeć E, Jagielski T, Kozińska M, Kremer K, Van Soolingen D, Bielecki J et al (2012) Transmission of tuberculosis within family-households. J Infect 64(6): 596–608PubMedGoogle Scholar
  19. 19.
    Forrester JE, Scott ME, Bundy DA, Golden MHN (1988) Clustering of Ascaris lumbricoides and Trichuris trichiura infections within households. Trans Royal Soc Tropical Med Hygiene 82(2):282–288Google Scholar
  20. 20.
    Raso G, Luginbühl A, Adjoua CA, Tian-Bi NT, Silué KD, Matthys B et al (2004) Multiple parasite infections and their relationship to self-reported morbidity in a community of rural Côte d’Ivoire. Int J Epidemiol 33(5):1092–1102PubMedGoogle Scholar
  21. 21.
    Tristão-Sá R, Ribeiro-Rodrigues R, Johnson LT, Pereira FEL, Dietze R. (2002) Intestinal nematodes and pulmonary tuberculosis. Revista da Sociedade Brasileira de Medicina Tropical 35(5):533–535PubMedGoogle Scholar
  22. 22.
    Elliott AM, Kyosiimire J, Quigley MA, Nakiyingi J, Watera C, Brown M et al (2003) Eosinophilia and progression to active tuberculosis in HIV-1-infected Ugandans. Trans Royal Soc Trop Med Hyg 97(4):477–480Google Scholar
  23. 23.
    Brown M, Miiro G, Nkurunziza P, Watera C, Quigley MA, Dunne DW et al (2006) Schistosoma mansoni, nematode infections, and progression to active tuberculosis among Hiv-1-infected Ugandans. Am J Trop Med Hyg 74(5):819–825PubMedGoogle Scholar
  24. 24.
    Soelen N van, Mandalakas AM, Kirchner HL, Walzl G, Grewal HMS, Jacobsen M et al (2012) Effect of Ascaris lumbricoides specific IgE on tuberculin skin test responses in children in a high-burden setting: a cross-sectional community-based study. BMC Infectious Dis 12(1):211Google Scholar
  25. 25.
    Kritzinger FE, Den Boon S, Verver S, Enarson DA, Lombard CJ, Borgdorff MW et al (2009) No decrease in annual risk of tuberculosis infection in endemic area in Cape Town, South Africa. Trop Med Int Health 14(2):136–142PubMedGoogle Scholar
  26. 26.
    Adams VJ, Lombard CJ, Dhansay MA, Markus MB, Fincham JE (2004) Efficacy of albendazole against the whipworm trichuris trichiura-a randomised, controlled trial. South Afr Med J 94(12):972–976Google Scholar
  27. 27.
    Bentwich Z, Kalinkovich A, Weisman Z, Borkow G, Beyers N, Beyers AD (1999) Can eradication of helminthic infections change the face of AIDS and tuberculosis? Immunol Today 20(11):485–487PubMedGoogle Scholar
  28. 28.
    Abate E, Belayneh M, Gelaw A, Idh J, Getachew A, Alemu S et al (2012) The impact of asymptomatic helminth co-infection in patients with newly diagnosed tuberculosis in north-West Ethiopia. PLoS ONE 7(8):e42901PubMedPubMedCentralGoogle Scholar
  29. 29.
    Elias D, Akuffo H, Britton S (2006) Helminthes could influence the outcome of vaccines against TB in the tropics. Parasite Immunol 28(10):507–513PubMedGoogle Scholar
  30. 30.
    Borkow G, Weisman Z, Leng Q, Stein M, Kalinkovich A, Wolday D et al (2001) Helminths, human immunodeficiency virus and tuberculosis. Scand J Infect Dis 33(8):568–571PubMedGoogle Scholar
  31. 31.
    Zevallos K, Vergara KC, Vergara A, Vidal C, Garcia HH, Evans CA (2010) Tuberculin skin-test reactions are unaffected by the severity of hyperendemic intestinal helminth infections and co-infections. Am J Trop Med Hyg 83(2):319–325PubMedPubMedCentralGoogle Scholar
  32. 32.
    Wiria AE, Djuardi Y, Supali T, Sartono E, Yazdanbakhsh M (2012) Helminth infection in populations undergoing epidemiological transition: a friend or foe? Semin Immunopathol 34(6):889–901PubMedGoogle Scholar
  33. 33.
    Ugbomoiko US, Dalumo V, Ofoezie IE, Obiezue RNN (2009) Socio-environmental factors and ascariasis infection among school-aged children in Ilobu, Osun State, Nigeria. Trans R Soc Trop Med Hyg 103(3):223–228PubMedGoogle Scholar
  34. 34.
    A school-based helminth control programme successfully implemented in KwaZulu-Natal | Appleton | Southern African Journal of Epidemiology and Infection (2008). http://www.sajei.co.za/index.php/SAJEI/article/view/42. Accessed 21 Sept 2011
  35. 35.
    Glinz D, Silué KD, Knopp S, Lohourignon LK, Yao KP, Steinmann P et al (2010) Comparing diagnostic accuracy of Kato-Katz, Koga Agar plate, ether-concentration, and FLOTAC for Schistosoma mansoni and soil-transmitted helminths. PLoS Negl Trop Dis 4(7):e754PubMedPubMedCentralGoogle Scholar
  36. 36.
