Skip to main content
Book cover

Photobiology pp 243–297Cite as

How Light Resets Circadian Clocks

  • Chapter
  • First Online:

Abstract

Organisms use various clocks in order to adapt to the daily, tidal, monthly, and annual cycles of the environment. This chapter deals with circadian (daily) clocks and the role light plays in synchronizing them with the 24 h cycles in the environment. We will first characterize these different clocks, their functions, their properties, how to model them, and how light affects them and mention their adaptive significance (Sect. 18.1). The main part of the chapter describes how the circadian system of several organisms is synchronized by light: Synechococcus and Synechocystis are chosen as representatives of cyanobacteria (Sect. 18.2), Ostreococcus and Chlamydomonas as examples of unicellular algae (Sect. 18.3), Arabidopsis as a plant (Sect. 18.4), the ascomycete Neurospora as a fungus (Sect. 18.5), Drosophila as an insect (Sect. 18.6), and rodents (Sect. 18.7) and man (Sect. 18.8) as mammals. These examples show that circadian rhythms occur in almost all organisms. The similarities and differences of their clock mechanisms and the way they are entrained by light are pointed out.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Able KP (1995) Orientation and navigation: a perspective on fifty years of research. Condor 97:592–604

    Google Scholar 

  • Abraham U, Granada AE, Westermark PO, Heine M, Kramer A, Herzel H (2010) Coupling governs entrainment range of circadian clocks. Mol Syst Biol 6:438

    PubMed Central  PubMed  Google Scholar 

  • Adams S, Carré IA (2011) Downstream of the plant circadian clock: output pathways for the control of physiology and development. Essays Biochem 49:53–69

    CAS  PubMed  Google Scholar 

  • Agosto J, Choi JC, Parisky KM, Stilwell G, Rosbash M, Griffith LC (2008) Modulation of GABAA receptor desensitization uncouples sleep onset and maintenance in Drosophila. Nat Neurosci 11:354–359

    CAS  PubMed Central  PubMed  Google Scholar 

  • Åkerstedt T (1998) Is there an optimal sleep-wake pattern in shift work? Scand J Work Environ Health 24(Suppl 3):18–27

    PubMed  Google Scholar 

  • Akiyama S (2012) Structural and dynamic aspects of protein clocks: how can they be so slow and stable? Cell Mol Life Sci 69:2147–2160

    CAS  PubMed  Google Scholar 

  • Allada R, Chung BY (2010) Circadian organization of behavior and physiology in Drosophila. Annu Rev Physiol 72:605–624

    CAS  PubMed Central  PubMed  Google Scholar 

  • Amasino R (2010) Seasonal and developmental timing of flowering. Plant J 61:1001–1013

    CAS  PubMed  Google Scholar 

  • Amdaoud M, Vallade M, Weiss-Schaber C, Mihalcescu I (2007) Cyanobacterial clock, a stable phase oscillator with negligible intercellular coupling. Proc Natl Acad Sci U S A 104:7051–7056

    CAS  PubMed Central  PubMed  Google Scholar 

  • Anderson JL, Glod CA, Dai J, Cao Y, Lockley SW (2009) Lux vs. wavelength in light treatment of seasonal affective disorder. Acta Psychiatr Scand 120:203–212

    CAS  PubMed  Google Scholar 

  • Antle MC, Smith VM, Sterniczuk R, Yamakawa GR, Rakai BD (2009) Physiological responses of the circadian clock to acute light exposure at night. Rev Endocr Metab Disord 10:279–291

    PubMed  Google Scholar 

  • Aoki S, Kondo T, Wada H, Ishiura M (1997) Circadian rhythm of the cyanobacterium Synechocystis sp. strain PCC 6803 in the dark. J Bacteriol 179:5751–5755

    CAS  PubMed Central  PubMed  Google Scholar 

  • Arendt J (2005) Melatonin: characteristics, concerns, and prospects. J Biol Rhythms 20:291–303

    CAS  PubMed  Google Scholar 

  • Arendt J (2009) Managing jet lag: some of the problems and possible new solutions. Sleep Med Rev 13:249–256

    PubMed  Google Scholar 

  • Arendt J (2010) Shift work: coping with the biological clock. Occup Med 60:10–20

    Google Scholar 

  • Arendt J (2012) Biological rhythms during residence in polar regions. Chronobiol Int 29:379–394

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ashkenazi I, Hartman H, Strulovitz B, Dar O (1975) Activity rhythms of enzymes in human red blood cell suspension. J Interdisc Cycle Res 6:291–301

    CAS  Google Scholar 

  • Ashkenazy T, Einat H, Kronfeld-Schor N (2009a) Effects of bright light treatment on depression- and anxiety-like behaviors of diurnal rodents maintained on a short daylight schedule. Behav Brain Res 201:343–346

    PubMed  Google Scholar 

  • Ashkenazy T, Einat H, Kronfeld-Schor N (2009b) We are in the dark here: induction of depression- and anxiety-like behaviours in the diurnal fat sand rat, by short daylight or melatonin injections. Int J Neuropsychopharmacol 12:83–93

    CAS  PubMed  Google Scholar 

  • Auger RR, Morgenthaler TI (2009) Jet lag and other sleep disorders relevant to the traveler. Travel Med Infect Dis 7:60–68

    PubMed  Google Scholar 

  • Auldridge ME, Forest KT (2011) Bacterial phytochromes: more than meets the light. Crit Rev Biochem Mol Biol 46:67–88

    CAS  PubMed  Google Scholar 

  • Anonymous (2009) Management of seasonal affective disorder. Drug Ther Bull 47:128–132

    Google Scholar 

  • Axmann IM, Dühring U, Seeliger L, Arnold A, Vanselow JT, Kramer A, Wilde A (2009) Biochemical evidence for a timing mechanism in Prochlorococcus. J Bacteriol 191:5342–5347

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bachleitner W, Kempinger L, Wülbeck C, Rieger D, Helfrich-Förster C (2007) Moonlight shifts the endogenous clock of Drosophila melanogaster. Proc Natl Acad Sci U S A 104:3538–3543

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baggs JE, Hogenesch JB (2010) Genomics and systems approaches in the mammalian circadian clock. Curr Opin Genet Dev 20:581–587

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bailes HJ, Lucas RJ (2010) Melanopsin and inner retinal photoreception. Cell Mol Life Sci 67:99–111

    CAS  PubMed  Google Scholar 

  • Baker CL, Loros JJ, Dunlap JC (2012) The circadian clock of Neurospora crassa. FEMS Microbiol Rev 36:95–110

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barger LK, Cade BE, Ayas NT, Cronin JW, Rosner B, Speizer FE, Czeisler CA (2005) Extended work shifts and the risk of motor vehicle crashes among interns. N Engl J Med 352:125–134

    CAS  PubMed  Google Scholar 

  • Barion A, Zee PC (2007) A clinical approach to circadian rhythm sleep disorders. Sleep Med 8:566–577

    PubMed Central  PubMed  Google Scholar 

  • Barrenetxe J, Delagrange P, Martinez JA (2004) Physiological and metabolic functions of melatonin. J Physiol Biochem 60:61–72

    CAS  PubMed  Google Scholar 

  • Barth M, Schultze M, Schuster CM, Strauss R (2010) Circadian plasticity in photoreceptor cells controls visual coding efficiency in Drosophila melanogaster. PLoS One 5:e9217

    PubMed Central  PubMed  Google Scholar 

  • Bass J, Takahashi JS (2010) Circadian integration of metabolism and energetics. Science 330:1349–1354

    CAS  PubMed Central  PubMed  Google Scholar 

  • Beaule C, Amir S (2003) The eyes suppress a circadian rhythm of fos expression in the suprachiasmatic nucleus in the absence of light. Neuroscience 121:253–257

    CAS  PubMed  Google Scholar 

  • Beaver LM, Gvakharia BO, Vollintine TS, Hege DM, Stanewsky R, Giebultowicz JM (2002) Loss of circadian clock function decreases reproductive fitness in males of Drosophila melanogaster. Proc Natl Acad Sci USA 19:2134–2139

    Google Scholar 

  • Beersma DGM (2005) Why and how do we model circadian rhythms? J Biol Rhythms 20:304–313

    PubMed  Google Scholar 

  • Bell-Pedersen D (2000) Understanding circadian rhythmicity in Neurospora crassa: from behavior to genes and back again. Fungal Genet Biol 29:1–18

    CAS  PubMed  Google Scholar 

  • Bell-Pedersen D, Cassone V, Earnest D, Golden S, Hardin P, Thomas T, Zoran M (2005) Circadian rhythms from multiple oscillators: lessons from diverse organisms. Nat Rev Genet 6:544–556

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bellet MM, Sassone-Corsi P (2010) Mammalian circadian clock and metabolism - the epigenetic link. J Cell Sci 123:3837–3848

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bellingham J, Chaurasia S, Melyan Z, Liu C, Cameron M, Tarttelin E, Iuvone P, Hankins M, Tosini G, Lucas R (2006) Evolution of melanopsin photoreceptors: discovery and characterization of a new melanopsin in nonmammalian vertebrates. PLoS Biol 4:e254

    PubMed Central  PubMed  Google Scholar 

  • Belozerskaya TA, Gessler NN, Isakova EP, Deryabina YI (2012) Neurospora crassa light signal transduction is affected by ROS. J Signal Transduct 2012:791963

    PubMed Central  PubMed  Google Scholar 

  • Belvin MP, Zhou H, Yin JC (1999) The Drosophila dCREB2 gene affects the circadian clock. Neuron 22:777–787

    CAS  PubMed  Google Scholar 

  • Benedetti B, Barbini B, Colombo C, Smeraldi E (2007) Chronotherapeutics in a psychiatric ward. Sleep Med Rev 11:509–522

    PubMed  Google Scholar 

  • Benito J, Houl JH, Roman GW, Hardin PE (2008) The blue-light photoreceptor cryptochrome is expressed in a subset of circadian oscillator neurons in the Drosophila cns. J Biol Rhythms 23:296–307

    CAS  PubMed Central  PubMed  Google Scholar 

  • Berndt A, Kottke T, Breitkreuz H, Dvorsky R, Hennig S, Alexander M, Wolf E (2007) A novel photoreaction mechanism for the circadian blue light photoreceptor Drosophila cryptochrome. J Biol Chem 282:13011–13021

    CAS  PubMed  Google Scholar 

  • Berson DM (2003) Strange vision: ganglion cells as circadian photoreceptor. Trends Neurosci 26:314–320

    CAS  PubMed  Google Scholar 

  • Bertolucci C, Foà A (2004) Extraocular photoreception and circadian entrainment in nonmammalian vertebrates. Chronobiol Int 21:501–519

    PubMed  Google Scholar 

  • Bertone-Johnson ER (2009) Vitamin D and the occurrence of depression: causal association or circumstantial evidence? Nutr Rev 67:481–492

    PubMed Central  PubMed  Google Scholar 

  • Di Bitetti MS, Janson CH (2000) When will the stork arrive? Patterns of birth seasonality in neotropical primates. Am J Primatol 50:109–130

    PubMed  Google Scholar 

  • Bjorvatn B, Pallesen S (2009) A practical approach to circadian rhythm sleep disorders. Sleep Med Rev 13:47–60

    PubMed  Google Scholar 

  • Blask DE (2009) Melatonin, sleep disturbance and cancer risk. Sleep Med Rev 13:257–264

    PubMed  Google Scholar 

  • Blythe J, Doghramji PP, Jungquist CR, Landau MB, Valerio TD, Ancoli-Israel S, Auerbach SH (2009) Screening & treating patients with sleep/wake disorders. JAAPA Suppl Sleep, 1–17; quiz 19

    Google Scholar 

  • Bobu C, Hicks D (2009) Regulation of retinal photoreceptor phagocytosis in a diurnal mammal by circadian clocks and ambient lighting. Invest Ophthalmol Vis Sci 50:3495–3502

    PubMed  Google Scholar 

  • Bodenstein C, Heiland I, Schuster S (2011) Calculating activation energies for temperature compensation in circadian rhythms. Phys Biol 8:056007

    CAS  PubMed  Google Scholar 

  • Boesger J, Wagner V, Weisheit W, Mittag M (2009) Analysis of flagellar phosphoproteins from Chlamydomonas reinhardtii. Eukaryot Cell 8:922–932

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boivin DB, James FO (2005) Light treatment and circadian adaptation to shift work. Ind Health 43:34–48

    PubMed  Google Scholar 

  • Bollig I, Chandrashekaran M, Engelmann W, Johnsson A (1976) Photoperiodism in Chenopodium rubrum – an explicit version of the Bünning hypothesis. Int J Chronobiol 4:83–96

    Google Scholar 

  • Borjigin J, Zhang LS, Calinescu AA (2012) Circadian regulation of pineal gland rhythmicity. Mol Cell Endocrinol 349:13–19

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bradley RL, Reddy KJ (1997) Cloning, sequencing, and regulation of the global nitrogen regulator gene ntca in the unicellular diazotrophic cyanobacterium Cyanothece sp. strain BH68K. J Bacteriol 179:4407–4410

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brainard GC, Hanifin JP (2005) Photons, clocks, and consciousness. J Biol Rhythms 20:314–325

    CAS  PubMed  Google Scholar 

  • Brainard GC, Richardson BA, King TS, Matthews SA, Reiter RJ (1983) The suppression of pineal melatonin content and N-acetyltransferase activity by different light irradiances in the Syrian hamster: a dose-response relationship. Endocrinology 113:293–296

    CAS  PubMed  Google Scholar 

  • Brainard GC, Sliney G, Hanifin JP, Glickman G, Byrne B, Greeson JM, Jasser S, Gerner E, Rollag MD (2008) Sensitivity of the human circadian system to short-wavelength (420-nm) light. J Biol Rhythms 23:379–386

    PubMed  Google Scholar 

  • Brancaleoni G, Nikitenkova E, Grassi L, Hansen V (2009) Seasonal affective disorder and latitude of living. Epidemiol Psichiatr Soc 18:336–343

    PubMed  Google Scholar 

  • Breton G, Kay SA (2006) Circadian rhythms lit up in Chlamydomonas. Genome Biol 7:215

    PubMed Central  PubMed  Google Scholar 

  • Brody S, Oelhafen K, Schneider K, Perrino S, Goetz A, Wang C, English C (2010) Circadian rhythms in Neurospora crassa: downstream effectors. Fungal Genet Biol 47:159–168

    CAS  PubMed  Google Scholar 

  • Bronson FH (2004) Are humans seasonally photoperiodic? J Biol Rhythms 19:180–192

    CAS  PubMed  Google Scholar 

  • Brown SA, Kowalska E, Dallmann R (2012) (Re)inventing the circadian feedback loop. Dev Cell 22:477–487

    CAS  PubMed  Google Scholar 

  • Bruce VG (1970) The biological clock in Chlamydomonas reinhardi. J Protozool 17:328–334

    Google Scholar 

  • Bruce VG (1972) Mutants of the biological clock in Chlamydomonas reinhardi. Genetics 70:537–548

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bruni O, Novelli L (2010) Sleep disorders in children. Clin Evid (Online)

    Google Scholar 

  • Brunner M, Káldi K (2008) Interlocked feedback loops of the circadian clock of Neurospora crassa. Mol Microbiol 68:255–262

    CAS  PubMed  Google Scholar 

  • Brunner M, Schafmeier T (2006) Transcriptional and post-transcriptional regulation of the circadian clock of cyanobacteria and Neurospora. Genes Dev 20:1061–1074

    CAS  PubMed  Google Scholar 

  • Brunner M, Simons MJP, Merrow M (2008) Lego clocks: building a clock from parts. Genes Dev 22:1422–1426

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bryant TR (1972) Gas exchange in dry seeds: circadian rhythmicity in the absence of DNA replication, transcription, and translation. Science 178:634–636

    CAS  PubMed  Google Scholar 

  • Bushey D, Cirelli C (2011) From genetics to structure to function: exploring sleep in Drosophila. Int Rev Neurobiol 99:213–244

    PubMed Central  PubMed  Google Scholar 

  • Butler MP, Rainbow MN, Rodriguez E, Lyon SM, Silver R (2012) Twelve-hour days in the brain and behavior of split hamsters. Eur J Neurosci 36:2556–2566

    PubMed Central  PubMed  Google Scholar 

  • Byrne TE, Wells MR, Johnson CH (1992) Circadian rhythms of chemotaxis to ammonium and of methylammonium uptake in Chlamydomonas. Plant Physiol 98:879–886

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bünning E (1936) Die endonome Tagesrhythmik als Grundlage der photoperiodischen Reaktion. Ber Deut Bot Ges 54:590–607

    Google Scholar 

  • Cajochen C, Chellappa S, Schmidt C (2010) What keeps us awake? The role of clocks and hourglasses, light, and melatonin. Int Rev Neurobiol 93:57–90

    PubMed  Google Scholar 

  • Campbell SS, Murphy PJ (1998) Extraocular circadian phototransduction in humans. Science 279:396–399

    CAS  PubMed  Google Scholar 

  • Cardinali D (1998) The human body circadian: how the biological clock influences sleep and emotion. Cienc Cult 50:172–177

    Google Scholar 

  • Caruso CC, Hitchcock EM (2010) Strategies for nurses to prevent sleep-related injuries and errors. Rehabil Nurs 35:192–197

    PubMed  Google Scholar 

  • Castro-Longoria E, Ferry M, Bartnicki-Garcia S, Hasty J, Brody S (2010) Circadian rhythms in Neurospora crassa: dynamics of the clock component frequency visualized using a fluorescent reporter. Fungal Genet Biol 47:332–341

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cayetanot F, van Someren EJW, Perret M, Aujard F (2005) Shortened seasonal photoperiodic cycles accelerate aging of the diurnal and circadian locomotor activity rhythms in a primate. J Biol Rhythms 20:461–469

    CAS  PubMed  Google Scholar 

  • Ceriani M, Darlington T, Staknis D, Mas P, Petti A, Weitz C, Kay S (1999) Light-dependent sequestration of TIMELESS by CRYPTOCHROME. Science 285:553–568

    CAS  PubMed  Google Scholar 

  • Cermakian N, Boivin DB (2009) The regulation of central and peripheral circadian clocks in humans. Obes Rev 10(Suppl 2):25–36