    Dacombe RJ, Crampin AC, Floyd S, Randall A, Ndhlovu R, Bickle Q et al (2007) Time delays between patient and laboratory selectively affect accuracy of helminth diagnosis. Trans R Soc Trop Med Hyg 101(2):140–145PubMedGoogle Scholar
  37. 37.
    Levy H, Feldman C, Sacho H, Van der Meulen H, Kallenbach J, Koornhof H (1989) A reevaluation of sputum microscopy and culture in the diagnosis of pulmonary tuberculosis. Chest 95(6):1193–1197PubMedGoogle Scholar
  38. 38.
    Pai M (2011) Improving TB diagnosis: difference between knowing the path and walking the path. Expert Rev Mol Diagn 11(3):241–244PubMedGoogle Scholar
  39. 39.
    Van Riet E, Hartgers FC, Yazdanbakhsh M (2007) Chronic helminth infections induce immunomodulation: consequences and mechanisms. Immunobiology 212(6):475–490PubMedGoogle Scholar
  40. 40.
    Graham AL (2008) Ecological rules governing helminth-microparasite coinfection. Proc Natl Acad Sci U S A 105(2):566–570PubMedPubMedCentralGoogle Scholar
  41. 41.
    Benoit M, Desnues B, Mege J-L (2008) Macrophage polarization in bacterial infections. J Immunol 181(6):3733–3739PubMedGoogle Scholar
  42. 42.
    Gordon S (2003) Alternative activation of macrophages. Nat Rev Immunol 3(1):23–35PubMedGoogle Scholar
  43. 43.
    Modolell M, Corraliza IM, Link F, Soler G, Eichmann K (1995) Reciprocal regulation of the nitric oxide synthase/arginase balance in mouse bone marrow-derived macrophages by TH1 and TH2 cytokines. Eur J Immunol 25(4):1101–1104PubMedGoogle Scholar
  44. 44.
    Mylonas KJ, Nair MG, Prieto-Lafuente L, Paape D, Allen JE (2009) Alternatively activated macrophages elicited by helminth infection can be reprogrammed to enable microbial killing. J Immunol 182(5):3084–3094PubMedGoogle Scholar
  45. 45.
    Kreider T, Anthony RM, Urban JF Jr, Gause WC (2007) Alternatively activated macrophages in helminth infections. Curr Opin Immunol 19(4):448–453PubMedPubMedCentralGoogle Scholar
  46. 46.
    Kahnert A, Seiler P, Stein M, Bandermann S, Hahnke K, Mollenkopf H et al (2006) Alternative activation deprives macrophages of a coordinated defense program to Mycobacterium tuberculosis. Eur J Immunol 36(3):631–647PubMedGoogle Scholar
  47. 47.
    Talaat KR, Bonawitz RE, Domenech P, Nutman TB (2006) Preexposure to live Brugia malayi microfilariae alters the innate response of human dendritic cells to Mycobacterium tuberculosis. J Infect Dis 193(2):196–204PubMedGoogle Scholar
  48. 48.
    Marino S, Pawar S, Fuller CL, Reinhart TA, Flynn JL, Kirschner DE (2004) Dendritic cell trafficking and antigen presentation in the human immune response to Mycobacterium tuberculosis. J Immunol 173(1):494–506PubMedGoogle Scholar
  49. 49.
    Henderson RA, Watkins SC, Flynn JL (1997) Activation of human dendritic cells following infection with Mycobacterium tuberculosis. J Immunol 159(2):635–643PubMedGoogle Scholar
  50. 50.
    Giacomini E, Iona E, Ferroni L, Miettinen M, Fattorini L, Orefici G et al (2001) Infection of human macrophages and dendritic cells with Mycobacterium tuberculosis induces a differential cytokine gene expression that modulates T cell response. J Immunol 166(12):7033–7041PubMedGoogle Scholar
  51. 51.
    Tailleux L, Schwartz O, Herrmann J-L, Pivert E, Jackson M, Amara A et al (2003) DC-SIGN is the major Mycobacterium tuberculosis receptor on human dendritic cells. J Exp Med 197(1):121–127PubMedPubMedCentralGoogle Scholar
  52. 52.
    Iwasaki A, Medzhitov R (2010) Regulation of adaptive immunity by the innate immune system. Science 327(5963):291–295PubMedPubMedCentralGoogle Scholar
  53. 53.
    Medzhitov R, Janeway CA Jr (1997) Innate immunity: impact on the adaptive immune response. Curr Opin Immunol 9(1):4–9PubMedGoogle Scholar
  54. 54.
    Balic A, Harcus Y, Holland MJ, Maizels RM (2004) Selective maturation of dendritic cells by Nippostrongylus brasiliensis-secreted proteins drives Th2 immune responses. Eur J Immunol 34(11):3047–3059PubMedGoogle Scholar
  55. 55.
    Demangel C, Bertolino P, Britton WJ (2002) Autocrine IL-10 impairs dendritic cell (DC)-derived immune responses to mycobacterial infection by suppressing DC trafficking to draining lymph nodes and local IL-12 production. Eur J Immunol 32(4):994–1002PubMedGoogle Scholar
  56. 56.
    Liu Z, Liu Q, Bleich D, Salgame P, Gause WC (2010) Regulation of type 1 diabetes, tuberculosis, and asthma by parasites. J Mol Med 88(1):27–38PubMedPubMedCentralGoogle Scholar
  57. 57.
    Everts B, LUMC (2010) Molecular interplay between dendritic cells and schistosomes : consequences for immune polarization. https://openaccess.leidenuniv.nl/handle/1887/15222. Accessed 16 Jan 2013
  58. 58.
    Yang X, Gao X (2011) Role of dendritic cells: a step forward for the hygiene hypothesis. Cell Mol Immunol 8(1):12–18PubMedPubMedCentralGoogle Scholar
  59. 59.
    Martinez FO, Helming L, Gordon S (2009) Alternative activation of macrophages: an immunologic functional perspective. Ann Rev Immunol 27:451–483Google Scholar
  60. 60.
    Couper KN, Blount DG, Riley EM (2008) IL-10: the master regulator of immunity to infection. J Immunol 180(9):5771–5777PubMedGoogle Scholar
  61. 61.
    Potian JA, Rafi W, Bhatt K, McBride A, Gause WC, Salgame P (2011) Preexisting helminth infection induces inhibition of innate pulmonary anti-tuberculosis defense by engaging the IL-4 receptor pathway. J Exp Med 208(9):1863–1874PubMedPubMedCentralGoogle Scholar
  62. 62.
    Du Plessis N, Kleynhans L, Thiart L, Van Helden PD, Brombacher F, Horsnell WGC et al (2012) Acute helminth infection enhances early macrophage mediated control of mycobacterial infection. Mucosal Immunol 6:931–941Google Scholar
  63. 63.
    Flynn JL, Goldstein MM, Chan J, Triebold KJ, Pfeffer K, Lowenstein CJ et al (1995) Tumor necrosis factor-alpha is required in the protective immune response against Mycobacterium tuberculosis in mice. Immunity 2(6):561–572PubMedGoogle Scholar
  64. 64.
    Flesch IE, Kaufmann SH (1993) Role of cytokines in tuberculosis. Immunobiology 189(3-4):316–339PubMedGoogle Scholar
  65. 65.
    Flynn JL, Chan J, Triebold KJ, Dalton DK, Stewart TA, Bloom BR (1993) An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection. J Exp Med 178(6):2249–54PubMedGoogle Scholar
  66. 66.
    Cooper AM, Adams LB, Dalton DK, Appelberg R, Ehlers S (2002) IFN-gamma and NO in mycobacterial disease: new jobs for old hands. Trends Microbiol 10(5):221–226PubMedGoogle Scholar
  67. 67.
    Cooper AM, Dalton DK, Stewart TA, Griffin JP, Russell DG, Orme IM (1993) Disseminated tuberculosis in interferon gamma gene-disrupted mice. J Exp Med 178(6):2243–2247PubMedGoogle Scholar
  68. 68.
    Newport MJ, Huxley CM, Huston S, Hawrylowicz CM, Oostra BA, Williamson R et al (1996) A mutation in the interferon-γ -receptor gene and susceptibility to mycobacterial infection. New England J Med 335(26):1941–1949Google Scholar
  69. 69.
    López-Maderuelo D, Arnalich F, Serantes R, González A, Codoceo R, Madero R et al (2003) Interferon-γ and interleukin-10 gene polymorphisms in pulmonary tuberculosis. Am J Respir Crit Care Med 67(7):970–975Google Scholar
  70. 70.
    Mosmann TR, Coffman RL (1989) TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Ann Rev Immunol 7(1):145–173Google Scholar
  71. 71.
    Scanga CA, Mohan VP, Yu K, Joseph H, Tanaka K, Chan J et al (2000) Depletion of Cd4 +  T cells causes reactivation of murine persistent tuberculosis despite continued expression of interferon γ and nitric oxide synthase 2. J Exp Med 192(3):347–58PubMedPubMedCentralGoogle Scholar
  72. 72.
    Botha T, Ryffel B (2003) Reactivation of latent tuberculosis infection in TNF-deficient mice. J Immunol 171(6):3110–3118PubMedGoogle Scholar
  73. 73.
    Demissie A, Abebe M, Aseffa A, Rook G, Fletcher H, Zumla A et al (2004) Healthy individuals that control a latent infection with Mycobacterium tuberculosis express high levels of Th1 cytokines and the IL-4 antagonist IL-4delta2. J Immunol 172(11):6938–6943PubMedGoogle Scholar
  74. 74.
    Howard AD, Zwilling BS (1999) Reactivation of tuberculosis is associated with a shift from type 1 to type 2 cytokines. Clin Exp Immunol 115(3):428–434Google Scholar
  75. 75.
    Seah GT, Rook GA (2001) High levels of mRNA encoding IL-4 in unstimulated peripheral blood mononuclear cells from tuberculosis patients revealed by quantitative nested reverse transcriptase-polymerase chain reaction; correlations with serum IgE levels. Scand J Infect Dis 33(2):106–109PubMedGoogle Scholar
  76. 76.
    Fletcher HA, Owiafe P, Jeffries D, Hill P, Rook GAW, Zumla A et al (2004) Increased expression of mRNA encoding interleukin (IL)-4 and its splice variant IL-4delta2 in cells from contacts of Mycobacterium tuberculosis, in the absence of in vitro stimulation. Immunology 112(4):669–673PubMedPubMedCentralGoogle Scholar
  77. 77.
    Hussain R, Talat N, Shahid F, Dawood G (2007) Longitudinal tracking of cytokines after acute exposure to tuberculosis: association of distinct cytokine patterns with protection and disease development. Clin Vaccine Immunol 14(12):1578–1586PubMedPubMedCentralGoogle Scholar
  78. 78.