    CAS  PubMed  Google Scholar 

  • Cervený J, Nedbal L (2009) Metabolic rhythms of the cyanobacterium Cyanothece sp. ATCC 51142 correlate with modeled dynamics of circadian clock. J Biol Rhythms 24:295–303

    PubMed  Google Scholar 

  • Challet E (2007) Minireview: entrainment of the suprachiasmatic clockwork in diurnal and nocturnal mammals. Endocrinology 148:5648–5655

    CAS  PubMed  Google Scholar 

  • Chandrashekaran MK, Engelmann W (1973) Early and late subjective night phase of the Drosophila rhythm require different energies of blue light for phase shifting. Z Naturforsch 28c:750–753

    Google Scholar 

  • Charlton BG (2009) A model for self-treatment of four sub-types of symptomatic ‘depression’ using non-prescription agents: neuroticism (anxiety and emotional instability); malaise (fatigue and painful symptoms); demotivation (anhedonia) and seasonal affective disorder ‘SAD’. Med Hypotheses 72:1–7

    PubMed  Google Scholar 

  • Chaves I, Pokorny R, Byrdin M, Hoang N, Ritz T, Brettel K, Essen L-O, van der Horst GTJ, Batschauer A, Ahmad M (2011) The cryptochromes: blue light photoreceptors in plants and animals. Annu Rev Plant Biol 62:335–364

    CAS  PubMed  Google Scholar 

  • Chellappa SL, Schröder C, Cajochen C (2009) Chronobiology, excessive daytime sleepiness and depression: is there a link? Sleep Med 10:505–514

    PubMed  Google Scholar 

  • Chen CH, Dunlap JC, Loros JJ (2010) Neurospora illuminates fungal photoreception. Fungal Genet Biol 47:922–929

    PubMed Central  PubMed  Google Scholar 

  • Cho H, Zhao X, Hatori M, Yu RT, Barish GD, Lam MT, Chong L-W, Di- Tacchio L, Atkins AR, Glass CK, Liddle C, Auwerx J, Downes M, Panda S, Evans RM (2012) Regulation of circadian behaviour and metabolism by REV-ERB-a and REV-ERB-b. Nature 485:123–127

    CAS  PubMed Central  PubMed  Google Scholar 

  • Choi C, Nitabach MN (2010) Circadian biology: environmental regulation of a multioscillator network. Curr Biol 20:R322–R324

    CAS  PubMed  Google Scholar 

  • Chow BY, Helfer A, Nusinow DA, Kay SA (2012) ELF3 recruitment to the PRR9 promoter requires other evening complex members in the Arabidopsis circadian clock. Plant Signal Behav 7:170–173

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chung BY, Kilman VL, Keath JR, Pitman JL, Allada R (2009) The GABA(A) receptor RDL acts in peptidergic PDF neurons to promote sleep in Drosophila. Curr Biol 19:386–390

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ciarleglio CM, Resuehr HES, McMahon DG (2011) Interactions of the serotonin and circadian systems: nature and nurture in rhythms and blues. Neuroscience 197:8–16

    CAS  PubMed  Google Scholar 

  • Cizza G, Requena M, Galli G, de Jonge L (2011) Chronic sleep deprivation and seasonality: implications for the obesity epidemic. J Endocrinol Invest 34:793–800

    CAS  PubMed Central  PubMed  Google Scholar 

  • Clauser C (1954) Die Kopfuhr. Ferdinand Enke, Stuttgart

    Google Scholar 

  • Collett TS (2008) Insect navigation: visual panoramas and the sky compass. Curr Biol 18:R1058–R1061

    CAS  PubMed  Google Scholar 

  • Collin SP, Davies WL, Hart NS, Hunt DM (2009) The evolution of early vertebrate photoreceptors. Philos Trans R Soc Lond B Biol Sci 364:2925–2940

    CAS  PubMed Central  PubMed  Google Scholar 

  • Colombo G, Bon GD (2011) Strategies to protect sleep. J Matern Fetal Neonatal Med 24(Suppl 1):30–31

    PubMed  Google Scholar 

  • Colot HV, Park G, Turner GE, Ringelberg C, Crew CM, Litvinkova L, Weiss RL, Borkovich KA, Dunlap JC (2006) A high-throughput gene knockout procedure for Neurospora reveals functions for multiple transcription factors. Proc Natl Acad Sci U S A 103:10352–10357

    CAS  PubMed Central  PubMed  Google Scholar 

  • Colwell CS (2011) Linking neural activity and molecular oscillations in the SCN. Nat Rev Neurosci 12:553–569

    CAS  PubMed  Google Scholar 

  • Corellou F, Schwartz C, Motta J-P, Djouani-Tahri EB, Sanchez F, Bouget F-Y (2009) Clocks in the green lineage: comparative functional analysis of the circadian architecture of the picoeukaryote Ostreococcus. Plant Cell 21:3436–3449

    CAS  PubMed Central  PubMed  Google Scholar 

  • Correa A, Bell-Pedersen D (2002) Distinct signaling pathways from the circadian clock participate in regulation of rhythmic conidiospore development in Neurospora crassa. Eukaryot Cell 1:273–280

    CAS  PubMed Central  PubMed  Google Scholar 

  • Correa A, Lewis ZA, Greene AV, March IJ, Gomer RH, Bell-Pedersen D (2003) Multiple oscillators regulate circadian gene expression in Neurospora. Proc Natl Acad Sci U S A 100:13597–13602

    CAS  PubMed Central  PubMed  Google Scholar 

  • Costa G, Haus E, Stevens R (2010) Shift work and cancer – considerations on rationale, mechanisms, and epidemiology. Scand J Work Environ Health 36:163–179

    PubMed  Google Scholar 

  • Coste O, Lagarde D (2009) Clinical management of jet lag: what can be proposed when performance is critical? Travel Med Infect Dis 7:82–87

    PubMed  Google Scholar 

  • Courties C, Chretiennot-Dinet MJ (1994) Smallest eukaryotic organism. Nature 370:255

    Google Scholar 

  • Covington MF, Pandab S, Liu XL, Strayer CA, Wagner DR, Kay SA (2001) ELF3 modulates resetting of the circadian clock in Arabidopsis. Plant Cell 13:1305–1316

    CAS  PubMed Central  PubMed  Google Scholar 

  • Crosthwaite SK, Dunlap JC, Loros JJ (1997) Neurospora wc-1 and wc-2: transcription, photoresponses, and the origins of circadian rhythmicity. Science 276:763–769

    CAS  PubMed  Google Scholar 

  • Crowley SJ, Lee C, Tseng CY, Fogg LF, Eastman CI (2003) Combinations of bright light, scheduled dark, sunglasses, and melatonin to facilitate circadian entrainment to night shift work. J Biol Rhythms 18:513–523

    PubMed  Google Scholar 

  • Cyran S, Yiannoulos G, Buchsbaum A, Saez L, Young M, Blau J (2005) The double-time protein kinase regulates the subcellular localization of the Drosophila clock protein period. J Neurosci 25:5430–5437

    CAS  PubMed Central  PubMed  Google Scholar 

  • Czeisler CA, Gooley JJ (2007) Sleep and circadian rhythms in humans. Cold Spring Harb Symp Quant Biol 72:579–597

    CAS  PubMed  Google Scholar 

  • Czeisler C, Kronauer R, Allan J, Duffy J, Jewett M, Brown E, Ronda J (1989) Bright light induction of strong (type 0) resetting of the human circadian pacemaker. Science 244:1328–1333

    CAS  PubMed  Google Scholar 

  • Czeisler CA, Duffy JF, Shanahan TL, Brown EN, Mitchell JF, Rimmer DW, Ronda JM, Silva EJ, Allan JS, Emens JS, Dijk DJ, Kronauer RE (1999) Stability, precision, and near-24-hour period of the human circadian pacemaker. Science 284:2177–2181

    CAS  PubMed  Google Scholar 

  • Daan S, Spoelstra K, Albrecht U, Schmutz I, Daan M, Daan B, Rienks F, Poletaeva I, dell’Omo G, Vyssotski A, Lipp HP (2011) Lab mice in the field: unorthodox daily activity and effects of a dysfunctional circadian clock allele. J Biol Rhythms 26:118–129

    PubMed  Google Scholar 

  • Daan SA, Albrecht U, van der Horst GTJ, Illnerova H, Roenneberg T, Wehr TA, Schwartz WJ (2001) Assembling a clock for all seasons: are there M and E oscillators in the genes? J Biol Rhythms 16:105–116

    CAS  PubMed  Google Scholar 

  • Dacke M, Byrne MJ, Baird E, Scholtz CH, Warrant EJ (2011) How dim is dim? Precision of the celestial compass in moonlight and sunlight. Philos Trans R Soc Lond B Biol Sci 366:697–702

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dagan Y, Borodkin K (2005) Behavioral and psychiatric consequences of sleep-wake schedule disorders. Dialogues Clin Neurosci 7:357–365

    PubMed Central  PubMed  Google Scholar 

  • Dalchau N (2012) Understanding biological timing using mechanistic and black-box models. New Phytol 193:852–858

    CAS  PubMed  Google Scholar 

  • Das A, Sasmal NK, Deb RK, Bera NK, Sanyal D, Chatterjee SS, Bhaduri G (2006) A study of sleeping disorders in blind patients. J Indian Med Assoc 104:619–621, 626

    PubMed  Google Scholar 

  • Davies WIL, Collin SP, Hunt DM (2012) Molecular ecology and adaptation of visual photopigments in craniates. Mol Ecol 21:3121–3158

    CAS  PubMed  Google Scholar 

  • Davis RH (2000) Neurospora: contributions of a model organism. Oxford University Press, Oxford

    Google Scholar 

  • De J, Varma V, Sharma VK (2012) Adult emergence rhythm of fruit flies Drosophila melanogaster under seminatural conditions. J Biol Rhythms 27:280–286

    PubMed  Google Scholar 

  • Deacon S, Arendt J (1996) Adapting to phase shifts. I. An experimental model for jet lag and shift work. Physiol Behav 59:665–673

    CAS  PubMed  Google Scholar 

  • Dean DA, Forger DB, Klerman EB (2009) Taking the lag out of jet lag through model-based schedule design. PLoS Comput Biol 5:e1000418

    PubMed Central  PubMed  Google Scholar 

  • DeCoursey P, Krulas J (1998) Behavior of SCN-lesioned chipmunks in a natural habitat: a pilot study. J Biol Rhythms 13:229–244

    CAS  PubMed  Google Scholar 

  • Demir-Hilton E, Sudek S, Cuvelier ML, Gentemann CL, Zehr JP, Worden AZ (2011) Global distribution patterns of distinct clades of the photosynthetic picoeukaryote Ostreococcus. ISME J 5:1095–1107

    CAS  PubMed Central  PubMed  Google Scholar 

  • Desan PH, Weinstein AJ, Michalak EE, Tam EM, Meesters Y, Ruiter MJ, Horn E, Telner J, Iskandar H, Boivin DB, Lam RW (2007) A controlled trial of the litebook light-emitting diode (LED) light therapy device for treatment of seasonal affective disorder (SAD). BMC Psychiatry 7:38

    PubMed Central  PubMed  Google Scholar 

  • Devlin PF (2002) Signs of the time: environmental input to the circadian clock. J Exp Bot 53:1535–1550

    CAS  PubMed  Google Scholar 

  • Dewan K, Benloucif S, Reid K, Wolfe LF, Zee PC (2011) Light-induced changes of the circadian clock of humans: increasing duration is more effective than increasing light intensity. Sleep 34:593–599

    PubMed Central  PubMed  Google Scholar 

  • Dharmananda S (1980) Studies on the circadian clock of Neurospora crassa: lightinduced phase shifting. Ph.D. thesis, University of California, Santa Cruz

    Google Scholar 

  • Dibner C, Sage D, Unser M, Bauer C, d’Eysmond T, Naef F, Schibler U (2009) Circadian gene expression is resilient to large fluctuations in overall transcription rates. EMBO J 28:123–134

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dibner C, Schibler U, Albrecht U (2010) The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu Rev Physiol 72:517–549

    CAS  PubMed  Google Scholar 

  • Diernfellner AC, Schafmeier T, Merrow MW, Brunner M (2005) Molecular mechanism of temperature sensing by the circadian clock of Neurospora crassa. Genes Dev 19:1968–1973

    CAS  PubMed Central  PubMed  Google Scholar 

  • Diernfellner A, Colot HV, Dintsis O, Loros JJ, Dunlap JC, Brunner M (2007) Long and short isoforms of neurospora clock protein frq support temperature compensated circadian rhythms. FEBS Lett 581:5759–5764

    CAS  PubMed Central  PubMed  Google Scholar 

  • Diez-Noguera A (1994) A functional model of the circadian system based on the degree of intercommunication in a complex system. Am J Physiol 267:1118–1135

    Google Scholar 

  • Dijk D-J, von Schantz M (2005) Timing and consolidation of human sleep, wakefullness, and performance by a symphony of oscillators. J Biol Rhythms 20:279–290

    PubMed  Google Scholar 

  • Djouani-Tahri E-B, Christie JM, Sanchez-Ferandin S, Sanchez F, Bouget F-Y, Corellou F (2011a) A eukaryotic LOV-histidine kinase with circadian clock function in the picoalga Ostreococcus. Plant J 65:578–588

    CAS  Google Scholar 

  • Djouani-Tahri EB, Sanchez F, Lozano J-C, Bouget F-Y (2011b) A phosphate regulated promoter for fine-tuned and reversible overexpression in Ostreococcus: application to circadian clock functional analysis. PLoS One 6:e28471

    CAS  PubMed Central  Google Scholar 

  • Do MTH, Yau K-W (2010) Intrinsically photosensitive retinal ganglion cells. Physiol Rev 90:1547–1581

    CAS  PubMed  Google Scholar 

  • Dodd AN, Salathia N, Hall A, Kévei E, Tóth R, Nagy F, Hibberd JM, Millar AJ, Webb AAR (2005) Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science 309:630–633

    CAS  PubMed  Google Scholar 

  • Dodson ER, Zee PC (2010) Therapeutics for circadian rhythm sleep disorders. Sleep Med Clin 5:701–715

    PubMed Central  PubMed  Google Scholar 

  • Dong G, Golden SS (2008) How a cyanobacterium tells time. Curr Opin Microbiol 11:541–546

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dong G, Kim Y-I, Golden SS (2010a) Simplicity and complexity in the cyanobacterial circadian clock mechanism. Curr Opin Genet Dev 20:619–625

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dong G, Yang Q, Wang Q, Kim Y-I, Wood TL, Osteryoung KW, van Oudenaarden A, Golden SS (2010b) Elevated ATPase activity of KaiC applies a circadian checkpoint on cell division in Synechococcus elongatus. Cell 140:529–539

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dong W, Tang X, Yu Y, Nilsen R, Kim R, Griffith J, Arnold J, Schüttler H-B (2008) Systems biology of the clock in neurospora crassa. PLoS One 3:e3105

    PubMed Central  PubMed  Google Scholar 

  • Dragovic Z (2002) Light reception and circadian behavior in ‘blind’ and ‘clock-less’ mutants of Neurospora crassa. EMBO J 21:3643–3651

    CAS  PubMed Central  PubMed  Google Scholar 

  • Duffy JF, Wright KP (2005) Entrainment of the human circadian system by light. J Biol Rhythms 20:326–338

    PubMed  Google Scholar 

  • Duguay D, Cermakian N (2009) The crosstalk between physiology and circadian clock proteins. Chronobiol Int 26:1479–1513

    CAS  PubMed  Google Scholar 

  • Dumont M, Beaulieu C (2007) Light exposure in the natural environment: relevance to mood and sleep disorders. Sleep Med 8:557–565

    PubMed  Google Scholar 

  • Dunlap J, Loros J (2004) The Neurospora circadian system. J Biol Rhythms 19:414–424

    CAS  PubMed  Google Scholar 

  • Dunlap J, Loros J (2005) Analysis of circadian rhythms in Neurospora: overview of assays and genetic and molecular biological manipulation. Methods Enzymol 393:3–22

    CAS  PubMed  Google Scholar 

  • Dunlap JC, Loros JJ (2006) How fungi keep time: circadian system in Neurospora and other fungi. Curr Opin Microbiol 9:579–587

    CAS  PubMed  Google Scholar 

  • Dunlap JC, Loros JJ, Colot HV, Mehra A, Belden WJ, Shi M, Hong CI, Larrondo LF, Baker CL, Chen C-H, Schwerdtfeger C, Collopy PD, Gamsby JJ, Lambreghts R (2007) A circadian clock in Neurospora: how genes and proteins cooperate to produce a sustained, entrainable, and compensated biological oscillator with a period of about a day. Cold Spring Harb Symp Quant Biol 72:57–68

    CAS  PubMed Central  PubMed  Google Scholar 

  • Duvall LB, Taghert PH (2011) Circadian rhythms: biological clocks work in phospho-time. Curr Biol 21:R305–R307

    CAS  PubMed  Google Scholar 

  • Duvall LB, Taghert PH (2012) The circadian neuropeptide PDF signals preferentially through a specific adenylate cyclase isoform AC3 in M pacemakers of Drosophila. PLoS Biol 10:e1001337

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eastman CI, Stewart KT, Mahoney MP, Liu L, Fogg LF (1994) Dark goggles and bright light improve circadian rhythm adaptation to night-shift work. Sleep 17:535–543

    CAS  PubMed  Google Scholar 

  • Eckardt NA (2010) Temperature compensation of the circadian clock: a role for the morning loop. Plant Cell 22:3506

    CAS  PubMed Central  PubMed  Google Scholar 

  • Egli M, Mori T, Pattanayek R, Xu Y, Qin X, Johnson CH (2012) Dephosphorylation of the core clock protein KaiC in the cyanobacterial KaiABC circadian oscillator proceeds via an ATP synthase mechanism. Biochemistry 51:1547–1558

    CAS  PubMed Central  PubMed  Google Scholar 

  • Elvin M, Loros JJ, Dunlap JC, Heintzen C (2005) The PAS/LOV protein VIVID supports a rapidly dampened daytime oscillator that facilitates entrainment of the Neurospora circadian clock. Genes Dev 19:2593–2605

    CAS  PubMed Central  PubMed  Google Scholar 

  • Emens JS, Lewy AJ, Lefler BJ, Sack RL (2005) Relative coordination to unknown ‘weak zeitgebers’ in free-running blind individuals. J Biol Rhythms 20:159–167