    Borkow G, Bentwich Z (2004) Chronic immune activation associated with chronic helminthic and human immunodeficiency virus infections: role of hyporesponsiveness and anergy. Clin Microbiol Rev 17(4):1012–1030PubMedPubMedCentralGoogle Scholar
  79. 79.
    Bentwich Z, Teicher CL, Borkow G (2008) The helminth HIV connection: time to act. AIDS 22:1611–1614PubMedGoogle Scholar
  80. 80.
    Mahanty S, Mollis SN, Ravichandran M, Abrams JS, Kumaraswami V, Jayaraman K et al (1996) High levels of spontaneous and parasite antigen-driven interleukin-10 production are associated with antigen-specific hyporesponsiveness in human lymphatic filariasis. J Infect Dis 173(3):769–673PubMedGoogle Scholar
  81. 81.
    Doetze A, Satoguina J, Burchard G, Rau T, Löliger C, Fleischer B et al (2000) Antigen-specific cellular hyporesponsiveness in a chronic human helminth infection is mediated by Th3/Tr1-type cytokines IL-10 and transforming growth factor-β but not by a Th1 to Th2 shift. Int Immunol 12(5):623–630PubMedGoogle Scholar
  82. 82.
    Almeida CA, Romano-Silva MA, Goes AM (1998) Inhibition of protein kinases prevents lymphocyte activation by Schistosoma mansoni antigens and reduces in vitro [correction of in vivo] granuloma reaction. Immunol Lett 62(3):137–143PubMedGoogle Scholar
  83. 83.
    Sugawara I, Yamada H, Mizuno S, Iwakura Y (2000) IL-4 is required for defense against mycobacterial infection. Microbiol Immunol 44(12):971–979PubMedGoogle Scholar
  84. 84.
    Al-Riyami L, Wilson EH, Watson CA, Harnett W (2009) T-helper type 1 responses to the BCG vaccine component PPD in mice are unaffected by the filarial nematode immunomodulatory molecule ES-62. J Parasitol 95(5):1201–1204PubMedGoogle Scholar
  85. 85.
    Stewart GR, Boussinesq M, Coulson T, Elson L, Nutman T, Bradley JE (1999) Onchocerciasis modulates the immune response to mycobacterial antigens. Clin Exp Immunol 117(3):517–523PubMedPubMedCentralGoogle Scholar
  86. 86.
    Elias D, Akuffo H, Thors C, Pawlowski A, Britton S. Low dose chronic Schistosoma mansoni infection increases susceptibility to Mycobacterium bovis BCG infection in mice. Clin Exp Immunol 139(3):398–404Google Scholar
  87. 87.
    Fujita M, Harada E, Matsumoto T, Mizuta Y, Ikegame S, Ouchi H et al (2010) Impaired host defence against Mycobacterium avium in mice with chronic granulomatous disease. Clin Exp Immunol 160(3):457–460PubMedPubMedCentralGoogle Scholar
  88. 88.
    Pearlman E, Kazura JW, Hazlett FE, Boom WH (1993) Modulation of murine cytokine responses to mycobacterial antigens by helminth-induced T helper 2 cell responses. J Immunol 151(9):4857–4864PubMedGoogle Scholar
  89. 89.
    Salgame PBK Nippostrongylus brasiliensis infection modeultaed Mycobacterium tuberculosis induced Th1 response. Cell Respons Pathogens 43(1):43–56Google Scholar
  90. 90.
    Salgame P (2005) Host innate and Th1 responses and the bacterial factors that control Mycobacterium tuberculosis infection. Curr Opin Immunol 17(4 Spec. Iss.):374–380PubMedGoogle Scholar
  91. 91.
    Frantz FG, Rosada RS, Turato WM, Peres CM, Coelho-Castelo AAM, Ramos SG et al (2007) The immune response to toxocariasis does not modify susceptibility to Mycobacterium tuberculosis infection in BALB/C mice. Am J Trop Med Hyg 77(4):691–698PubMedGoogle Scholar
  92. 92.
    Neto LMS, de Oliveira RVC, Totino PR, Sant’Anna FM, de Coelho VO, Rolla VC et al (2009) Enteroparasitosis prevalence and parasitism influence in clinical outcomes of tuberculosis patients with or without HIV co-infection in a reference hospital in Rio de Janeiro (2000–2006). Braz J Infect Dis 13(6):427–432PubMedGoogle Scholar
  93. 93.
    Ehlers S (2009) Lazy, dynamic or minimally recrudescent? On the elusive nature and location of the mycobacterium responsible for latent tuberculosis. Infection 37(2):87–95PubMedGoogle Scholar
  94. 94.
    Khader SA, Bell GK, Pearl JE, Fountain JJ, Rangel-Moreno J, Cilley GE et al (2007) IL-23 and IL-17 in the establishment of protective pulmonary CD4 +  T cell responses after vaccination and during Mycobacterium tuberculosis challenge. Nat Immunol 8(4):369–377PubMedGoogle Scholar
  95. 95.
    Liang SC, Long AJ, Bennett F, Whitters MJ, Karim R, Collins M et al (2007) An IL-17F/A heterodimer protein is produced by mouse Th17 cells and induces airway neutrophil recruitment. J Immunol 179(11):7791–7799PubMedGoogle Scholar
  96. 96.
    Cheung PFY, Wong CK, Lam CWK (2008) Molecular mechanisms of cytokine and chemokine release from eosinophils activated by IL-17A, IL-17F, and IL-23: implication for Th17 lymphocytes-mediated allergic inflammation. J Immunol 180(8):5625–5635PubMedGoogle Scholar
  97. 97.
    Umemura M, Yahagi A, Hamada S, Begum MD, Watanabe H, Kawakami K et al IL-17-mediated regulation of innate and acquired immune response against pulmonary Mycobacterium bovis bacille Calmette-Guerin infection. J Immunol 178(6):3786–3796Google Scholar
  98. 98.
    Babu S, Bhat SQ, Pavan Kumar N, Lipira AB, Kumar S, Karthik C et al (2009) Filarial lymphedema is characterized by antigen-specific Th1 and th17 proinflammatory responses and a lack of regulatory T cells. PLoS Negl Trop Dis 3(4):e420PubMedPubMedCentralGoogle Scholar
  99. 99.
    Park H, Li Z, Yang XO, Chang SH, Nurieva R, Wang Y-H et al A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat. Immunol 6(11):1133–1141Google Scholar
  100. 100.
    Cooney LA, Towery K, Endres J, Fox DA (2011) Sensitivity and resistance to regulation by IL-4 during Th17 maturation. J Immunol 187(9):4440–4450PubMedPubMedCentralGoogle Scholar
  101. 101.
    Finney CAM, Taylor MD, Wilson MS, Maizels RM (2007) Expansion and activation of CD4+ CD25+  regulatory T cells in Heligmosomoides polygyrus infection. Eur J Immunol 37(7):1874–1886PubMedPubMedCentralGoogle Scholar
  102. 102.
    Grainger JR, Smith KA, Hewitson JP, McSorley HJ, Harcus Y, Filbey KJ et al (2010) Helminth secretions induce de novo T cell Foxp3 expression and regulatory function through the TGF-β pathway. J Exp Med 207(11):2331–2341PubMedPubMedCentralGoogle Scholar
  103. 103.
    Arnold IC, Dehzad N, Reuter S, Martin H, Becher B, Taube C et al (2011) Helicobacter pylori infection prevents allergic asthma in mouse models through the induction of regulatory T cells. J Clin Invest 121(8):3088–3093PubMedPubMedCentralGoogle Scholar
  104. 104.
    Dittrich AM, Erbacher A, Specht S, Diesner F, Krokowski M, Avagyan A et al (2008) Helminth Infection with Litomosoides sigmodontis induces regulatory T cells and inhibits allergic sensitization, airway inflammation, and hyperreactivity in a murine asthma model. J Immunol 180(3):1792–1799PubMedGoogle Scholar
  105. 105.
    Pacífico LGG, Marinho FAV, Fonseca CT, Barsante MM, Pinho V, Sales-Junior PA et al Schistosoma mansoni antigens modulate experimental allergic asthma in a murine model: a major role for CD4+ CD25+ Foxp3+  T cells independent of interleukin-10. Infect Immun 77(1):98–107Google Scholar
  106. 106.
    Shevach EM (2009) Mechanisms of Foxp3 +  T regulatory cell-mediated suppression. Immunity 30(5):636–645PubMedGoogle Scholar
  107. 107.
    Tetsutani K, Ishiwata K, Ishida H, Tu L, Torii M, Hamano S et al (2009) Concurrent infection with Heligmosomoides polygyrus suppresses anti-Plasmodium Yoelii protection partially by induction of CD4+ CD25+ Foxp3+  Treg in mice. Eur J Immunol 39(10):2822–2230PubMedGoogle Scholar
  108. 108.
    Guyot-Revol V, Innes JA, Hackforth S, Hinks T, Lalvani A (2006) Regulatory T cells are expanded in blood and disease sites in patients with tuberculosis. Am J Respir Crit Care Med 173(7):803–810PubMedGoogle Scholar
  109. 109.
    Green AM, Mattila JT, Bigbee CL, Bongers KS, Lin PL, Flynn JL (2010) CD4 +  regulatory T cells in a cynomolgus macaque model of Mycobacterium tuberculosis infection. J Infect Dis 202(4):533–541PubMedPubMedCentralGoogle Scholar
  110. 110.
    Olobo JO, Geletu M, Demissie A, Eguale T, Hiwot K, Aderaye G et al (2001) Circulating TNF-alpha, TGF-beta, and IL-10 in tuberculosis patients and healthy contacts. Scand J Immunol 53(1):85–91PubMedGoogle Scholar
  111. 111.
    Gong JH, Zhang M, Modlin RL, Linsley PS, Iyer D, Lin Y et al (1996) Interleukin-10 downregulates Mycobacterium tuberculosis-induced Th1 responses and CTLA-4 expression. Infect Immun 64(3):913–918PubMedPubMedCentralGoogle Scholar
  112. 112.
    Elias D, Britton S, Aseffa A, Engers H, Akuffo H (2008) Poor immunogenicity of BCG in helminth infected population is associated with increased in vitro TGF-beta production. Vaccine 26(31):3897–3902PubMedGoogle Scholar
  113. 113.
    Wammes LJ, Hamid F, Wiria AE, De Gier B, Sartono E, Maizels RM et al (2010) Regulatory T cells in human geohelminth infection suppress immune responses to BCG and Plasmodium falciparum. Eur J Immunol 40(2):437–442PubMedGoogle Scholar
  114. 114.