    PubMed  Google Scholar 

  • Emery P, So W, Kaneko M, Hall J, Rosbash M (1998) CRY, a Drosophila clock and light-regulated cryptochrome, is a major contributor to circadian rhythm resetting and photosensitivity. Cell 95:669–679

    CAS  PubMed  Google Scholar 

  • Emery P, Stanewsky R, Hall J, Rosbash M (2000) Drosophila cryptochrome – a unique circadian-rhythm photoreceptor. Nature 404:456–457

    CAS  PubMed  Google Scholar 

  • Engelmann W, Johnsson A, Kobler H, Schimmel M (1978) Attenuation of the petal movement rhythm of Kalanchoe with light pulses. Physiol Behav 43:68–76

    Google Scholar 

  • Erkert HG, Gburek V, Scheideler A (2006) Photic entrainment and masking of prosimian circadian rhythms (Otolemur garnettii, primates). Physiol Behav 88:39–46

    CAS  PubMed  Google Scholar 

  • Erren TC (2010) Shift work, cancer and “white-box” epidemiology: association and causation. Epidemiol Perspect Innov 7:11

    PubMed Central  PubMed  Google Scholar 

  • Erren TC, Falaturi P, Morfeld P, Knauth P, Reiter RJ, Piekarski C (2010) Shift work and cancer: the evidence and the challenge. Dtsch Arztebl Int 107:657–662

    PubMed Central  PubMed  Google Scholar 

  • Even C, Schröder CM, Friedman S, Rouillon F (2008) Efficacy of light therapy in nonseasonal depression: a systematic review. J Affect Disord 108:11–23

    PubMed  Google Scholar 

  • Fahey CD, Zee PC (2006) Circadian rhythm sleep disorders and phototherapy. Psychiatr Clin N Am 29:989–1007; abstract ix

    Google Scholar 

  • Falcón J, Besseau L, Fuentès M, Sauzet S, Magnanou E, Boeuf G (2009) Structural and functional evolution of the pineal melatonin system in vertebrates. Ann N Y Acad Sci 1163:101–111

    PubMed  Google Scholar 

  • Figueiro MG, Rea MS (2010) Lack of short-wavelength light during the school day delays dim light melatonin onset (DLMO) in middle school students. Neuro Endocrinol Lett 31:92–96

    PubMed Central  PubMed  Google Scholar 

  • Figueiro MG, Bullough JD, Parsons RH, Rea MS (2005) Preliminary evidence for a change in spectral sensitivity of the circadian system at night. J Circadian Rhythm 3:14

    Google Scholar 

  • Figueiro MG, Bierman A, Bullough JD, Rea MS (2009) A personal light-treatment device for improving sleep quality in the elderly: dynamics of nocturnal melatonin suppression at two exposure levels. Chronobiol Int 26:726–739

    CAS  PubMed Central  PubMed  Google Scholar 

  • Figueiro MG, Lesniak NZ, Rea MS (2011) Implications of controlled short wavelength light exposure for sleep in older adults. BMC Res Notes 4:334

    PubMed Central  PubMed  Google Scholar 

  • Fiorentino L, Martin JL (2010) Awake at 4 AM: treatment of insomnia with early morning awakenings among older adults. J Clin Psychol 66:1161–1174

    PubMed Central  PubMed  Google Scholar 

  • Fischer R, Kasper S, Pjrek E, Winkler D (2012) On the application of light therapy in German-speaking countries. Eur Arch Psychiatry Clin Neurosci 262:501–505

    PubMed  Google Scholar 

  • Fleissner G, Fleissner G (2001) Perception of natural Zeitgeber signals. In: Kumar V (ed) Biological rhythms. Narosa Publishing House, New Delhi

    Google Scholar 

  • Fleury F (2000) Adaptive significance of a circadian clock: temporal segregation of activities reduces intrinsic competitive inferiority in Drosophila parasitoids. Proc Biol Sci 267:1005–1010

    CAS  PubMed Central  PubMed  Google Scholar 

  • Flory R, Ametepe J, Bowers B (2010) A randomized, placebo-controlled trial of bright light and high-density negative air ions for treatment of seasonal affective disorder. Psychiatry Res 177:101–108

    CAS  PubMed  Google Scholar 

  • Folkard S (2008) Do permanent night workers show circadian adjustment? a review based on the endogenous melatonin rhythm. Chronobiol Int 25:215–224

    PubMed  Google Scholar 

  • Forger D, Jewett M, Kronauer R (1999) A simpler model of the human circadian pacemaker. J Biol Rhythms 14:532–537

    CAS  PubMed  Google Scholar 

  • Forsgren E (1935) Über die Rhythmik der Leberfunktion, des Stoffwechsels und des Schlafes. Gumperts Bokhandel, Göteborg

    Google Scholar 

  • Foster R, Helfrich-Förster C (2001) Photoreceptors for circadian clocks in mice and fruit flies. Philos Trans R Soc Lond B Biol Sci 356 B:1779–1789

    Google Scholar 

  • Foster RG, Hankins MW, Peirson SN (2007) Light, photoreceptors, and circadian clocks. Methods Mol Biol 362:3–28

    CAS  PubMed  Google Scholar 

  • Foà A, Basaglia F, Beltrami G, Carnacina M, Moretto E, Bertolucci C (2009) Orientation of lizards in a Morris water-maze: roles of the sun compass and the parietal eye. J Exp Biol 212:2918–2924

    PubMed  Google Scholar 

  • Frenkel L, Ceriani MF (2011) Circadian plasticity: from structure to behavior. Int Rev Neurobiol 99:107–138

    PubMed  Google Scholar 

  • Fritschi L, Glass DC, Heyworth JS, Aronson K, Girschik J, Boyle T, Grundy A, Erren TC (2011) Hypotheses for mechanisms linking shiftwork and cancer. Med Hypotheses 77:430–436

    CAS  PubMed  Google Scholar 

  • Froy O (2011) The circadian clock and metabolism. Clin Sci (Lond) 120:65–72

    CAS  Google Scholar 

  • Gachon F, Nagoshi E, Brown SA, Ripperger J, Schibler U (2004) The mammalian circadian timing system: from gene expression to physiology. Chromosoma 113:103–112

    PubMed  Google Scholar 

  • Gagné A-M, Lévesque F, Gagné P, Hébert M (2011) Impact of blue vs red light on retinal response of patients with seasonal affective disorder and healthy controls. Prog Neuropsychopharmacol Biol Psychiatry 35:227–231

    PubMed  Google Scholar 

  • Gammack JK (2008) Light therapy for insomnia in older adults. Clin Geriatr Med 24:139–149, viii

    PubMed  Google Scholar 

  • Gaskill C, Forbes-Stovall J, Kessler B, Young M, Rinehart CA, Jacobshagen S (2010) Improved automated monitoring and new analysis algorithm for circadian phototaxis rhythms in Chlamydomonas. Plant Physiol Biochem 48:239–246

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gendron JM, Pruneda-Paz JL, Doherty CJ, Gross AM, Kang SE, Kay SA (2012) Arabidopsis circadian clock protein, TOC1, is a DNA-binding transcription factor. Proc Natl Acad Sci U S A 109:3167–3172

    CAS  PubMed Central  PubMed  Google Scholar 

  • Germain A, Kupfer DJ (2008) Circadian rhythm disturbances in depression. Hum Psychopharmacol 23:571–585

    PubMed Central  PubMed  Google Scholar 

  • Giedd JN, Swedo SE, Lowe CH, Rosenthal NE (1998) Case series: pediatric seasonal affective disorder. A follow-up report. J Am Acad Child Adolesc Psychiatry 37:218–220

    CAS  PubMed  Google Scholar 

  • Giedke H, Engelmann W, Reinhard P (1983) Free running circadian rest-activity cycle in normal environment. A case study. Sleep Res 12:365

    Google Scholar 

  • Gillette M, Abbott S (2005) Basic mechanisms of circadian rhythms and their relation to the sleep/wake cycle. In: Cardinali DP, Perumal SR (eds) Neuroendocrine correlates of sleep/wakefullness. Springer, New York

    Google Scholar 

  • Girardet C, Becquet D, Blanchard M-P, François-Bellan A-M, Bosler O (2010) Neuroglial and synaptic rearrangements associated with photic entrainment of the circadian clock in the suprachiasmatic nucleus. Eur J Neurosci 32:2133–2142

    PubMed  Google Scholar 

  • Goda K, Ito H, Kondo T, Oyama T (2012) Fluorescence correlation spectroscopy to monitor Kai protein-based circadian oscillations in real time. J Biol Chem 287:3241–3248

    CAS  PubMed Central  PubMed  Google Scholar 

  • Goldbeter A (1995) A model for circadian oscillations in the Drosophila period protein (PER). Proc Biol Sci 261:319–324

    CAS  PubMed  Google Scholar 

  • Golden RN, Gaynes BN, Ekstrom RD, Hamer RM, Jacobsen FM, Suppes T, Wisner KL, Nemeroff CB (2005) The efficacy of light therapy in the treatment of mood disorders: a review and meta-analysis of the evidence. Am J Psychiatry 162:656–662

    PubMed  Google Scholar 

  • Golden SS, Cassone VM, LiWang A (2007) Shifting nanoscopic clock gears. Nat Struct Mol Biol 14:362–363

    CAS  PubMed  Google Scholar 

  • Golombek DA, Rosenstein RE (2010) Physiology of circadian entrainment. Physiol Rev 90:1063–1102

    CAS  PubMed  Google Scholar 

  • Gonze D, Roussel MR, Goldbeter A (2002) A model for the enhancement of fitness in Cyanobacteria based on resonance of a circadian oscillator with the external lightdark cycle. J Theor Biol 214:577–597

    PubMed  Google Scholar 

  • Gooch VD, Mehra A, Larrondo LF, Fox J, Touroutoutoudis M, Loros JJ, Dunlap JC (2008) Fully codon-optimized luciferase uncovers novel temperature characteristics of the Neurospora clock. Eukaryot Cell 7:28–37

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gooley JJ (2008) Treatment of circadian rhythm sleep disorders with light. Ann Acad Med Singapore 37:669–676

    PubMed  Google Scholar 

  • Gordijn MCM, t Mannetje D, Meesters Y (2012) The effects of blue-enriched light treatment compared to standard light treatment in seasonal affective disorder. J Affect Disord 136:72–80

    CAS  PubMed  Google Scholar 

  • Goto K, Johnson CH (1995) Is the cell division cycle gated by a circadian clock? The case of Chlamydomonas reinhardtii. J Cell Biol 129:1061–1069

    CAS  PubMed  Google Scholar 

  • Gotow T, Nishi T (2008) Simple photoreceptors in some invertebrates: physiological properties of a new photosensory modality. Brain Res 1225:3–16

    CAS  PubMed  Google Scholar 

  • Grace MS, Wang LA, Pickard GE, Besharse JC, Menaker M (1996) The tau mutation shortens the period of rhythmic photoreceptor outer segment disk shedding in the hamster. Brain Res 735:93–100

    CAS  PubMed  Google Scholar 

  • Grace MS, Chiba A, Menaker M (1999) Circadian control of photoreceptor outer segment membrane turnover in mice genetically incapable of melatonin synthesis. Vis Neurosci 16:909–918

    CAS  PubMed  Google Scholar 

  • Gradisar M, Gardner G, Dohnt H (2011) Recent worldwide sleep patterns and problems during adolescence: a review and meta-analysis of age, region, and sleep. Sleep Med 12:110–118

    PubMed  Google Scholar 

  • Green CB, Besharse JC (2004) Retinal circadian clocks and control of retinal physiology. J Biol Rhythms 19:91–102

    CAS  PubMed  Google Scholar 

  • Green CB, Takahashi JS, Bass J (2008) The meter of metabolism. Cell 134:728–742

    CAS  PubMed Central  PubMed  Google Scholar 

  • Green RM, Tingay S, Wang ZY, Tobin EM (2002) Circadian rhythms confer a higher level of fitness to Arabidopsis plants. Plant Physiol 129:576–584

    CAS  PubMed Central  PubMed  Google Scholar 

  • Griefahn B, Robens S (2010) Alterations of the cortisol quiescent period after experimental night work with enforced adaptation by bright light and its relation to morningness. Eur J Appl Physiol 108:719–726

    CAS  PubMed  Google Scholar 

  • Grima B, Chelot E, Xia R, Rouyer F (2004) Morning and evening peaks of activity rely on different clock neurons of the Drosophila brain. Nature 431:869–873

    CAS  PubMed  Google Scholar 

  • Grimsley N, Péquin B, Bachy C, Moreau H, Piganeau G (2010) Cryptic sex in the smallest eukaryotic marine green alga. Mol Biol Evol 27:47–54

    CAS  PubMed  Google Scholar 

  • Grone BP, Chang D, Bourgin P, Cao V, Fernald RD, Heller HC, Ruby NF (2011) Acute light exposure suppresses circadian rhythms in clock gene expression. J Biol Rhythms 26:78–81

    PubMed  Google Scholar 

  • Gu C, Wang J, Wang J, Liu Z (2011) Mechanism of phase splitting in two coupled groups of suprachiasmatic-nucleus neurons. Phys Rev E Stat Nonlin Soft Matter Phys 83:046224

    PubMed  Google Scholar 

  • Guido ME, Garbarino-Pico E, Contin MA, Valdez DJ, Nieto PS, Verra DM, Acosta-Rodriguez VA, de Zavalía N, Rosenstein RE (2010) Inner retinal circadian clocks and non-visual photoreceptors: novel players in the circadian system. Prog Neurobiol 92:484–504

    PubMed  Google Scholar 

  • Guilding C, Piggins HD (2007) Challenging the omnipotence of the suprachiasmatic timekeeper: are circadian oscillators present throughout the mammalian brain? Eur J Neurosci 25:3195–3216

    PubMed  Google Scholar 

  • Guo J, Cheng P, Liu Y (2010) Functional significance of FRH in regulating the phosphorylation and stability of Neurospora crassa circadian clock protein FRQ. J Biol Chem 285:11508–11515

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hanai S, Ishida N (2009) Entrainment of drosophila circadian clock to green and yellow light by rh1, rh5, rh6 and cry. Neuroreport 20:755–758

    PubMed  Google Scholar 

  • Hanai S, Hamasaka Y, Ishida N (2008) Circadian entrainment to red light in Drosophila: requirement of rhodopsin 1 and rhodopsin 6. Neuroreport 19:1441–1444

    CAS  PubMed  Google Scholar 

  • Hannibal J, Hindersson P, Knudsen SM, Geor B, Fahrenkrug J (2002) Melanopsin is expressed in PACAP-containing retinal ganglion cells of the human retinohypothalamic tract. Invest Ophthalmol Vis Sci 45:4202–4209

    Google Scholar 

  • Hansen J, Stevens RG (2012) Case-control study of shift-work and breast cancer risk in Danish nurses: impact of shift systems. Eur J Cancer 48:1722–1729

    PubMed  Google Scholar 

  • Hansen JH, Geving IH, Reinertsen RE (2010) Offshore fleet workers and the circadian adaptation of core body temperature, blood pressure and heart rate to 12-h shifts: a field study. Int J Occup Saf Ergon 16:487–496

    PubMed  Google Scholar 

  • Hansen V, Skre I, Lund E (2008) What is this thing called “SAD”? a critique of the concept of seasonal affective disorder. Epidemiol Psichiatr Soc 17:120–127

    PubMed  Google Scholar 

  • Hardeland R, Cardinali DP, Srinivasan V, Spence DW, Brown GM, Pandi- Perumal SR (2011) Melatonin–a pleiotropic, orchestrating regulator molecule. Prog Neurobiol 93:350–384

    CAS  PubMed  Google Scholar 

  • Hardeland R, Madrid JA, Tan D-X, Reiter RJ (2012) Melatonin, the circadian multioscillator system and health: the need for detailed analyses of peripheral melatonin signaling. J Pineal Res 52:139–166

    CAS  PubMed  Google Scholar 

  • Hardie DG, Ross FA, Hawley SA (2012) AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol 13:251–262

    CAS  PubMed  Google Scholar 

  • Hardin PE (2005) The circadian timekeeping system of Drosophila. Curr Biol 15:R714–R722

    CAS  PubMed  Google Scholar 

  • Hardin PE (2011) Molecular genetic analysis of circadian timekeeping in Drosophila. Adv Genet 74:141–173

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hardin PE, Hall JC, Rosbash M (1990) Feedback of the Drosophila period gene product on circadian cycling of its messenger RNA levels. Nature 343:536–540

    CAS  PubMed  Google Scholar 

  • Harmer SL (2009) The circadian system in higher plants. Annu Rev Plant Biol 60:357–377

    CAS  PubMed  Google Scholar 

  • Harmer S (2010) Plant biology in the fourth dimension. Plant Physiol 154:467–470

    CAS  PubMed Central  PubMed  Google Scholar 

  • Harmer S, Hogenesch L, Straume M, Chang H, Han B, Zhu T, Wang X, Kreps J, Kay S (2000) Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science 290:2110–2113

    CAS  PubMed  Google Scholar 

  • Harrisingh MC, Nitabach MN (2008) Circadian rhythms. Integrating circadian timekeeping with cellular physiology. Science 320:879–880

    CAS  PubMed  Google Scholar 

  • Harvey AG, Murray G, Chandler RA, Soehner A (2011) Sleep disturbance as transdiagnostic: consideration of neurobiological mechanisms. Clin Psychol Rev 31:225–235

    PubMed Central  PubMed  Google Scholar 

  • Hastings MH, Herzog ED (2004) Clock genes, oscillators, and cellular networks in the suprachiasmatic nuclei. J Biol Rhythms 19:400–413

    CAS  PubMed  Google Scholar 

  • Hastings MH, Maywood ES, O’Neill JS (2008) Cellular circadian pacemaking and the role of cytosolic rhythms. Curr Biol 18:R805–R815

    CAS  PubMed  Google Scholar 

  • Hatakeyama TS, Kaneko K (2012) Generic temperature compensation of biological clocks by autonomous regulation of catalyst concentration. Proc Natl Acad Sci U S A 109:8109–8114

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hattar S, Lucas RJ, Mrosovsky N, Thompson S, Douglas RH, Hankins MW, Lem J, Biel M, Hofman F, Foster RG (2003) Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice. Nature 424:75–81

    Google Scholar 

  • Hayama R, Coupland G (2003) Shedding light on the circadian clock and the photoperiodic control of flowering. Curr Opin Plant Biol 6:13–19

    CAS  PubMed  Google Scholar 

  • He Q, Cheng P, Yang Y, Wang L, Gardner K, Liu Y (2002) White collar-1, a DNA binding transcription factor and a light sensor. Science 297:840–843

    CAS  PubMed  Google Scholar 

  • Heesy CP, Hall MI (2010) The nocturnal bottleneck and the evolution of mammalian vision. Brain Behav Evol 75:195–203

    PubMed  Google Scholar 

  • Hegemann P (2008) Algal sensory photoreceptors. Annu Rev Plant Biol 59:167–189

    CAS  PubMed  Google Scholar 

  • Heijde M, Ulm R (2012) UV-B photoreceptor-mediated signalling in plants. Trends Plant Sci 17:230–237

    CAS  PubMed  Google Scholar 

  • Heijde M, Zabulon G, Corellou F, Ishikawa T, Brazard J, Usman A, Sanchez F, Plaza P, Martin M, Falciatore A, Todo T, Bouget F-Y, Bowler C (2010) Characterization of two members of the cryptochrome/photolyase family from Ostreococcus tauri provides insights into the origin and evolution of cryptochromes. Plant Cell Environ 33:1614–1626

    CAS  PubMed  Google Scholar 

  • Heinze S, Reppert SM (2012) Anatomical basis of sun compass navigation i: the general layout of the monarch butterfly brain. J Comp Neurol 520:1599–1628

    PubMed  Google Scholar 

  • Heldmaier G, Steinlechner S (1981) Seasonal control of energy requirements for thermoregulation in the Djungarian hamster (Phodopus sungorus), living in natural photoperiod. J Comp Physiol B 142:429–437

    Google Scholar 

  • Heldmaier G, Werner D (2004) Environmental signal processing and adaptation, vol 110. Blackwell Synergy

    Google Scholar 

  • Helfrich-Förster C (2005a) Neurobiology of the fruit fly’s circadian clock. Genes Brain Behav 4:65–76

    PubMed  Google Scholar 

  • Helfrich-Förster C, Stengl M, Homberg U (1998) Organization of the circadian system in insects. Chronobiol Int 15:567–594

    PubMed  Google Scholar 

  • Helfrich-Förster C, Winter C, Hofbauer A, Hall J, Stanewsky R (2001) The circadian clock of fruit flies is blind after elimination of all known photoreceptors. Neuron 30:249–261

    PubMed  Google Scholar 

  • Helfrich-Förster C, Edwards T, Yasuyama K, Schneuwly S, Meinertzhagen I, Hofbauer A (2002) The extraretinal eyelet of Drosophila: development, ultrastructure and putative circadian function. J Neurosci 22:9255–9266

    PubMed  Google Scholar 

  • Helfrich-Förster C (2004) The circadian clock in the brain: a structural and functional comparison between mammals and insects. J Comp Physiol A 190:601–613

    Google Scholar 

  • Helfrich-Förster C (2005b) Organization of endogenous clocks in insects. Biochem Soc Trans 33:957–961

    PubMed  Google Scholar 

  • Helfrich-Förster C, Täuber M, Park JH, Mühlig-Versen M, Schneuwly S, Hofbauer A (2000) Ectopic expression of the neuropeptide pigment-dispersing factor alters behavioral rhythms in Drosophila melanogaster. J Neurosci 20:3339–3353

    PubMed  Google Scholar 

  • Helfrich-Förster C, Nitabach MN, Holmes TC (2011) Insect circadian clock outputs. Essays Biochem 49:87–101

    PubMed  Google Scholar 

  • Hendricks JC, Finn SM, Panckeri KA, Chavkin J, Williams JA, Sehgal A, Pack AI (2000) Rest in Drosophila is a sleep-like state. Neuron 25:129–138

    CAS  PubMed  Google Scholar 

  • Hennessey TL, Field CB (1991) Circadian rhythms in photosynthesis. Plant Physiol 96:831–836

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hermann C, Yoshii T, Dusik V, Helfrich-Förster C (2012) Neuropeptide F immunoreactive clock neurons modify evening locomotor activity and free-running period in Drosophila melanogaster. J Comp Neurol 520:970–987

    CAS  PubMed  Google Scholar 

  • Herrero E, Davis SJ (2012) Time for a nuclear meeting: protein trafficking and chromatin dynamics intersect in the plant circadian system. Mol Plant 5:554–565

    PubMed  Google Scholar 

  • Herrero E, Kolmos E, Bujdoso N, Yuan Y, Wang M, Berns MC, Uhlworm H, Coupland G, Saini R, Jaskolski M, Webb A, Gonçalves J, Davis SJ (2012) EARLY FLOWERING4 recruitment of EARLY FLOWERING3 in the nucleus sustains the Arabidopsis circadian clock. Plant Cell 24:428–443

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hirsh J, Riemensperger T, Coulom H, Iché M, Coupar J, Birman S (2010) Roles of dopamine in circadian rhythmicity and extreme light sensitivity of circadian entrainment. Curr Biol 20:209–214

    CAS  PubMed  Google Scholar 

  • Hoffmann K (1981) The role of the pineal gland in the photoperiodic control of seasonal cycles in hamsters. In: Follett D, Follett B (eds) Biological clocks in seasonal reproductive cycles. Wright, Bristol, pp 237–250

    Google Scholar 

  • Hogenesch JB, Ueda HR (2011) Understanding systems-level properties: timely stories from the study of clocks. Nat Rev Genet 12:407–416

    CAS  PubMed  Google Scholar 

  • Holland RA, Borissov I, Siemers BM (2010) A nocturnal mammal, the greater mouse-eared bat, calibrates a magnetic compass by the sun. Proc Natl Acad Sci U S A 107:6941–6945

    CAS  PubMed Central  PubMed  Google Scholar 

  • Homberg U, Reischig T, Stengl M (2003) Neural organization of the circadian system of the cockroach Leucophaea maderae. Chronobiol Int 20(4):577–591

    CAS  PubMed  Google Scholar 

  • Homberg U, Heinze S, Pfeiffer K, Kinoshita M, el Jundi B (2011) Central neural coding of sky polarization in insects. Philos Trans R Soc Lond B Biol Sci 366:680–687

    PubMed Central  PubMed  Google Scholar 

  • Honma KI, Honma S (2009) The SCN-independent clocks, methamphetamine and food restriction. Eur J Neurosci 30:1707–1717

    PubMed  Google Scholar 

  • Honma S, Hashimoto S, Nakao M, Kato Y, Honma K-I (2003) Period and phase adjustments of human circadian rhythms in the real world. J Biol Rhythms 18:261–270

    PubMed  Google Scholar 

  • Horowitz T, Cade B, Wolfe J, Czeisler C (2001) Efficacy of bright light and sleep/darkness scheduling in alleviating circadian maladaptation to night work. Am J Physiol 281:384–391

    Google Scholar 

  • Hotta CT, Xu X, Xie Q, Dodd AN, Johnson CH, Webb AA (2008) Are there multiple circadian clocks in plants? Plant Signal Behav 3:342–344

    PubMed Central  PubMed  Google Scholar 

  • Howland RH (2009a) An overview of seasonal affective disorder and its treatment options. Phys Sportsmed 37:104–115

    PubMed  Google Scholar 

  • Howland RH (2009b) Somatic therapies for seasonal affective disorder. J Psychosoc Nurs Ment Health Serv 47:17–20

    Google Scholar 

  • Hubbard KE, Robertson FC, Dalchau N, Webb AAR (2009) Systems analyses of circadian networks. Mol Biosyst 5:1502–1511

    CAS  PubMed  Google Scholar 

  • Hughes S, Hankins MW, Foster RG, Peirson SN (2012) Melanopsin phototransduction: slowly emerging from the dark. Prog Brain Res 199:19–40

    CAS  PubMed  Google Scholar 

  • Humble MB (2010) Vitamin D, light and mental health. J Photochem Photobiol B 101:142–149

    CAS  PubMed  Google Scholar 

  • Hung H-C, Maurer C, Kay SA, Weber F (2007) Circadian transcription depends on limiting amounts of the transcription co-activator nejire/cbp. J Biol Chem 282:31349–31357

    CAS  PubMed  Google Scholar 

  • Hunt SM, Elvin M, Crosthwaite SK, Heintzen C (2007) The PAS/LOV protein VIVID controls temperature compensation of circadian clock phase and development in Neurospora crassa. Genes Dev 21:1964–1974

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hunt SM, Thompson S, Elvin M, Heintzen C (2010) VIVID interacts with the WHITE COLLAR complex and FREQUENCY-interacting RNA helicase to alter light and clock responses in Neurospora. Proc Natl Acad Sci U S A 107:16709–16714

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hurd MW, Ralph MR (1998) The significance of circadian organization for longevity in the golden hamster. J Biol Rhythms 13:430–436

    CAS  PubMed  Google Scholar 

  • Husain M (2005) The neural retina: three channels of light detection. Adv Clin Neurosci Rehabil 5:22–23

    Google Scholar 

  • Hut RA, Beersma DGM (2011) Evolution of time-keeping mechanisms: early emergence and adaptation to photoperiod. Philos Trans R Soc Lond B Biol Sci 366:2141–2154

    CAS  PubMed Central  PubMed  Google Scholar 

  • Idda ML, Bertolucci C, Vallone D, Gothilf Y, Sánchez-Vázquez FJ, Foulkes NS (2012) Circadian clocks: lessons from fish. Prog Brain Res 199:41–57

    CAS  PubMed  Google Scholar 

  • de la Iglesia HO, Cambras T, Schwartz WJ, Diez-Noguera A (2004) Forced desynchronization of dual circadian oscillators within the rat suprachiasmatic nucleus. Curr Biol 14:796–800

    PubMed  Google Scholar 

  • Ikegami K, Yoshimura T (2012) Circadian clocks and the measurement of daylength in seasonal reproduction. Mol Cell Endocrinol 349:76–81

    CAS  PubMed  Google Scholar 

  • Im SH, Taghert PH (2010) PDF receptor expression reveals direct interactions between circadian oscillators in Drosophila. J Comp Neurol 518:1925–1945

    CAS  PubMed Central  PubMed  Google Scholar 

  • Imaizumi T (2010) Arabidopsis circadian clock and photoperiodism: time to think about location. Curr Opin Plant Biol 13:83–89

    CAS  PubMed Central  PubMed  Google Scholar 

  • Indic P, Schwartz WJ, Paydarfar D (2008) Design principles for phase-splitting behaviour of coupled cellular oscillators: clues from hamsters with ‘split’ circadian rhythms. J R Soc Interface 5:873–883

    PubMed Central  PubMed  Google Scholar 

  • Inouye C, Okamoto K, Ishiura M, Kondo T (1998) The action spectrum of phase shift by light signal in the circadian rhythm in cyanobacterium. Plant Cell Physiol 39(Suppl):S82

    Google Scholar 

  • Ishiura M, Kutsuna S, Aoki S, Iwasaki H, Andersson C, Tanabe A, Golden S, Johnson C, Kondo T (1998) Expression of a gene cluster kaiABC as a circadian feedback process in cyanobacteria. Science 281:1519–1523

    CAS  PubMed  Google Scholar 

  • Isojima Y, Nakajima M, Ukai H, Fujishima H, Yamada RG, Masumoto KH, Kiuchi R, Ishida M, Ukai-Tadenuma M, Minami Y, Kito R, Nakao K, Kishimoto W, Yoo S-H, Shimomura K, Takao T, Takano A, Kojima T, Nagai K, Sakaki Y, Takahashi JS, Ueda HR (2009) CKiepsilon/delta-dependent phosphorylation is a temperature-insensitive, period-determining process in the mammalian circadian clock. Proc Natl Acad Sci U S A 106:15744–15749

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ito C, Goto SG, Shiga S, Tomioka K, Numata H (2008) Peripheral circadian clock for the cuticle deposition rhythm in Drosophila melanogaster. Proc Natl Acad Sci U S A 105:8446–8451

    CAS  PubMed Central  PubMed  Google Scholar 

  • Iuvone PM, Tosini G, Pozdeyev N, Haque R, Klein DC, Chaurasia SS (2005) Circadian clocks, clock networks, arylalkylamine n-acetyltransferase, and melatonin in the retina. Prog Retin Eye Res 24:433–456

    CAS  PubMed  Google Scholar 

  • Ivanchenko M, Stanewsky R, Giebultowicz JM (2001) Circadian photoreception in Drosophila: functions of cryptochrome in peripheral and central clocks. J Biol Rhythms 16:205–215

    CAS  PubMed  Google Scholar 

  • Iwasaki H, Kondo T (2004) Circadian timing mechanism in the prokaryotic clock system of cyanobacteria. J Biol Rhythms 19:436–444

    CAS  PubMed  Google Scholar 

  • Iwasaki H, Williams S, Kitayama Y, Ishiura M, Golden S, Kondo T (2000) A kaiC-interacting sensory histidine kinase, SasA, necessary to sustain robust circadian oscillation in cyanobacteria. Cell 101:223–233

    CAS  PubMed  Google Scholar 

  • Jackson FR (2011) Glial cell modulation of circadian rhythms. Glia 59:1341–1350

    PubMed Central  PubMed  Google Scholar 

  • Jacobshagen S, Kessler B, Rinehart CA (2008) At least four distinct circadian regulatory mechanisms are required for all phases of rhythms in mrna amount. J Biol Rhythms 23:511–524

    CAS  PubMed  Google Scholar 

  • Jacobson D, Powell A, Dettman J, Saenz G, Barton M, Hiltz M, Dvorachek W Jr, Glass N, Taylor J, Natvig D (2004) Neurospora in temperate forests of western North America. Mycologia 96:66–74

    PubMed  Google Scholar 

  • Jagota A, de la Iglesia H, Schwartz W (2000) Morning and evening circadian oscillations in the suprachiasmatic nucleus in vitro. Nat Neurosci 3:372–376

    CAS  PubMed  Google Scholar 

  • Jang S-W, Liu X, Pradoldej S, Tosini G, Chang Q, Iuvone PM, Ye K (2010) Nacetylserotonin activates TrkB receptor in a circadian rhythm. Proc Natl Acad Sci U S A 107:3876–3881

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jewett M, Rimmer D, Duffy J, Klerman E, Kronauer R, Czeisler C (1997) Human circadian pacemaker is sensitive to light throughout subjective day without evidence of transients. Am J Physiol 273:R1800–R1809

    CAS  PubMed  Google Scholar 

  • Jewett M, Borbely A, Czeisler C (1999a) Special issue: proceedings workshop on biomathematical models of circadian rhythmicity, sleep regulation and neurobehavioral function in humans, May 18–21 1999 Dedham, Mass. J Biol Rhythm 14

    Google Scholar 

  • Jewett M, Kronauer R, Megan E (1999b) Interactive mathematical models of subjective alertness and cognitive throughput in humans. J Biol Rhythms 14:588–597

    CAS  PubMed  Google Scholar 

  • Jinhu G, Yi L (2010) Molecular mechanism of the Neurospora circadian oscillator. Protein Cell 1:331–341

    PubMed  Google Scholar 

  • Johnson CH (2005) Testing the adaptive value of circadian systems. Methods Enzymol 393:818–837

    PubMed  Google Scholar 

  • Johnson CH (2010) Circadian clocks and cell division: what’s the pacemaker? Cell Cycle 9:3864–3873

    CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson CH, Golden SS (1999) Circadian programs in Cyanobacteria: adaptiveness and mechanism. Annu Rev Microbiol 53:389–409

    CAS  PubMed  Google Scholar 

  • Johnson CH, Kondo T, Hastings JW (1991) Action spectrum for resetting the circadian phototaxis rhythm in the CW15 strain of Chlamydomonas: II. Illuminated cells. Plant Physiol 97:1122–1129

    CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson CH, Kondo T, Goto K (1992) Circadian rhythms in Chlamydomonas. In: Honma K, Honma S, Hiroshige T (eds) Circadian clocks from cell to human: proc Fourth Sapporo symp biol rhythms. Hokkaido Univ. Hokkaido University Press, Sapporo, pp 139–155

    Google Scholar 

  • Johnson CH, Stewart PL, Egli M (2011) The cyanobacterial circadian system: from biophysics to bioevolution. Annu Rev Biophys 40:143–167

    CAS  PubMed Central  PubMed  Google Scholar 

  • Johnsson A, Karlsson H, Engelmann W (1973) Phase shifts in the Kalanchoe petal rhythm, caused by light pulses of different duration. A theoretical and experimental study. J Chronobiol 1:147–156

    Google Scholar 

  • Johnsson A, Engelmann W, Klemke W, Ekse AT (1979) Free-running human circadian rhythms in Svalbard. Z Naturforsch C 34C:470–473

    CAS  PubMed  Google Scholar 

  • Johnsson A, Solheim BGB, Iversen T-H (2009) Gravity amplifies and microgravity decreases circumnutations in Arabidopsis thaliana stems: results from a space experiment. New Phytol 182:621–629

    CAS  PubMed  Google Scholar 

  • Johnston J, Tournier B, Andersson H, Masson-Pevet M, Lincoln G, Hazlerigg D (2006) Multiple effects of melatonin on rhythmic clock gene expression in the mammalian Pars tuberalis. Endocrinology 147:959–965

    CAS  PubMed  Google Scholar 

  • Jones MA (2009) Entrainment of the Arabidopsis circadian clock. J Plant Biol 52:202–209

    CAS  Google Scholar 

  • Jud C, Schmutz I, Hampp G, Oster H, Albrecht U (2005) A guideline for analyzing circadian wheel-running behavior in rodents under different lighting conditions. Biol Proced Online 7:101–116

    PubMed Central  PubMed  Google Scholar 

  • Kai H, Arai T, Yasuda F (1999) Accomplishment of time-interval activation of esterase A4 by simple removal of pin fraction. Chronobiol Int 16:51–58

    CAS  PubMed  Google Scholar 

  • Kami C, Lorrain S, Hornitschek P, Fankhauser C (2010) Light-regulated plant growth and development. Curr Top Dev Biol 91:29–66