    Osborne J, Devaney E (1999) Interleukin-10 and antigen-presenting cells actively suppress Th1 cells in BALB/c Mice infected with the filarial parasite Brugia pahangi. Infect Immun 67(4):1599–1605PubMedPubMedCentralGoogle Scholar
  115. 115.
    Silveira MR, Nunes KP, Cara DC, Souza DG, Corrêa A, Teixeira MM et al (2002) Infection with Strongyloides venezuelensis induces transient airway eosinophilic inflammation, an increase in immunoglobulin E, and hyperresponsiveness. Rats. Infect Immun 70(11):6263–6272PubMedPubMedCentralGoogle Scholar
  116. 116.
    Abraham D, Leon O, Schnyder-Candrian S, Wang CC, Galioto AM, Kerepesi LA et al (2004) Immunoglobulin E and eosinophil-dependent protective immunity to larval Onchocerca volvulus in mice immunized with irradiated larvae. Infect Immun 72(2):810–817PubMedPubMedCentralGoogle Scholar
  117. 117.
    McSharry C, Xia Y, Holland CV, Kennedy MW (1999) Natural immunity to ascaris lumbricoides associated with immunoglobulin E antibody to ABA-1 allergen and inflammation indicators in children. Infect Immun 67(2):484–489PubMedPubMedCentralGoogle Scholar
  118. 118.
    Ahmad A, Wang CH, Bell RG (1991) A role for IgE in intestinal immunity:eExpression of rapid expulsion of Trichinella spiralis in rats transfused with IgE and thoracic duct lymphocytes. J Immunol 146(10):3563–3570PubMedGoogle Scholar
  119. 119.
    Yamada M, Nakazawa M, Matsumoto Y, Arizono N (1991) IgE antibody production in rats against multiple components of excretory-secretory products of the nematode Nippostrongylus brasiliensis. Immunology 72(1):104–108PubMedPubMedCentralGoogle Scholar
  120. 120.
    Hagan P (1993) IgE and protective immunity to helminth infections. Parasite Immunol 15(1):1–4PubMedGoogle Scholar
  121. 121.
    Dunne DW, Butterworth AE, Fulford AJ, Ouma JH, Sturrock RF (1992) Human IgE responses to Schistosoma mansoni and resistance to reinfection. Mem Inst Oswaldo Cruz 87(Suppl 4):99–103PubMedGoogle Scholar
  122. 122.
    Hussain R, Shiratsuchi H, Ellner JJ, Wallis RS (2000) PPD-specific IgG1 antibody subclass upregulate tumour necrosis factor expression in PPD-stimulated monocytes: possible link with disease pathogenesis in tuberculosis. Clin Exp Immunol 119(3):449–455PubMedPubMedCentralGoogle Scholar
  123. 123.
    Hussain R, Shiratsuchi H, Phillips M, Ellner J, Wallis RS (2001) Opsonizing antibodies (IgG1) up-regulate monocyte proinflammatory cytokines tumour necrosis factor-alpha (TNF-alpha) and IL-6 but not anti-inflammatory cytokine IL-10 in mycobacterial antigen-stimulated monocytes-implications for pathogenesis. Clin Exp Immunol 123(2):210–218PubMedPubMedCentralGoogle Scholar
  124. 124.
    Thakurdas SM, Hasan Z, Hussain R (2004) IgG1 antimycobacterial antibodies can reverse the inhibitory effect of pentoxifylline on tumour necrosis factor alpha (TNF-α) secreted by mycobacterial antigen-stimulated adherent cells. Clin Exp Immunol 136(2):320–327PubMedPubMedCentralGoogle Scholar
  125. 125.
    Adams JF, Schölvinck EH, Gie RP, Potter PC, Beyers N, Beyers AD (1999) Decline in total serum IgE after treatment for tuberculosis. Lancet 353(9169):2030–2033PubMedGoogle Scholar
  126. 126.
    Obihara CC, Beyers N, Gie RP, Hoekstra MO, Fincham JE, Marais BJ et al (2006) Respiratory atopic disease, Ascaris-immunoglobulin E and tuberculin testing in urban South African children. Clin Exp Allergy 36(5):640–648PubMedGoogle Scholar
  127. 127.
    Sacco R, Hagen M, Sandor M, Weinstock JV, Lynch RG (2002) Established T(H1) granulomatous responses induced by active Mycobacterium avium infection switch to T(H2) following challenge with Schistosoma mansoni. Clin Immunol 104(3):274–281PubMedGoogle Scholar
  128. 128.
    Bosio CM, Gardner D, Elkins KL (2000) Infection of B cell-deficient mice with CDC 1551, a clinical isolate of Mycobacterium tuberculosis: delay in dissemination and development of lung pathology. J Immunol 164(12):6417–6425PubMedGoogle Scholar
  129. 129.
    Vordermeier HM, Venkataprasad N, Harris DP, Ivanyi J (1996) Increase of tuberculous infection in the organs of B cell-deficient mice. Clin Exp Immunol 106(2):312–316PubMedPubMedCentralGoogle Scholar
  130. 130.
    Fillatreau S, Sweenie CH, McGeachy MJ, Gray D, Anderton SM (2002) B cells regulate autoimmunity by provision of IL-10. Nat Immunol 3(10):944–950PubMedGoogle Scholar
  131. 131.