    CAS  PubMed  Google Scholar 

  • Kaneko M, Hamblen M, Hall J (2000) Involvement of the period gene in developmental time-memory: effect of the per short mutation on phase shifts induced by light pulses delivered to Drosophila larvae. J Biol Rhythms 15:13–30

    CAS  PubMed  Google Scholar 

  • Karakashian M, Schweiger H (1976) Circadian properties of the rhythmic system in individual nucleated and enucleated cells of Acetabularia mediterranea. Exp Cell Res 97:366–377

    CAS  PubMed  Google Scholar 

  • Karlsson H, Johnsson A (1972) A feedback model for biological rhythms. II. Comparisons with experimental results, especially on the petal rhythm of Kalanchoe. J Theor Biol 36:175–194

    CAS  PubMed  Google Scholar 

  • Kasof J (2009) Cultural variation in seasonal depression: cross-national differences in winter versus summer patterns of seasonal affective disorder. J Affect Disord 115:79–86

    PubMed  Google Scholar 

  • Kecklund G, Milia LD, Axelsson J, Lowden A, Akerstedt T (2012) 20th International symposium on shiftwork and working time: biological mechanisms, recovery, and risk management in the 24-h society. Chronobiol Int 29:531–536

    PubMed  Google Scholar 

  • Keeling PJ (2007) Ostreococcus tauri: seeing through the genes to the genome. Trends Genet 23:151–154

    CAS  PubMed  Google Scholar 

  • Kegel M, Dam H, Ali F, Bjerregaard P (2009) The prevalence of seasonal affective disorder (SAD) in Greenland is related to latitude. Nord J Psychiatry 63:331–335

    PubMed  Google Scholar 

  • Kempinger L, Dittmann R, Rieger D, Helfrich-Forster C (2009) The nocturnal activity of fruit flies exposed to artificial moonlight is partly caused by direct light effects on the activity level that bypass the endogenous clock. Chronobiol Int 26:151–166

    CAS  PubMed  Google Scholar 

  • Kessel L, Siganos G, Jørgensen T, Larsen M (2011) Sleep disturbances are related to decreased transmission of blue light to the retina caused by lens yellowing. Sleep 34:1215–1219

    PubMed Central  PubMed  Google Scholar 

  • Khalsa S, Jewett M, Cajochen C, Czeisler C (2003) A phase response curve to single bright light pulses in human subjects. J Physiol 549:945–952

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim W-Y, Fujiwara S, Suh S-S, Kim J, Kim Y, Han L, David K, Putterill J, Nam HG, Somers DE (2007) ZEITLUPE is a circadian photoreceptor stabilized by GIGANTEA in blue light. Nature 449:356–360

    CAS  PubMed  Google Scholar 

  • Kim Y-I, Vinyard DJ, Ananyev GM, Dismukes GC, Golden SS (2012) Oxidized quinones signal onset of darkness directly to the cyanobacterial circadian oscillator. Proc Natl Acad Sci U S A 109:17765–17769

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kistenpfennig C, Hirsh J, Yoshii T, Helfrich-Förster C (2012) Phase-shifting the fruit fly clock without cryptochrome. J Biol Rhythms 27:117–125

    PubMed  Google Scholar 

  • Klarsfeld A, Rouyer F (1998) Effects of circadian mutations and LD periodicity on the life span of Drosophila melanogaster. J Biol Rhythms 13:471–478

    CAS  PubMed  Google Scholar 

  • Klarsfeld A, Malpel S, Michard-Vanhee C, Picot M, Chelot E, Rouyer F (2004) Novel features of cryptochrome-mediated photoreception in the brain circadian clock of Drosophila. J Neurosci 24:1468–1477

    CAS  PubMed  Google Scholar 

  • Klein D, Moore R, Reppert S (1991) Suprachiasmatic nucleus: the mind’s clock. Oxford University Press, New York

    Google Scholar 

  • Kleitman L (1963) Sleep and wakefulness. University of Chicago Press, Chicago

    Google Scholar 

  • Klemm E, Ninnemann H (1976) Detailed action spectrum for the delay shift in pupae emergence of Drosophila pseudoobscura. Photochem Photobiol 24:369–371

    Google Scholar 

  • Klerman EB (2005) Clinical aspects of human circadian rhythms. J Biol Rhythms 20:375–386

    PubMed  Google Scholar 

  • Klerman EB, Dijk DJ, Kronauer RE, Czeisler CA (1996) Simulations of light effects on the human circadian pacemaker: implications for assessment of intrinsic period. Am J Physiol 270:R271–R282

    CAS  PubMed  Google Scholar 

  • Kohyama J (2011) Sleep health and asynchronization. Brain Dev 33:252–259

    PubMed  Google Scholar 

  • Kolar C, Fejes E, Adam E, Schaefer E, Kay S, Nagy F (1998) Transcription of Arabidopsis and wheat Cab genes in single tobacco transgenic seedlings exhibits independent rhythms in a developmentally regulated fashion. Plant J 13:563–569

    CAS  PubMed  Google Scholar 

  • Kolla BP, Auger RR (2011) Jet lag and shift work sleep disorders: how to help reset the internal clock. Cleve Clin J Med 78:675–684

    PubMed  Google Scholar 

  • Kolmos E, Herrero E, Bujdoso N, Millar AJ, Tóth R, Gyula P, Nagy F, Davis SJ (2011) A reduced-function allele reveals that EARLY FLOWERING3 repressive action on the circadian clock is modulated by phytochrome signals in Arabidopsis. Plant Cell 23:3230–3246

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kondo T, Johnson C, Hastings J (1991) Action spectrum for resetting the circadian phototaxis rhythm in the CW15 strain I: cells in darkness. Plant Physiol 95:197–205

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kondo T, Strayer C, Kulkarni R, Taylor W, Ishiura M, Golden S, Johnson C (1993) Circadian rhythms in prokaryotes: luciferase as a reporter of circadian gene expression in cyanobacteria. Proc Natl Acad Sci U S A 90:5672–5676

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kondo T, Tsinoremas N, Golden S, Johnson C, Kutsuna S, Ishiura M (1994) Circadian clock mutants of cyanobacteria. Science 266:1233–1236

    CAS  PubMed  Google Scholar 

  • Kondo T, Mori T, Lebedeva NV, Aoki S, Ishiura M, Golden SS (1997) Circadian rhythms in rapidly dividing cyanobacteria. Science 275:224–227

    CAS  PubMed  Google Scholar 

  • Konopka RJ, Pittendrigh C, Orr D (2007) Reciprocal behaviour associated with altered homeostasis and photosensitivity of Drosophila clock mutants. J Neurogenet 21:243–252

    CAS  PubMed  Google Scholar 

  • Kotov NV, Baker RE, Dawidov DA, Platov KV, Valeyev NV, Skorinkin AI, Maini PK (2007) A study of the temperature dependence of bienzyme systems and enzymatic chains. Comput Math Methods Method 8:93–112

    Google Scholar 

  • Kozma-Bognár L, Káldi K (2008) Synchronization of the fungal and the plant circadian clock by light. Chembiochem 9:2565–2573

    PubMed  Google Scholar 

  • Kräuchi K, Cajochen C, Pache M, Flammer J, Wirz-Justice A (2006) Thermoregulatory effects of melatonin in relation to sleepiness. Chronobiol Int 23:475–484

    PubMed  Google Scholar 

  • Kronauer RE, Czeisler CA, Pilato SF, Moore-Ede MC, Weitzman ED (1982) Mathematical model of the human circadian system with two interacting oscillators. Am J Physiol 242:3–17

    Google Scholar 

  • Kronauer RE, Forger DB, Jewett ME (1999) Quantifying human circadian pacemaker response to brief, extended, and repeated light stimuli over the phototopic range. J Biol Rhythms 14:500–515

    CAS  PubMed  Google Scholar 

  • Kronfeld-Schor N, Einat H (2012) Circadian rhythms and depression: human psychopathology and animal models. Neuropharmacology 62:101–114

    CAS  PubMed  Google Scholar 

  • Kumar S, Mohan A, Sharma V (2005) Circadian dysfunction reduces lifespan in Drosophila melanogaster. Chronobiol Int 22:641–653

    PubMed  Google Scholar 

  • Kunihiro A, Yamashino T, Mizuno T (2010) PHYTOCHROME-INTERACTING FACTORS PIF4 and PIF5 are implicated in the regulation of hypocotyl elongation in response to blue light in Arabidopsis thaliana. Biosci Biotechnol Biochem 74:2538–2541

    CAS  PubMed  Google Scholar 

  • Kurosawa G, Aihara K, Iwasa Y (2006) A model for the circadian rhythm of cyanobacteria that maintains oscillation without gene expression. Biophys J 91:2015

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kwon I, Choe HK, Son GH, Kim K (2011) Mammalian molecular clocks. Exp Neurobiol 20:18–28

    PubMed Central  PubMed  Google Scholar 

  • Laakso M, Hätönen T, Stenberg D, Alila A, Smith S (1993) The human circadian response to light -strong and weak resetting. J Biol Rhythms 8:351–360

    Google Scholar 

  • Lack LC, Wright HR (2007) Treating chronobiological components of chronic insomnia. Sleep Med 8(6):637–644

    PubMed  Google Scholar 

  • Lakin-Thomas PL (2006) Transcriptional feedback oscillators: maybe, maybe not. J Biol Rhythms 21:83–92

    CAS  PubMed  Google Scholar 

  • Lakin-Thomas P, Johnson H (1999) Commentary: molecular and cellular models of circadian systems. J Biol Rhythms 14:486–489

    CAS  PubMed  Google Scholar 

  • Lakin-Thomas P, Cote G, Brody S (1990) Circadian rhythms in Neurospora crassa: biochemistry and genetics. Crit Rev Microbiol 17:365–416

    CAS  PubMed  Google Scholar 

  • Lakin-Thomas PL, Bell-Pedersen D, Brody S (2011) The genetics of circadian rhythms in Neurospora. Adv Genet 74:55–103

    CAS  PubMed  Google Scholar 

  • Lam R, Levitan R (2000) Pathophysiology of seasonal affective disorder: a review. J Psychiatr Neurosci 25:469–480

    CAS  Google Scholar 

  • Lamont EW, Harbour VL, Barry-Shaw J, Diaz LR, Robinson B, Stewart J, Amir S (2007) Restricted access to food, but not sucrose, saccharine, or salt, synchronizes the expression of Period2 protein in the limbic forebrain. Neuroscience 144:402–411

    Google Scholar 

  • Larrondo LF, Loros JJ, Dunlap JC (2012) High-resolution spatiotemporal analysis of gene expression in real time: in vivo analysis of circadian rhythms in Neurospora crassa using a FREQUENCY-luciferase translational reporter. Fungal Genet Biol 49:681–683

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lavoie M-P, Lam RW, Bouchard G, Sasseville A, Charron M-C, Gagné A-M, Tremblay P, Filteau M-J, Hébert M (2009) Evidence of a biological effect of light therapy on the retina of patients with seasonal affective disorder. Biol Psychiatry 66:253–258

    PubMed  Google Scholar 

  • Layana C, Diambra L (2011) Time-course analysis of cyanobacterium transcriptome: detecting oscillatory genes. PLoS One 6:e26291

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lear BC, Zhang L, Allada R (2009) The neuropeptide PDF acts directly on evening pacemaker neurons to regulate multiple features of circadian behavior. PLoS Biol 7:e1000154

    PubMed Central  PubMed  Google Scholar 

  • Leis JM, Siebeck U, Dixson DL (2011) How Nemo finds home: the neuroecology of dispersal and of population connectivity in larvae of marine fishes. Integr Comp Biol 51:826–843

    PubMed  Google Scholar 

  • Leloup JC, Goldbeter A (1998) A model for circadian rhythms in Drosophila incorporating the formation of a complex between the PER and TIM proteins. J Biol Rhythms 13:70–87

    CAS  PubMed  Google Scholar 

  • Leloup JC, Goldbeter A (1999) Chaos and biorhythmicity in a model for circadian oscillations of the PER and TIM proteins in Drosophila. J Theor Biol 198:445–459

    CAS  PubMed  Google Scholar 

  • Leloup JC, Goldbeter A (2001) A molecular explanation for the long-term suppression of circadian rhythms by a single light pulse. Am J Physiol 280:1206–1212

    Google Scholar 

  • Leloup J-C, Goldbeter A (2008) Modeling the circadian clock: from molecular mechanism to physiological disorders. Bioessays 30:590–600

    CAS  PubMed  Google Scholar 

  • Lema G, Auerbach A (2006) Modes and models of GABA A receptor gating. J Physiol 572:183

    CAS  PubMed Central  PubMed  Google Scholar 

  • Levi F, Schibler U (2007) Circadian rhythms: mechanisms and therapeutic implications. Annu Rev Pharmacol Toxicol 47:593–628

    CAS  PubMed  Google Scholar 

  • Levitan RD (2005) What is the optimal implementation of bright light therapy for seasonal affective disorder (SAD)? J Psychiatry Neurosci 30:72

    PubMed Central  PubMed  Google Scholar 

  • Levitan RD (2007) The chronobiology and neurobiology of winter seasonal affective disorder. Dialogues Clin Neurosci 9:315–324

    PubMed Central  PubMed  Google Scholar 

  • Lewis R (1999) Control system models for the circadian clock of the New Zealand Weta, Hemideina thoracica (Orthoptera: Stenopelmatidae). J Biol Rhythms 14:480–485

    CAS  PubMed  Google Scholar 

  • Lewis ZA, Correa A, Schwerdtfeger C, Link K, Xie X, Gomer R, Thomas T, Ebbole D, Bell-Pedersen D (2002) Overexpression of White Collar-1(WC-1) activates circadian clock-associated genes, but is not sufficient to induce most light-regulated gene expression in Neurospora crassa. Mol Microbiol 45:917–931

    CAS  PubMed  Google Scholar 

  • Lewy A, Sack R (1997) Exogenous melatonin’s phase-shifting effects on the endogenous melatonin profile in sighted humans: a brief review and critique of the literature. J Biol Rhythms 12:588–594

    CAS  PubMed  Google Scholar 

  • Lewy AJ (2007) Melatonin and human chronobiology. Cold Spring Harb Symp Quant Biol 72:623–636

    CAS  PubMed  Google Scholar 

  • Lewy AJ, Ahmed S, Sack RL (1996) Phase shifting the human circadian clock using melatonin. Behav Brain Res 73:131–134

    CAS  PubMed  Google Scholar 

  • Lewy AJ, Emens J, Jackman A, Yuhas K (2006a) Circadian uses of melatonin in humans. Chronobiol Int 23:403–412

    CAS  PubMed  Google Scholar 

  • Lewy AJ, Lefler BJ, Emens JS, Bauer VK (2006b) The circadian basis of winter depression. Proc Natl Acad Sci U S A 103:7414–7419

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lewy AJ, Rough JN, Songer JB, Mishra N, Yuhas K, Emens JS (2007) The phase shift hypothesis for the circadian component of winter depression. Dialogues Clin Neurosci 9:291–300

    PubMed Central  PubMed  Google Scholar 

  • Lewy AJ, Emens JS, Songer JB, Sims N, Laurie AL, Fiala SC, Buti AL (2009) Winter depression: integrating mood, circadian rhythms, and the sleep/wake and light/dark cycles into a bio-psycho-social-environmental model. Sleep Med Clin 4:285–299

    PubMed Central  PubMed  Google Scholar 

  • Li J-D, Hu W-P, Zhou Q-Y (2012) The circadian output signals from the suprachiasmatic nuclei. Prog Brain Res 199:119–127

    CAS  PubMed  Google Scholar 

  • Li S, Lakin-Thomas P (2010) Effects of prd circadian clock mutations on FRQ-less rhythms in Neurospora. J Biol Rhythms 25:71–80

    PubMed  Google Scholar 

  • Lim C, Lee J, Choi C, Kim J, Doh E, Choe J (2007) Functional role of creb-binding protein in the circadian clock system of Drosophila melanogaster. Mol Cell Biol 27:4876–4890

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lin R, Chou H, Huang T (1999) Priority of light/dark entrainment over temperature in setting the circadian rhythms of the prokaryote Synechococcus RF-1. Planta 209:202–206

    CAS  PubMed  Google Scholar 

  • Lincoln GA (2006) Melatonin entrainment of circannual rhythms. Chronobiol Int 23:301–306

    CAS  PubMed  Google Scholar 

  • Lincoln GA, Messager S, Andersson H, Hazlerigg D (2002) Temporal expression of seven clock genes in the suprachiasmatic nucleus and the pars tuberalis of the sheep: evidence for an internal coincidence timer. Proc Natl Acad Sci U S A 99:13890–13895

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lincoln GA, Andersson H, Loudon A (2003) Clock genes in calendar cells as the basis of annual timekeeping in mammals–a unifying hypothesis. J Endocrinol 179:1–13

    CAS  PubMed  Google Scholar 

  • Litt A, Kramer EM (2010) The ABC model and the diversification of floral organ identity. Semin Cell Dev Biol 21:129–137

    CAS  PubMed  Google Scholar 

  • Liu Y (2003) Molecular mechanisms of entrainment in the Neurospora circadian clock. J Biol Rhythms 18:195–205

    CAS  PubMed  Google Scholar 

  • Liu Y, Merrow M, Loros J, Dunlap J (1998) How temperature changes reset a circadian oscillator. Science 281:825–829

    CAS  PubMed  Google Scholar 

  • Loros JJ, Dunlap JC, Larrondo LF, Shi M, Belden WJ, Gooch VD, Chen C-H, Baker CL, Mehra A, Colot HV, Schwerdtfeger C, Lambreghts R, Collopy PD, Gamsby JJ, Hong CI (2007) Circadian output, input, and intracellular oscillators: insights into the circadian systems of single cells. Cold Spring Harb Symp Quant Biol 72:201–214

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lowrey PL, Takahashi JS (2011) Genetics of circadian rhythms in mammalian model organisms. Adv Genet 74:175–230

    CAS  PubMed Central  PubMed  Google Scholar 

  • Loza-Correa M, Gomez-Valero L, Buchrieser C (2010) Circadian clock proteins in prokaryotes: hidden rhythms? Front Microbiol 1:130

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lu SX, Tobin EM (2011) Chromatin remodeling and the circadian clock: jumonji C-domain containing proteins. Plant Signal Behav 6:810–814

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lu SX, Knowles SM, Webb CJ, Celaya RB, Cha C, Siu JP, Tobin EM (2011) The Jumonji C domain-containing protein JMJ30 regulates period length in the Arabidopsis circadian clock. Plant Physiol 155:906–915

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lu SX, Webb CJ, Knowles SM, Kim SHJ, Wang Z, Tobin EM (2012) CCA1 and ELF3 interact in the control of hypocotyl length and flowering time in Arabidopsis. Plant Physiol 158:1079–1088

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lucas RJ, Lall GS, Allen AE, Brown TM (2012) How rod, cone, and melanopsin photoreceptors come together to enlighten the mammalian circadian clock. Prog Brain Res 199:1–18

    CAS  PubMed  Google Scholar 

  • Mackey SR (2007) Biological rhythms workshop IA: molecular basis of rhythms generation. Cold Spring Harb Symp Quant Biol 72:7–19

    CAS  PubMed  Google Scholar 

  • Mackey SR, Ditty JL, Zeidner G, Chen Y, Golden SS (2009) Mechanisms for entraining the cyanobacterial circadian clock system with the environment. In: Ditty JL, Mackey SR, Johnson C (eds) Bacterial circadian programs. Springer, Berlin, pp 141–156

    Google Scholar 

  • Mackey SR, Golden SS, Ditty JL (2011) The itty-bitty time machine genetics of the cyanobacterial circadian clock. Adv Genet 74:13–53

    CAS  PubMed Central  PubMed  Google Scholar 

  • Madsen H, Dam H, Hageman I (2012) Study protocol: a cross-sectional survey of seasonal affective disorder in Danish populations with and without severe visual impairments. BMJ Open 2:e001020

    PubMed Central  PubMed  Google Scholar 

  • Magnusson A, Partonen T (2005) The diagnosis, symptomatology, and epidemiology of seasonal affective disorder. CNS Spectr 10:625–634; quiz 1–14

    PubMed  Google Scholar 

  • Mahoney MM (2010) Shift work, jet lag, and female reproduction. Int J Endocrinol 2010:813764

    PubMed Central  PubMed  Google Scholar 

  • Malpel S, Klarsfeld A, Rouyer F (2002) Larval optic nerve and adult extra-retinal photoreceptors sequentially associate with clock neurons during Drosophila brain development. Development 129:1443–1453

    CAS  PubMed  Google Scholar 

  • Malpel S, Klarsfeld A, Rouyer F (2004) Circadian synchronization and rhythmicity in larval photoperception-defective mutants of Drosophila. J Biol Rhythms 19:10–21

    PubMed  Google Scholar 

  • Malzahn E, Ciprianidis S, Káldi K, Schafmeier T, Brunner M (2010) Photoadaptation in Neurospora by competitive interaction of activating and inhibitory LOV domains. Cell 142:762–772

    CAS  PubMed  Google Scholar 

  • Manichaikul A, Ghamsari L, Hom EFY, Lin C, Murray RR, Chang RL, Balaji S, Hao T, Shen Y, Chavali AK, Thiele I, Yang X, Fan C, Mello E, Hill DE, Vidal M, Salehi-Ashtiani K, Papin JA (2009) Metabolic network analysis integrated with transcript verification for sequenced genomes. Nat Methods 6:589–592

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marpegan L, Swanstrom AE, Chung K, Simon T, Haydon PG, Khan SK, Liu AC, Herzog ED, Beaulé C (2011) Circadian regulation of ATP release in astrocytes. J Neurosci 31:8342–8350

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martin SK, Eastman CI (1998) Medium-intensity light produces circadian rhythm adaptation to simulated night-shift work. Sleep 21:154–165

    CAS  PubMed  Google Scholar 

  • Matsuo T, Ishiura M (2011) Chlamydomonas reinhardtii as a new model system for studying the molecular basis of the circadian clock. FEBS Lett 585:1495–1502

    CAS  PubMed  Google Scholar 

  • May P, Christian J-O, Kempa S, Walther D (2009) Chlamycyc: an integrative systems biology database and web-portal for Chlamydomonas reinhardtii. BMC Genomics 10:209

    PubMed Central  PubMed  Google Scholar 

  • McCarthy EV, Wu Y, Decarvalho T, Brandt C, Cao G, Nitabach MN (2011) Synchronized bilateral synaptic inputs to Drosophila melanogaster neuropeptidergic rest/arousal neurons. J Neurosci 31:8181–8193

    CAS  PubMed Central  PubMed  Google Scholar 

  • McClung CA (2007) Circadian genes, rhythms and the biology of mood disorders. Pharmacol Ther 114:222–232

    CAS  PubMed Central  PubMed  Google Scholar 

  • McClung CA (2011) Circadian rhythms: lost in post-translation. Curr Biol 21:R400–R402

    CAS  PubMed  Google Scholar 

  • McDermott JE, Oehmen CS, McCue LA, Hill E, Choi DM, Stöckel J, Liberton M, Pakrasi HB, Sherman LA (2011) A model of cyclic transcriptomic behavior in the cyanobacterium Cyanothece sp. ATCC 51142. Mol Biosyst 7:2407–2418

    CAS  PubMed  Google Scholar 

  • McWatters HG, Devlin PF (2011) Timing in plants–a rhythmic arrangement. FEBS Lett 585:1474–1484

    CAS  PubMed  Google Scholar 

  • Meesters Y, Dekker V, Schlangen LJM, Bos EH, Ruiter MJ (2011) Low-intensity blue-enriched white light (750 lux) and standard bright light (10,000 lux) are equally effective in treating SAD. A randomized controlled study. BMC Psychiatry 11:17

    PubMed Central  PubMed  Google Scholar 

  • Mehra A, Baker CL, Loros JJ, Dunlap JC (2009) Post-translational modifications in circadian rhythms. Trends Biochem Sci 34:483–490

    CAS  PubMed Central  PubMed  Google Scholar 

  • Meijer J, Watanabe K, Detari L, deVries M, Albus H, Treep J, Schaap J, Rietveld W (1996) Light entrainment of the mammalian biological clock. Prog Brain Res 111:175–190

    CAS  PubMed  Google Scholar 

  • Meijer JH, Schwartz WJ (2003) In search of the pathways for light-induced pacemaker resetting in the suprachiasmatic nucleus. J Biol Rhythms 18:235–249

    PubMed  Google Scholar 

  • Menaker M, Moreira L, Tosini G (1997) Evolution of circadian organization in vertebrates. Braz J Med Biol Res 30:305–313

    CAS  PubMed  Google Scholar 

  • Mendoza J, Pévet P, Challet E (2009) Entrainment and coupling of the hamster suprachiasmatic clock by daily dark pulses. J Neurosci Res 87:758–765

    CAS  PubMed  Google Scholar 

  • Merlin C, Heinze S, Reppert SM (2011) Unraveling navigational strategies in migratory insects. Curr Opin Neurobiol 22(2):353–361

    PubMed Central  PubMed  Google Scholar 

  • Merrow M, Roenneberg T (2007) Circadian entrainment of Neurospora crassa. Cold Spring Harb Symp Quant Biol 72:279–285

    CAS  PubMed  Google Scholar 

  • Merrow M, Brunner M, Roenneberg T (1999) Assignment of circadian function for the Neurospora clock gene frequency. Nature 399:584–586

    CAS  PubMed  Google Scholar 

  • Mersch P, Middendorp H, Bouhuys A, Beersma D, van den Hoofdakker R (1999) Seasonal affective disorder and latitude: a review of the literature. J Affect Disord 53:35–48

    CAS  PubMed  Google Scholar 

  • Meyer P, Saez L, Young M (2006) PER-TIM interactions in living Drosophila cells: an interval timer for the circadian clock. Science 311:226–229

    CAS  PubMed  Google Scholar 

  • Michael TP, Salome PA, Yu HJ, Spencer TR, Sharp EL, McPeek MA, Alonso JM, Exker JR, McClung CR (2003) Enhanced fitness conferred by naturally occurring variations in the circadian clock. Science 302:1049–1053

    CAS  PubMed  Google Scholar 

  • Michaels SD (2009) Flowering time regulation produces much fruit. Curr Opin Plant Biol 12:75–80

    CAS  PubMed Central  PubMed  Google Scholar 

  • Michalak EE, Murray G, Wilkinson C, Dowrick C, Lam RW (2007) A pilot study of adherence with light treatment for seasonal affective disorder. Psychiatry Res 149:315–320

    PubMed  Google Scholar 

  • Mihalcescu I, Hsing W, Leibler S (2004) Resilient circadian oscillator revealed in individual cyanobacteria. Nature 430:81–85

    CAS  PubMed  Google Scholar 

  • Miles L, Raynal D, Wilson M (1977) Blind man living in normal society has circadian rhythm of 24.9 hours. Science 198:421–423

    CAS  PubMed  Google Scholar 

  • Millar AJ (1999) Tansley review no. 103 – biological clocks in Arabidopsis thaliana. New Phytol 141:175–197

    CAS  Google Scholar 

  • Millar AJ, Carre IA, Strayer CA, Chua N-H, Kay AS (1995) Circadian clock mutants in Arabidopsis identified by luciferase imaging. Science 267:1161–1163

    CAS  PubMed  Google Scholar 

  • Mills JN (1964) Circadian rhythms during and after three months in solitude underground. J Physiol 174:217–231

    CAS  PubMed Central  PubMed  Google Scholar 

  • Min H, Johnson CH, Golden SS (2004) Phase determination of circadian gene expression in Synechococcus elongatus PCC 7942. J Biol Rhythms 19:103–112

    CAS  PubMed  Google Scholar 

  • Minors DS, Waterhouse J (1981) Circadian rhythms and the human. Wright, Bristol

    Google Scholar 

  • Minors D, Waterhouse J, Wirz-Justice A (1991) A human phase response curve to light. Neurosci Lett 133:36–40

    CAS  PubMed  Google Scholar 

  • Mistlberger RE, Skene DJ (2005) Nonphotic entrainment in humans? J Biol Rhythms 20:339–352

    PubMed  Google Scholar 

  • Mitsui A, Kumazawa S, Takahashi A, Ikemoto H, Cao S, Arai T (1986) Strategy by which nitrogen-fixing unicellular cyanobacteria grow photoautotrophically. Nature 323:720–722

    CAS  Google Scholar 

  • Mittag M (2001) Circadian rhythms in microalgae. Int Rev Cytol 206:213–247

    CAS  PubMed  Google Scholar 

  • Mittag M, Wagner V (2003) The circadian clock of the unicellular eukaryotic model organism Chlamydomonas reinhardtii. Biol Chem 384:689–695

    CAS  PubMed  Google Scholar 

  • Mittag M, Kiaulehn S, Johnson CH (2005) The circadian clock in Chlamydomonas reinhardtii. What is it for? What is it similar to? Plant Physiol 137:399–409

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miyoshi F, Nakayama Y, Kaizu K, Iwasaki H, Tomita M (2007) A mathematical model for the kai-protein-based chemical oscillator and clock gene expression rhythms in cyanobacteria. J Biol Rhythms 22:69

    CAS  PubMed  Google Scholar 

  • Mohawk JA, Takahashi JS (2011) Cell autonomy and synchrony of suprachiasmatic nucleus circadian oscillators. Trends Neurosci 34:349–358

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mohawk JA, Green CB, Takahashi JS (2012) Central and peripheral circadian clocks in mammals. Annu Rev Neurosci 35:445–462

    CAS  PubMed Central  PubMed  Google Scholar 

  • Monk TH (2000) What can the chronobiologist do to help the shift worker? J Biol Rhythms 15:86–94

    CAS  PubMed  Google Scholar 

  • Monnier A, Liverani S, Bouvet R, Jesson B, Smith JQ, Mosser J, Corellou F, Bouget F-Y (2010) Orchestrated transcription of biological processes in the marine picoeukaryote Ostreococcus exposed to light/dark cycles. BMC Genomics 11:192

    PubMed Central  PubMed  Google Scholar 

  • de Montaigu A, Tóth R, Coupland G (2010) Plant development goes like clockwork. Trends Genet 26:296–306

    PubMed  Google Scholar 

  • Montgomery P, Dunne D (2007) Sleep disorders in children. Clin Evid (Online) 2007:pii

    Google Scholar 

  • Moore R, Speh J, Card J (1995) The rhd originates from a distinct subset of retinal ganglion cells. J Comp Neurol 352:351–366

    CAS  PubMed  Google Scholar 

  • Morant P-E, Thommen Q, Pfeuty B, Vandermoere C, Corellou F, Bouget F-Y, Lefranc M (2010) A robust two-gene oscillator at the core of Ostreococcus tauri circadian clock. Chaos 20:045108

    PubMed  Google Scholar 

  • Morgan L, Greene A, Bell-Pedersen D (2003) Circadian and light-induced expression of luciferase in Neurospora crassa. Fungal Genet Biol 38:327–332

    CAS  PubMed  Google Scholar 

  • Morgan PJ, Hazlerigg DG (2008) Photoperiodic signalling through the melatonin receptor turns full circle. J Neuroendocrinol 20:820–826

    CAS  PubMed  Google Scholar 

  • Mori T, Binder B, Johnson C (1996) Circadian gating of cell division in Cyanobacteria growing with average doubling times of less than 24 hours. Proc Natl Acad Sci U S A 93:10183–10188

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mori T, Saveliev S, Xu Y, Stafford W, Cox M, Inman R, Johnson C (2002) Circadian clock protein KaiC forms ATP-dependent hexameric rings and binds DNA. Proc Natl Acad Sci U S A 99:17203–17208

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moulager M, Monnier A, Jesson B, Bouvet R, Mosser J, Schwartz C, Garnier L, Corellou F, Bouget F-Y (2007) Light-dependent regulation of cell division in Ostreococcus: evidence for a major transcriptional input. Plant Physiol 144:1360–1369

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moulager M, Corellou F, Vergé V, Escande M-L, Bouget F-Y (2010) Integration of light signals by the retinoblastoma pathway in the control of s phase entry in the picophytoplanktonic cell Ostreococcus. PLoS Genet 6:e1000957

    PubMed Central  PubMed  Google Scholar 

  • Muheim R (2011) Behavioural and physiological mechanisms of polarized light sensitivity in birds. Philos Trans R Soc Lond B Biol Sci 366:763–771

    PubMed Central  PubMed  Google Scholar 

  • Mullineaux CW, Stanewsky R (2009) The rolex and the hourglass: a simplified circadian clock in Prochlorococcus? J Bacteriol 191:5333–5335

    CAS  PubMed Central  PubMed  Google Scholar 

  • Murakami R, Miyake A, Iwase R, Hayashi F, Uzumaki T, Ishiura M (2008) ATPase activity and its temperature compensation of the cyanobacterial clock protein KaiC. Genes Cells 13:387–395

    CAS  PubMed  Google Scholar 

  • Murayama Y, Mukaiyama A, Imai K, Onoue Y, Tsunoda A, Nohara A, Ishida T, Maéda Y, Terauchi K, Kondo T, Akiyama S (2011) Tracking and visualizing the circadian ticking of the cyanobacterial clock protein kaic in solution. EMBO J 30:68–78

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mutoh R, Nishimura A, Yasui S, Onai K, Ishiura M (2013) The ATP-mediated regulation of KaiB-KaiC interaction in the cyanobacterial circadian clock. PLoS One 8:e80200

    CAS  PubMed Central  PubMed  Google Scholar 

  • Müller B, Grossniklaus U (2010) Model organisms–a historical perspective. J Proteomics 73:2054–2063

    PubMed  Google Scholar 

  • Münch M, Scheuermaier KD, Zhang R, Dunne SP, Guzik AM, Silva EJ, Ronda JM, Duffy JF (2011) Effects on subjective and objective alertness and sleep in response to evening light exposure in older subjects. Behav Brain Res 224:272–278

    PubMed Central  PubMed  Google Scholar 

  • Naef F (2005) Circadian clocks go in vitro: purely post-translational oscillators in cyanobacteria. Mol Syst Biol 1:2005.0019

    PubMed Central  PubMed  Google Scholar 

  • Naidoo N, Song W, Hunter-Ensor M, Seghal A (1999) A role for the proteasome in the light response of the timeless clock protein. Science 285:1737–1741

    CAS  PubMed  Google Scholar 

  • Nakahira Y, Katayama M, Miyashita H, Kutsuna S, Iwasaki H, Oyama T, Kondo T (2004) Global gene repression by KaiC as a master process of prokaryotic circadian system. Proc Natl Acad Sci U S A 101:881–885

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nakajima M, Imai K, Ito H, Nishiwaki T, Murayama Y, Iwasaki H, Oyama T, Kondo T (2005) Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro. Science 308:414–415

    CAS  PubMed  Google Scholar 

  • Nakamichi N (2011) Molecular mechanisms underlying the Arabidopsis circadian clock. Plant Cell Physiol 52:1709–1718

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nakamichi N, Kiba T, Kamioka M, Suzuki T, Yamashino T, Higashiyama T, Sakakibara H, Mizuno T (2012) Transcriptional repressor prr5 directly regulates clock-output pathways. Proc Natl Acad Sci U S A 109:17123–17128

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ng FS, Tangredi MM, Jackson FR (2011) Glial cells physiologically modulate clock neurons and circadian behavior in a calcium-dependent manner. Curr Biol 21:625–634

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nickla D, Wildsoet C, Wallman J (1998) Visual influences on diurnal rhythms in ocular length and choroidal thickness in chick eyes. Exp Eye Res 66:163–181

    CAS  PubMed  Google Scholar 

  • Nikaido SS, Johnson CH (2000) Daily and circadian variation in survival from ultraviolet radiation in Chlamydomonas reinhardtii. Photochem Photobiol 71:758–765

    CAS  PubMed  Google Scholar 

  • Nishiwaki T, Iwasaki H, Ishiura M, Kondo T (2000) Nucleotide binding and autophosphorylation of the clock protein KaiC as a circadian timing process of cyanobacteria. Proc Natl Acad Sci U S A 97:495–499

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nitabach MN, Sheeba V, Vera DA, Blau J, Holmes TC (2005) Membrane electrical excitability is necessary for the free-running larval Drosophila circadian clock. J Neurobiol 62:1–13