    Mizoguchi A, Mizoguchi E, Takedatsu H, Blumberg RS, Bhan AK (2002) Chronic intestinal inflammatory condition generates IL-10-producing regulatory B cell subset characterized by CD1d upregulation. Immunity 16(2):219–230PubMedGoogle Scholar
  132. 132.
    WHO (2013) BCG—the current vaccine for tuberculosis. WHO. http://www.who.int/vaccine_research/diseases/tb/vaccine_development/bcg/en/. Accessed 18 Jan 2013
  133. 133.
    Elias D, Akuffo H, Britton S (2006) Helminthes could influence the outcome of vaccines against TB in the tropics. Parasite Immunol 28(10):507–513PubMedGoogle Scholar
  134. 134.
    Ferreira AP, Aarestrup FM, Bonecini-Almeida MG, Souza EE, Gomes EA, Corrêa JO et al (1999) Effect of the injection of an extract of Ascaris suum on macrophage activation during the early phase of Mycobacterium bovis BCG infection in C57Bl/6 mice. Braz J Med Biol Res 32(11):1429–1436PubMedGoogle Scholar
  135. 135.
    Ferreira AP, Aguiar AS, Fava MWB, Corrêa JOA, Teixeira FM, Teixeira HC (2002) Can the efficacy of Bacille Calmette-Guérin tuberculosis vaccine be affected by intestinal parasitic infections? J Infect Dis 186(3):441–442PubMedGoogle Scholar
  136. 136.
    Elias D, Akuffo H, Pawlowski A, Haile M, SchÃn T, Britton S (2005) Schistosoma mansoni infection reduces the protective efficacy of BCG vaccination against virulent Mycobacterium tuberculosis. Vaccine 23(11):1326–1334PubMedGoogle Scholar
  137. 137.
    Grove DI, Civil RH (1978) Trichinella spiralis: effects on the host-parasite relationship in mice of BCG (attenuated Mycobacterium bovis). Exp Parasitol 44(2):181–189PubMedGoogle Scholar
  138. 138.
    Bundy D, Sher A, Michael E (2000) Good worms or bad worms: do worm infections affect the epidemiological patterns of other diseases? Parasitol Today (Regul. Ed.). 16(7):273–274PubMedGoogle Scholar
  139. 139.
    Blackwell AD, Gurven MD, Sugiyama LS, Madimenos FC, Liebert MA, Martin MA et al (2011) Evidence for a Peak Shift in a humoral response to helminths: age profiles of IgE in the Shuar of Ecuador, the Tsimane of Bolivia, and the U.S. NHANES. PLoS Negl Trop Dis. 5(6). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3125146/. Accessed 18 Jan 2013
  140. 140.
    Knopp S, Mohammed KA, Stothard JR, Khamis IS, Rollinson D, Marti H et al (2010) Patterns and risk factors of helminthiasis and anemia in a rural and a peri-urban community in Zanzibar, in the context of helminth control programs. PLoS Negl Trop Dis 4(5):e681PubMedPubMedCentralGoogle Scholar
  141. 141.
    Pit DSS, Polderman AM, Schulz-key H, Soboslay PT (2000) Prenatal immune priming with helminth infections: parasite-specific cellular reactivity and Th1 and Th2 cytokine responses in neonates. Allergy 55(8):732–739PubMedGoogle Scholar
  142. 142.
    Malhotra I, Ouma J, Wamachi A, Kioko J, Mungai P, Omollo A et al (1997) In utero exposure to helminth and mycobacterial antigens generates cytokine responses similar to that observed in adults. J Clin Invest 99(7):1759–1766PubMedPubMedCentralGoogle Scholar
  143. 143.
    King CL, Malhotra I, Mungai P, Wamachi A, Kioko J, Ouma JH et al (1998) B cell sensitization to helminthic infection develops in utero in humans. J Immunol 160(7):3578–3584PubMedGoogle Scholar
  144. 144.
    Labeaud AD, Malhotra I, King MJ, King CL, King CH (2009) Do antenatal parasite infections devalue childhood vaccination? PLoS Negl Trop Dis 3(5):e442PubMedPubMedCentralGoogle Scholar
  145. 145.
    Malhotra I, Mungai P, Wamachi A, Kioko J, Ouma JH, Kazura JW et al (1999) Helminth- and Bacillus Calmette-Guérin-induced immunity in children sensitized in utero to filariasis and schistosomiasis. J Immunol 162(11):6843–6848PubMedGoogle Scholar
  146. 146.
    Colditz GA, Brewer TF, Berkey CS, Wilson ME, Burdick E, Fineberg HV et al (1994) Efficacy of BCG vaccine in the prevention of tuberculosis: meta-analysis of the published literature. JAMA 271(9):698–702PubMedGoogle Scholar
  147. 147.
    Markus MB, Fincham JE (2001) Implications for neonatal HIV/AIDS and TB of sensitization in utero to helminths. Trends Parasitol 17(1):8PubMedGoogle Scholar
  148. 148.
    Elliott AM, Kizza M, Quigley MA, Ndibazza J, Nampijja M, Muhangi L et al (2007) The impact of helminths on the response to immunization and on the incidence of infection and disease in childhood in Uganda: design of a randomized, double-blind, placebo-controlled, factorial trial of deworming interventions delivered in pregnancy and early childhood [ISRCTN32849447]. Clin Trials 4(1):42–57PubMedPubMedCentralGoogle Scholar
  149. 149.