    CAS  PubMed  Google Scholar 

  • Niwa Y, Yamashino T, Mizuno T (2009) The circadian clock regulates the photoperiodic response of hypocotyl elongation through a coincidence mechanism in Arabidopsis thaliana. Plant Cell Physiol 50:838–854

    CAS  PubMed  Google Scholar 

  • Ohdo S, Koyanagi S, Matsunaga N, Hamdan A (2011) Molecular basis of chronopharmaceutics. J Pharm Sci 100:3560–3576

    CAS  PubMed  Google Scholar 

  • Oishi T, Yamao M, Kondo C, Haida Y, Masuda A, Tamotsu S (2001) Multiphotoreceptor and multioscillator system in avian circadian organization. Microsc Res Tech 53:43–47

    CAS  PubMed  Google Scholar 

  • Okamura H (2007) Suprachiasmatic nucleus clock time in the mammalian circadian system. Cold Spring Harb Symp Quant Biol 72:551–556

    CAS  PubMed  Google Scholar 

  • Okawa M, Uchiyama M (2007) Circadian rhythm sleep disorders: characteristics and entrainment pathology in delayed sleep phase and non-24-h sleep-wake syndrome. Sleep Med Rev 11:485–496

    PubMed  Google Scholar 

  • Oltmanns O (1960) Über den Einfluss der Temperatur auf die endogene Tagesrhythmik und die Blühinduktion bei der Kurztagpflanze Kalanchoe blossfeldiana. Planta 54:233–264

    Google Scholar 

  • Onai K, Morishita M, Itoh S, Okamoto K, Ishiura M (2004) Circadian rhythms in the thermophilic cyanobacterium Thermosynechococcus elongatus: compensation of period length over a wide temperature range. J Bacteriol 186:4972–4977

    CAS  PubMed Central  PubMed  Google Scholar 

  • O’Neill JS, Reddy AB (2011) Circadian clocks in human red blood cells. Nature 469:498–503

    PubMed Central  PubMed  Google Scholar 

  • O’Neill JS, van Ooijen G, Dixon LE, Troein C, Corellou F, Bouget F-Y, Reddy AB, Millar AJ (2011) Circadian rhythms persist without transcription in a eukaryote. Nature 469:554–558

    PubMed Central  PubMed  Google Scholar 

  • van Ooijen G, Dixon LE, Troein C, Millar AJ (2011) Proteasome function is required for biological timing throughout the twenty-four hour cycle. Curr Biol 21:869–875

    PubMed Central  PubMed  Google Scholar 

  • Oster H, Maronde E, Albrecht U (2002) The circadian clock as a molecular calendar. Chronobiol Int 19:507–516

    CAS  PubMed  Google Scholar 

  • Ouyang Y, Andersson C, Kondo T, Golden S, Johnson C (1998) Resonating circadian clocks enhance fitness in Cyanobacteria. Proc Natl Acad Sci U S A 95:8660–8664

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pail G, Huf W, Pjrek E, Winkler D, Willeit M, Praschak-Rieder N, Kasper S (2011) Bright-light therapy in the treatment of mood disorders. Neuropsychobiology 64:152–162

    CAS  PubMed  Google Scholar 

  • Palczewski K (2012) Chemistry and biology of vision. J Biol Chem 287:1612–1619

    CAS  PubMed Central  PubMed  Google Scholar 

  • Panda S, Hogenesch JB (2004) It’s all in the timing: many clocks, many outputs. J Biol Rhythms 19:374–387

    CAS  PubMed  Google Scholar 

  • Pandi-Perumal SR, Srinivasan V, Maestroni GJM, Cardinali DP, Poeggeler B, Hardeland R (2006) Melatonin: nature’s most versatile biological signal? FEBS J 273:2813–2838

    CAS  PubMed  Google Scholar 

  • Pandi-Perumal SR, Bahammam AS, Brown GM, Spence DW, Bharti VK, Kaur C, Hardeland R, Cardinali DP (2013) Melatonin antioxidative defense: therapeutical implications for aging and neurodegenerative processes. Neurotox Res 23:267–300

    CAS  PubMed  Google Scholar 

  • Pandit A, Maheshwari R (1994) Sexual reproduction by Neurospora in nature. Fungal Genet Newsl 41:67–68

    Google Scholar 

  • Parisky KM, Agosto J, Pulver SR, Shang Y, Kuklin E, Hodge JJL, Kang K, Kang K, Liu X, Garrity PA, Rosbash M, Griffith LC (2008) PDF cells are a GABA-responsive wake-promoting component of the Drosophila sleep circuit. Neuron 60:672–682

    CAS  PubMed Central  PubMed  Google Scholar 

  • Park N, Cheon S, Son GH, Cho S, Kim K (2012) Chronic circadian disturbance by a shortened light-dark cycle increases mortality. Neurobiol Aging 33:1122.e11–1122.e22

    Google Scholar 

  • Parker G, Brotchie H (2011) ‘D’ for depression: any role for vitamin D? ‘Food for Thought’ ii. Acta Psychiatr Scand 124:243–249

    CAS  PubMed  Google Scholar 

  • Partonen T, Magnusson A (2001) Seasonal affective disorder: practice and research. Oxford University Press, Oxford

    Google Scholar 

  • de Paula RM, Lewis ZA, Greene AV, Seo K, Morgan L, Vitalini M, Bennett L, Gomer R, Bell-Pedersen D (2006) Two circadian timing circuits in Neurospora crassa cells share components and regulate distinct rhythmic processes. J Biol Rhythms 21:159–168

    PubMed  Google Scholar 

  • de Paula RM, Vitalini MW, Gomer RH, Bell-Pedersen D (2007) Complexity of the Neurospora crassa circadian clock system: multiple loops and oscillators. Cold Spring Harb Symp Quant Biol 72:345–351

    PubMed  Google Scholar 

  • Peirson SN, Halford S, Foster RG (2009) The evolution of irradiance detection: melanopsin and the non-visual opsins. Philos Trans R Soc Lond B Biol Sci 364:2849–2865

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pendergast JS, Yamazaki S (2011) Masking responses to light in period mutant mice. Chronobiol Int 28:657–663

    CAS  PubMed  Google Scholar 

  • Peschel N, Helfrich-Förster C (2011) Setting the clock–by nature: circadian rhythm in the fruitfly Drosophila melanogaster. FEBS Lett 585:1435–1442

    CAS  PubMed  Google Scholar 

  • Peterson E (1981a) Dynamic response of a circadian pacemaker. I. Recovery from extended light exposure. Biol Cybern 40:171–179

    Google Scholar 

  • Peterson E (1981b) Dynamic response of a circadian pacemaker. II. Recovery from light pulse perturbations. Biol Cybern 40:181–194

    Google Scholar 

  • Pévet P, Challet E (2011) Melatonin: both master clock output and internal time-giver in the circadian clocks network. J Physiol Paris 105:170–182

    PubMed  Google Scholar 

  • Pévet P, Agez L, Bothorel B, Saboureau M, Gauer F, Laurent V, Masson-Pévet M (2006) Melatonin in the multi-oscillatory mammalian circadian world. Chronobiol Int 23:39–51

    PubMed  Google Scholar 

  • Pfeuty B, Thommen Q, Corellou F, Djouani-Tahri EB, Bouget F-Y, Lefranc M (2012) Circadian clocks in changing weather and seasons: lessons from the picoalga Ostreococcus tauri. Bioessays 34:781–790

    PubMed  Google Scholar 

  • Philip P, Akerstedt T (2006) Transport and industrial safety, how are they affected by sleepiness and sleep restriction? Sleep Med Rev 10:347–356

    PubMed  Google Scholar 

  • Pickard GE, Sollars PJ (2010) Intrinsically photosensitive retinal ganglion cells. Sci China Life Sci 53:58–67

    PubMed  Google Scholar 

  • Pittendrigh CS (1964) The entrainment of circadian oscillations by skeleton photoperiods. Science 144:565

    CAS  PubMed  Google Scholar 

  • Pittendrigh C, Daan S (1976) A functional analysis of circadian pacemakers in nocturnal rodents. J Comp Physiol A106:333–355

    Google Scholar 

  • Pittendrigh CS, Bruce BG, Rosensweig NS, Rubin ML (1959) Growth patterns in Neurospora. Nature 184:169–170

    Google Scholar 

  • Plachetzki D, Serb J, Oakley T (2005) New insights into the evolutionary history of photoreceptor cells. Trends Ecol Evol 20:465–467

    PubMed  Google Scholar 

  • Plautz J, Kaneko M, Hall J, Kay S (1997) Independent photoreceptive circadian clocks throughout Drosophila. Science 278:1632–1635

    CAS  PubMed  Google Scholar 

  • Pokhilko A, Fernández AP, Edwards KD, Southern MM, Halliday KJ, Millar AJ (2012) The clock gene circuit in Arabidopsis includes a repressilator with additional feedback loops. Mol Syst Biol 8:574

    PubMed Central  PubMed  Google Scholar 

  • Portolés S, Más P (2010) The functional interplay between protein kinase CK2 and CCA1 transcriptional activity is essential for clock temperature compensation in Arabidopsis. PLoS Genet 6:e1001201

    PubMed Central  PubMed  Google Scholar 

  • Praschak-Rieder N, Willeit M (2012) Imaging of seasonal affective disorder and seasonality effects on serotonin and dopamine function in the human brain. Curr Top Behav Neurosci 11:149–167

    PubMed  Google Scholar 

  • Prasko J (2008) Bright light therapy. Neuro Endocrinol Lett 29(Suppl 1):33–64

    PubMed  Google Scholar 

  • Price-Lloyd N, Elvin M, Heintzen C (2005) Synchronizing the Neurospora crassa circadian clock with the rhythmic environment. Biochem Soc Trans 33:949–952

    CAS  PubMed  Google Scholar 

  • Privitera MR, Moynihan J, Tang W, Khan A (2010) Light therapy for seasonal affective disorder in a clinical office setting. J Psychiatr Pract 16:387–393

    PubMed Central  PubMed  Google Scholar 

  • Provencio I, Foster RG (1995) Circadian rhythms in mice can be regulated by photoreceptors with cone-like characteristics. Brain Res 694:183–190

    CAS  PubMed  Google Scholar 

  • Pulivarthy SR, Tanaka N, Welsh DK, Haro LD, Verma IM, Panda S (2007) Reciprocity between phase shifts and amplitude changes in the mammalian circadian clock. Proc Natl Acad Sci U S A 104:20356–20361

    CAS  PubMed Central  PubMed  Google Scholar 

  • Qin X, Byrne M, Xu Y, Mori T, Johnson CH (2010) Coupling of a core posttranslational pacemaker to a slave transcription/translation feedback loop in a circadian system. PLoS Biol 8:e1000394

    PubMed Central  PubMed  Google Scholar 

  • Quintero J, Kuhlman S, McMahon D (2003) The biological clock nucleus: a multiphasic oscillator network regulated by light. J Neurosci 23:8070–8076

    CAS  PubMed  Google Scholar 

  • Rahman SA, Kayumov L, Tchmoutina EA, Shapiro CM (2009) Clinical efficacy of dim light melatonin onset testing in diagnosing delayed sleep phase syndrome. Sleep Med 10:549–555

    PubMed  Google Scholar 

  • Rastad C, Ulfberg J, Lindberg P (2008) Light room therapy effective in mild forms of seasonal affective disorder–a randomised controlled study. J Affect Disord 108:291–296

    CAS  PubMed  Google Scholar 

  • Rastad C, Ulfberg J, Lindberg P (2011) Improvement in fatigue, sleepiness, and health-related quality of life with bright light treatment in persons with seasonal affective disorder and subsyndromal SAD. Depress Res Treat 2011:543906

    PubMed Central  PubMed  Google Scholar 

  • Rea M (1998) Photic entrainment of circadian rhythms in rodents. Chronobiol Int 15:395–423

    CAS  PubMed  Google Scholar 

  • Reed VA (2011) Shift work, light at night, and the risk of breast cancer. AAOHN J 59:37–45; quiz 46

    PubMed  Google Scholar 

  • Reid KJ, McGee-Koch LL, Zee PC (2011) Cognition in circadian rhythm sleep disorders. Prog Brain Res 190:3–20

    PubMed  Google Scholar 

  • Reiter RJ, Tan DX, Cabrera J, D’Arpa D, Sainz R, Mayo J, Ramos S (1999) The oxidant/antioxidant network: role of melatonin. Biol Signals Recept 8:56–63

    CAS  PubMed  Google Scholar 

  • Reiter RJ, Tan DX, Herman TS, Thomas CR (2004) Melatonin as a radioprotective agent: a review. Int J Radiat Oncol Biol Phys 59:639–653

    PubMed  Google Scholar 

  • Reiter RJ, Tan DX, Fuentes-Broto L (2010) Melatonin: a multitasking molecule. Prog Brain Res 181:127–151

    CAS  PubMed  Google Scholar 

  • Reme C, Wirz-Justice A, Terman M (1991) The visual input stage of the mammalian circadian pacemaking system: I. Is there a clock in the mammalian eye? J Biol Rhythms 6:5–29

    CAS  PubMed  Google Scholar 

  • Reppert SM, Gegear RJ, Merlin C (2010) Navigational mechanisms of migrating monarch butterflies. Trends Neurosci 33:399–406

    CAS  PubMed Central  PubMed  Google Scholar 

  • Revel FG, Masson-Pévet M, Pévet P, Mikkelsen JD, Simonneaux V (2009) Melatonin controls seasonal breeding by a network of hypothalamic targets. Neuroendocrinology 90:1–14

    CAS  PubMed  Google Scholar 

  • Revell VL, Eastman CI (2005) How to trick mother nature into letting you fly around or stay up all night. J Biol Rhythms 20:353–365

    PubMed  Google Scholar 

  • Rieger D, Stanewsky R, Helfrich-Forster C (2003) Cryptochrome, compound eyes, Hofbauer-Buchner eyelets, and ocelli play different roles in the entrainment and masking pathway of the locomotor activity rhythm in the fruit fly Drosophila melanogaster. J Biol Rhythms 18:377–391

    CAS  PubMed  Google Scholar 

  • Rieger D, Shafer OT, Tomioka K, Helfrich-Forster C (2006) Functional analysis of circadian pacemaker neurons in Drosophila melanogaster. J Neurosci 26:2531–2543

    CAS  PubMed  Google Scholar 

  • Rieger D, Wülbeck C, Rouyer F, Helfrich-Förster C (2009) Period gene expression in four neurons is sufficient for rhythmic activity of Drosophila melanogaster under dim light conditions. J Biol Rhythms 24:271–282

    CAS  PubMed  Google Scholar 

  • Rietveld WJ, Minors DS, Waterhouse JM (1993) Circadian rhythms and masking: an overview. Chronobiol Int 10:306–312

    CAS  PubMed  Google Scholar 

  • Ripperger JA, Merrow M (2011) Perfect timing: epigenetic regulation of the circadian clock. FEBS Lett 585:1406–1411

    CAS  PubMed  Google Scholar 

  • Ripperger JA, Jud C, Albrecht U (2011) The daily rhythm of mice. FEBS Lett 585:1384–1392

    CAS  PubMed  Google Scholar 

  • Rizzini L, Favory J-J, Cloix C, Faggionato D, O’Hara A, Kaiserli E, Baumeister R, Schäfer E, Nagy F, Jenkins GI, Ulm R (2011) Perception of UV-B by the Arabidopsis uvr8 protein. Science 332:103–106

    CAS  PubMed  Google Scholar 

  • Roberts DE, Killiany RJ, Rosene DL (2012) Neuron numbers in the hypothalamus of the normal aging Rhesus monkey: stability across the adult lifespan and between the sexes. J Comp Neurol 520:1181–1197

    CAS  PubMed Central  PubMed  Google Scholar 

  • Roecklein KA, Rohan KJ, Duncan WC, Rollag MD, Rosenthal NE, Lipsky RH, Provencio I (2009) A missense variant (P10L) of the melanopsin (OPN4) gene in seasonal affective disorder. J Affect Disord 114:279–285

    CAS  PubMed Central  PubMed  Google Scholar 

  • Roenneberg T, Aschoff J (1990) Annual rhythm of human reproduction II: environmental correlations. J Biol Rhythms 5:217–240

    CAS  PubMed  Google Scholar 

  • Roenneberg T, Foster R (1997) Twilight times: light and the circadian system. Photochem Photobiol 66:549–561

    CAS  PubMed  Google Scholar 

  • Roenneberg T, Merrow M (1998) Molecular circadian oscillators: an alternative hypothesis. J Biol Rhythms 13:167–179

    CAS  PubMed  Google Scholar 

  • Roenneberg T, Merrow M (2001) Seasonality and photoperiodism in fungi. J Biol Rhythms 16:403–414

    CAS  PubMed  Google Scholar 

  • Roenneberg T, Mittag M (1996) The circadian program of algae. Semin Cell Dev Biol 7:753–763

    CAS  Google Scholar 

  • Roenneberg T, Chua EJ, Bernardo R, Mendoza E (2008) Modelling biological rhythms. Curr Biol 18:R826–R835

    CAS  PubMed  Google Scholar 

  • Roenneberg T, Allebrandt KV, Merrow M, Vetter C (2012) Social jetlag and obesity. Curr Biol 22:939–943

    CAS  PubMed  Google Scholar 

  • Rohan KJ, Roecklein KA, Lacy TJ, Vacek PM (2009) Winter depression recurrence one year after cognitive-behavioral therapy, light therapy, or combination treatment. Behav Ther 40:225–238

    PubMed  Google Scholar 

  • Romero JM, Valverde F (2009) Evolutionarily conserved photoperiod mechanisms in plants: when did plant photoperiodic signaling appear? Plant Signal Behav 4:642–644

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rosato E, Kyriacou CP (2011) The role of natural selection in circadian behaviour: a molecular-genetic approach. Essays Biochem 49:71–85

    CAS  PubMed  Google Scholar 

  • Rosbash M (2009) The implications of multiple circadian clock origins. PLoS Biol 7:e62

    PubMed  Google Scholar 

  • Rosenthal NE (2006) Winter blues. Guilford Press, New York

    Google Scholar 

  • Rosenthal NE, Sack DA, Gillin JC, Lewy AJ, Goodwin FK, Davenport Y, Mueller PS, Newsome DA, Wehr TA (1984) Seasonal affective disorder. A description of the syndrome and preliminary findings with light therapy. Arch Gen Psychiatry 41:72–80