    Frantz FG, Rosada RS, Peres-Buzalaf C, Perusso FRT, Rodrigues V, Ramos SG et al (2010) Helminth coinfection does not affect therapeutic effect of a DNA vaccine in mice harboring tuberculosis. PLoS Negl Trop Dis 4(6):e700PubMedPubMedCentralGoogle Scholar
  150. 150.
    Griffin JF, Mackintosh CG, Buchan GS (1995) Animal models of protective immunity in tuberculosis to evaluate candidate vaccines. Trends Microbiol 3(11):418–424PubMedGoogle Scholar
  151. 151.
    Erb KJ, Trujillo C, Fugate M, Moll H (2002) Infection with the Helminth Nippostrongylus brasiliensis does not interfere with efficient elimination of Mycobacterium bovis BCG from the lungs of mice. Clin Diagn Lab Immunol 9(3):727–730PubMedPubMedCentralGoogle Scholar
  152. 152.
    Elwood RL, Wilson S, Blanco JCG, Yim K, Pletneva L, Nikonenko B et al (2007) The American cotton rat: a novel model for pulmonary tuberculosis. Tuberculosis (Edinb) 87(2):145–154Google Scholar
  153. 153.
    Flynn RJ, Mulcahy G, Welsh M, Cassidy JP, Corbett D, Milligan C et al (2009) Co-Infection of cattle with Fasciola hepatica and Mycobacterium bovis- immunological consequences. Transbound Emerg Dis 56(6–7):269–274PubMedGoogle Scholar
  154. 154.
    Harris J, De Haro SA, Master SS, Keane J, Roberts EA, Delgado M et al (2007) T helper 2 cytokines inhibit autophagic control of intracellular Mycobacterium tuberculosis. Immunity 27(3):505–517PubMedGoogle Scholar
  155. 155.
    Qualls JE, Neale G, Smith AM, Koo M-S, DeFreitas AA, Zhang H et al (2010) Arginine usage in mycobacteria-infected macrophages depends on autocrine-paracrine cytokine signaling. Sci Signal 3(135):ra62PubMedPubMedCentralGoogle Scholar
  156. 156.
    Kasmi KCE, Qualls JE, Pesce JT, Smith AM, Thompson RW, Henao-Tamayo M et al (2008) Toll-like receptor-induced arginase 1 in macrophages thwarts effective immunity against intracellular pathogens. Nature Immunol 9(12):1399–1406Google Scholar
  157. 157.
    Pesce JT, Ramalingam TR, Mentink-Kane MM, Wilson MS, El Kasmi KC, Smith AM et al (2009) Arginase-1-expressing macrophages suppress Th2 cytokine-driven inflammation and fibrosis. PLoS Pathog 5(4):e1000371PubMedPubMedCentralGoogle Scholar
  158. 158.
    Verreck FAW, de Boer T, Langenberg DML, van der Zanden L, Ottenhoff THM (2006) Phenotypic and functional profiling of human proinflammatory type-1 and anti-inflammatory type-2 macrophages in response to microbial antigens and IFN-γ- and CD40 L-mediated costimulation. J Leukoc Biol 79(2):285–293PubMedGoogle Scholar
  159. 159.
    Sandler NG, Mentink-Kane MM, Cheever AW, Wynn TA (2003) Global gene expression profiles during acute pathogen-induced pulmonary inflammation reveal divergent roles for Th1 and Th2 responses in tissue repair. J Immunol 171(7):3655–3667PubMedGoogle Scholar
  160. 160.
    Troidl C, Möllmann H, Nef H, Masseli F, Voss S, Szardien S et al (2009) Classically and alternatively activated macrophages contribute to tissue remodelling after myocardial infarction. J Cell Mol Med 13(9b):3485–3496PubMedGoogle Scholar
  161. 161.
    Pearce EJ, Pedras-Vasconcelos J (1997) Schistosoma mansoni infection induces a type 1 CD8+  cell response. Behring Inst Mitt 99:79–84PubMedGoogle Scholar
  162. 162.
    Zhang YL, Jia K, Zhao BP, Li Y, Yuan CX, Yang JM et al (2012) Identification of Th1 epitopes within molecules from the lung-stage schistosomulum of Schistosoma japonicum by combining prediction analysis of the transcriptome with experimental validation. Parasitol Int 61(4):586–593PubMedGoogle Scholar
  163. 163.
    Chen Y, Boros DL (2001) The Schistosoma mansoni egg-derived r38 peptide-induced Th1 response affects the synchronous pulmonary but not the asynchronous hepatic granuloma growth. Parasite Immunol. 23(1):43–50PubMedGoogle Scholar
  164. 164.
    Thakar J, Pathak AK, Murphy L, Albert R, Cattadori IM (2012) Network model of immune responses reveals key effectors to single and co-infection dynamics by a respiratory bacterium and a gastrointestinal helminth. PLoS Comput Biol 8(1):e1002345PubMedPubMedCentralGoogle Scholar
  165. 165.
    Ezenwa VO, Jolles AE (2011) From host immunity to pathogen invasion: the effects of helminth coinfection on the dynamics of microparasites. Integr Comp Biol 51(4):540–551PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Biomedical Sciences, Division Molecular Biology and Human Genetics, DST/NRF, Centre of Excellence in Biomedical TB ResearchStellenbosch UniversityCape TownSouth Africa

Personalised recommendations