    CAS  PubMed  Google Scholar 

  • Roth T (2012) Shift work disorder: overview and diagnosis. J Clin Psychiatry 73:e09

    PubMed  Google Scholar 

  • Ruan GX, Zhang DQ, Zhou T, Yamazaki S, McMahon DG (2006) Circadian organization of the mammalian retina. Proc Natl Acad Sci U S A 20:9703–9708

    Google Scholar 

  • Ruby N, Dark J, Burns D, Heller H, Zucker I (2002) The suprachiasmatic nucleus is essential for circadian body temperature rhythms in hibernating ground squirrels. J Neurosci 22:357–364

    CAS  PubMed  Google Scholar 

  • Rüger M, Gordijn MCM, Beersma DGM, de Vries B, Daan S (2003) Acute and phase-shifting effects of ocular and extraocular light in human circadian physiology. J Biol Rhythms 18:409–419

    PubMed  Google Scholar 

  • Ruoff P, Rensing L (1996) The temperature-compensated goodwin model simulates many circadian clock properties. J Theor Biol 179:275–285

    Google Scholar 

  • Ruoff P, Rensing L (2004) Temperature effects on circadian clocks. J Theor Biol 29:445–456

    Google Scholar 

  • Rusak B, Zucker I (1979) Neural regulation of circadian rhythms. Physiol Rev 59:449–526

    CAS  PubMed  Google Scholar 

  • Rust MJ, Markson JS, Lane WS, Fisher DS, O’Shea EK (2007) Ordered phosphorylation governs oscillation of a three-protein circadian clock. Science 318:809–812

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rust MJ, Golden SS, O’Shea EK (2011) Light-driven changes in energy metabolism directly entrain the cyanobacterial circadian oscillator. Science 331:220–223

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rémi J, Merrow M, Roenneberg T (2010) A circadian surface of entrainment: varying T, t, and photoperiod in Neurospora crassa. J Biol Rhythms 25:318–328

    PubMed  Google Scholar 

  • Saarela S, Reiter R (1994) Function of melatonin in thermoregulatory processes. Life Sci 54:295–311

    CAS  PubMed  Google Scholar 

  • Sadeghniiat-Haghighi K, Yazdi Z, Jahanihashemi H, Aminian O (2011) The effect of bright light on sleepiness among rapid-rotating 12-hour shift workers. Scand J Work Environ Health 37:77–79

    PubMed  Google Scholar 

  • Saksvik IB, Bjorvatn B, Hetland H, Sandal GM, Pallesen S (2011) Individual differences in tolerance to shift work–a systematic review. Sleep Med Rev 15:221–235

    PubMed  Google Scholar 

  • Salgado-Delgado R, Angeles-Castellanos M, Buijs MR, Escobar C (2008) Internal desynchronization in a model of night-work by forced activity in rats. Neuroscience 154:922–931

    CAS  PubMed  Google Scholar 

  • Salgado-Delgado R, Nadia S, Angeles-Castellanos M, Buijs RM, Escobar C (2010) In a rat model of night work, activity during the normal resting phase produces desynchrony in the hypothalamus. J Biol Rhythms 25:421–431

    PubMed  Google Scholar 

  • Salichos L, Rokas A (2010) The diversity and evolution of circadian clock proteins in fungi. Mycologia 102:269–278

    CAS  PubMed  Google Scholar 

  • Salomé PA, Weigel D, McClung CR (2010) The role of the Arabidopsis morning loop components CCA1, LHY, PRR7, and PRR9 in temperature compensation. Plant Cell 22:3650–3661

    PubMed Central  PubMed  Google Scholar 

  • Salva MAQ, Hartley S, Barbot F, Alvarez JC, Lofaso F, Guilleminault C (2011) Circadian rhythms, melatonin and depression. Curr Pharm Des 17:1459–1470

    CAS  Google Scholar 

  • Satoh Y, Kawai H, Kudo N, Kawashima Y, Mitsumoto A (2006) Time-restricted feeding entrains daily rhythms of energy metabolism in mice. Am J Physiol Regul Integr Comp Physiol 290:R1276–R1283

    CAS  PubMed  Google Scholar 

  • Sawa M, Nusinow DA, Kay SA, Imaizumi T (2007) FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis. Science 318:261–265

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schaap J, Albus H, VanderLeest H, Eilers P, Detari L, Meijer J (2003) Heterogeneity of rhythmic suprachiasmatic nucleus neurons: implications for circadian waveform and photoperiodic encoding. Proc Natl Acad Sci U S A 100:15994–15999

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schafmeier T, Diernfellner ACR (2011) Light input and processing in the circadian clock of Neurospora. FEBS Lett 585:1467–1473

    CAS  PubMed  Google Scholar 

  • Scheer FAJL, Wright KP, Kronauer RE, Czeisler CA (2007) Plasticity of the intrinsic period of the human circadian timing system. PLoS One 2:e721

    PubMed Central  PubMed  Google Scholar 

  • Schmidt TM, Chen S-K, Hattar S (2011) Intrinsically photosensitive retinal ganglion cells: many subtypes, diverse functions. Trends Neurosci 34:572–580

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schmidt-Koenig K (1975) Migration and homing in animals. Springer, Berlin/Heidelberg

    Google Scholar 

  • Schmoll C, Lascaratos G, Dhillon B, Skene D, Riha RL (2011) The role of retinal regulation of sleep in health and disease. Sleep Med Rev 15:107–113

    PubMed  Google Scholar 

  • Schroder S, Herzog ED, Kiss IZ (2012) Transcription-based oscillator model for light-induced splitting as antiphase circadian gene expression in the suprachiasmatic nuclei. J Biol Rhythms 27:79–90

    PubMed  Google Scholar 

  • Schulz P, Steimer T (2009) Neurobiology of circadian systems. CNS Drugs 23(Suppl 2):3–13

    CAS  PubMed  Google Scholar 

  • Schulze T, Prager K, Dathe H, Kelm J, Kiessling P, Mittag M (2010) How the green alga Chlamydomonas reinhardtii keeps time. Protoplasma 244:3–14

    CAS  PubMed  Google Scholar 

  • Schwerdtfeger C (2003) Vivid is a flavoprotein and serves as a fungal blue light photoreceptor for photoadaptation. EMBO J 22:4846–4855

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schäuble S, Heiland I, Voytsekh O, Mittag M, Schuster S (2011) Predicting the physiological role of circadian metabolic regulation in the green alga Chlamydomonas reinhardtii. PLoS One 6:e23026

    PubMed Central  PubMed  Google Scholar 

  • Sehgal A, Price J, Young MW (1992) Ontogeny of a biological clock in Drosophila melanogaster. Proc Natl Acad Sci U S A 89:1423–1427

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sellix MT, Menaker M (2011) Circadian clocks in mammalian reproductive physiology: effects of the “other” biological clock on fertility. Discov Med 11:273–281

    PubMed  Google Scholar 

  • Serrano G, Herrera-Palau R, Romero JM, Serrano A, Coupland G, Valverde F (2009) Chlamydomonas CONSTANS and the evolution of plant photoperiodic signaling. Curr Biol 19:359–368

    CAS  PubMed  Google Scholar 

  • Shang Y, Griffith LC, Rosbash M (2008) Light-arousal and circadian photoreception circuits intersect at the large PDF cells of the Drosophila brain. Proc Natl Acad Sci U S A 105:19587–19594

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sharkey KM, Carskadon MA, Figueiro MG, Zhu Y, Rea MS (2011) Effects of an advanced sleep schedule and morning short wavelength light exposure on circadian phase in young adults with late sleep schedules. Sleep Med 12:685–692

    PubMed Central  PubMed  Google Scholar 

  • Sharma V (2003) Adaptive significance of circadian clocks. Chronobiol Int 20:901–919

    PubMed  Google Scholar 

  • Shaw PJ, Cirelli C, Greenspan RJ, Tononi G (2000) Correlates of sleep and waking in Drosophila melanogaster. Science 287:1834–1837

    CAS  PubMed  Google Scholar 

  • Sheeba V, Fogle KJ, Kaneko M, Rashid S, Chou Y-T, Sharma VK, Holmes TC (2008a) Large ventral lateral neurons modulate arousal and sleep in Drosophila. Curr Biol 18:1537–1545

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sheeba V, Gu H, Sharma VK, O’Dowd DK, Holmes TC (2008b) Circadian- and light-dependent regulation of resting membrane potential and spontaneous action potential firing of Drosophila circadian pacemaker neurons. J Neurophysiol 99:976–988

    PubMed Central  PubMed  Google Scholar 

  • Sheeba V, Fogle KJ, Holmes TC (2010) Persistence of morning anticipation behavior and high amplitude morning startle response following functional loss of small ventral lateral neurons in Drosophila. PLoS One 5:e11628

    PubMed Central  PubMed  Google Scholar 

  • Shimomura K, Lowrey PL, Vitaterna MH, Buhr ED, Kumar V, Hanna P, Omura C, Izumo M, Low SS, Barrett RK, LaRue SI, Green CB, Takahashi JS (2010) Genetic suppression of the circadian clock mutation by the melatonin biosynthesis pathway. Proc Natl Acad Sci U S A 107:8399–8403

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shirani A, Louis EKS (2009) Illuminating rationale and uses for light therapy. J Clin Sleep Med 5:155–163

    PubMed Central  PubMed  Google Scholar 

  • Siffre M (1975) Six months alone in a cave. Natl Geogr Mag 147:426

    Google Scholar 

  • Silver R, Schwartz W (2005) The suprachiasmatic nucleus is a functionally heterogeneous timekeeping organ. Methods Enzymol 393:451–465

    CAS  PubMed Central  PubMed  Google Scholar 

  • Silver R, Balsam PD, Butler MP, LeSauter J (2011) Food anticipation depends on oscillators and memories in both body and brain. Physiol Behav 104:562–571

    CAS  PubMed Central  PubMed  Google Scholar 

  • Simonneaux V, Ribelayga C (2003) Generation of the melatonin endocrine message in mammals: a review of the complex regulation of melatonin synthesis by norepinephrine, peptides, and other pineal transmitters. Pharmacol Rev 55:325–395

    CAS  PubMed  Google Scholar 

  • Simons MJP (2009) The evolution of the cyanobacterial posttranslational clock from a primitive “phoscillator”. J Biol Rhythms 24:175–182

    CAS  PubMed  Google Scholar 

  • Skene D (2003) Optimization of light and melatonin to phase-shift human circadian rhythms. J Neuroendocrinol 15:438–441

    CAS  PubMed  Google Scholar 

  • Skene DJ, Arendt J (2007) Circadian rhythm sleep disorders in the blind and their treatment with melatonin. Sleep Med 8:651–655

    PubMed  Google Scholar 

  • Smith RM, Williams SB (2006) Circadian rhythms in gene transcription imparted by chromosome compaction in the cyanobacterium Synechococcus elongatus. Proc Natl Acad Sci U S A 103:8564–8569

    CAS  PubMed Central  PubMed  Google Scholar 

  • Smith KM, Sancar G, Dekhang R, Sullivan CM, Li S, Tag AG, Sancar C, Bredeweg EL, Priest HD, McCormick RF, Thomas TL, Carrington JC, Stajich JE, Bell-Pedersen D, Brunner M, Freitag M (2010) Transcription factors in light and circadian clock signaling networks revealed by genomewide mapping of direct targets for Neurospora white collar complex. Eukaryot Cell 9:1549–1556

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sole MJD, Sande PH, Bernades JM, Aba MA, Rosenstein RE (2007) Circadian rhythm of intraocular pressure in cats. Vet Ophthalmol 10:155–161

    PubMed  Google Scholar 

  • Springer M (1993) Genetic control of fungal differentiation: the three sporulation pathways of Neurospora crassa. Bioessays 15:365–374

    CAS  PubMed  Google Scholar 

  • Srikanth A, Schmid M (2011) Regulation of flowering time: all roads lead to Rome. Cell Mol Life Sci 68:2013–2037

    CAS  PubMed  Google Scholar 

  • Srinivasan V, Smits M, Spence W, Lowe AD, Kayumov L, Pandi-Perumal SR, Parry B, Cardinali DP (2006) Melatonin in mood disorders. World J Biol Psychiatry 7:138–151

    PubMed  Google Scholar 

  • Srinivasan V, Spence DW, Pandi-Perumal SR, Trakht I, Cardinali DP (2008) Jet lag: therapeutic use of melatonin and possible application of melatonin analogs. Travel Med Infect Dis 6:17–28

    PubMed  Google Scholar 

  • Stal LJ, Krumbein M (1985a) Nitrogenase activity in the non-heterocystous cyanobacterium Oscillatoria sp. grown under alternating light-dark cycles. Arch Microbiol 143:67–71

    CAS  Google Scholar 

  • Stal LJ, Krumbein M (1985b) Oxygen protection of nitrogenase in the aerobically nitrogen fixing non-heterocystous cyanobacterium Oscillatoria sp. Arch Microbiol 143:72–76

    CAS  Google Scholar 

  • Stanewsky R, Jamison C, Plautz J, Kay S, Hall J (1997) Multiple circadian-regulated elements contribute to cycling period gene expression in Drosophila. EMBO J 16:5006–5018

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stanewsky R, Kaneko M, Emery P, Beretta B, Wager-Smith K, Kay SA, Rosbash M, Hall JC (1998) The cryb mutation identifies cryptochrome as a circadian photoreceptor in Drosophila. Cell 95:681–692

    CAS  PubMed  Google Scholar 

  • Steenhard BM, Besharse JC (2000) Phase shifting the retinal circadian clock: xPer2 mRNA induction by light and dopamine. J Neurosci 20:8572–8577

    CAS  PubMed  Google Scholar 

  • Stehle JH, von Gall C, Schomerus C, Korf H (2001) Of rodents and ungulates and melatonin: creating a uniform code for darkness by different signaling mechanisms. J Biol Rhythms 16:312–325

    CAS  PubMed  Google Scholar 

  • Stehle JH, Saade A, Rawashdeh O, Ackermann K, Jilg A, Sebestény T, Maronde E (2011) A survey of molecular details in the human pineal gland in the light of phylogeny, structure, function and chronobiological diseases. J Pineal Res 51:17–43

    CAS  PubMed  Google Scholar 

  • Steiner M, Werstiuk E, Seggie J (1987) Dysregulation of neuroendocrine crossroads: depression, circadian rhythms and the retina–a hypothesis. Prog Neuropsychopharmacol Biol Psychiatry 11:267–278

    CAS  PubMed  Google Scholar 

  • Steinlechner S, Stieglitz A, Ruf T (2002) Djungarian hamsters: a species with a labile circadian pacemaker? Arrhythmicity under a light-dark cycle induced by short light pulses. J Biol Rhythms 17:248–258

    PubMed  Google Scholar 

  • Stephan FK (2002) The “other” circadian system: food as a Zeitgeber. J Biol Rhythms 17:284–292

    PubMed  Google Scholar 

  • Stevens RG (2009a) Light-at-night, circadian disruption and breast cancer: assessment of existing evidence. Int J Epidemiol 38:963–970

    PubMed Central  PubMed  Google Scholar 

  • Stevens RG (2009b) Working against our endogenous circadian clock: breast cancer and electric lighting in the modern world. Mutat Res 680:106–108

    CAS  PubMed  Google Scholar 

  • Stoleru D, Peng Y, Agosto J, Rosbash M (2004) Coupled oscillators control morning and evening locomotor behaviour of Drosophila. Nature 431:862–868

    CAS  PubMed  Google Scholar 

  • Strasser B, Sánchez-Lamas M, Yanovsky MJ, Casal JJ, Cerdán PD (2010) Arabidopsis thaliana life without phytochromes. Proc Natl Acad Sci U S A 107:4776–4781

    CAS  PubMed Central  PubMed  Google Scholar 

  • Strauss O (2005) The retinal pigment epithelium in visual function. Physiol Rev 85:845–881

    CAS  PubMed  Google Scholar 

  • Strong RE, Marchant BK, Reimherr FW, Williams E, Soni P, Mestas R (2009) Narrow-band blue-light treatment of seasonal affective disorder in adults and the influence of additional nonseasonal symptoms. Depress Anxiety 26:273–278

    PubMed  Google Scholar 

  • Su S-B, Lu C-W, Kao Y-Y, Guo H-R (2008) Effects of 12-hour rotating shifts on menstrual cycles of photoelectronic workers in Taiwan. Chronobiol Int 25:237–248

    CAS  PubMed  Google Scholar 

  • Suzuki L, Johnson CH (2002) Photoperiodic control of germination in the unicell Chlamydomonas. Naturwissenschaften 89:214–220

    CAS  PubMed  Google Scholar 

  • Szular J, Sehadova H, Gentile C, Szabo G, Chou W-H, Britt SG, Stanewsky R (2012) Rhodopsin 5- and rhodopsin 6-mediated clock synchronization in drosophila melanogaster is independent of retinal phospholipase c-? signaling. J Biol Rhythms 27:25–36

    CAS  PubMed  Google Scholar 

  • Tan Y, Merrow M, Roenneberg T (2004) Photoperiodism in Neurospora crassa. J Biol Rhythms 19:135–143

    PubMed  Google Scholar 

  • Tanaka K, Takahashi M, Tanaka M, Takanao T, Nishinoue N, Kaku A, Kato N, Tagaya H, Miyaoka H (2011) Brief morning exposure to bright light improves subjective symptoms and performance in nurses with rapidly rotating shifts. J Occup Health 53:258–266

    PubMed  Google Scholar 

  • Taniguchi Y, Takai N, Katayama M, Kondo T, Oyama T (2010) Three major output pathways from the kaiabc-based oscillator cooperate to generate robust circadian kaibc expression in cyanobacteria. Proc Natl Acad Sci U S A 107:3263–3268

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tassi P, Pellerin N, Moessinger M, Hoeft A, Muzet A (2000) Visual resolution in humans fluctuates over the 24h period. Chronobiol Int 17:187–195

    CAS  PubMed  Google Scholar 

  • Tauber E, Last K, Olive P, Kyriacou C (2004) Clock gene evolution and functional divergence. J Biol Rhythms 19:445–458

    CAS  PubMed  Google Scholar 

  • Tavakoli-Nezhad M, Schwartz WJ (2005) c-Fos expression in the brains of behaviorally ‘split’ hamsters in constant light: calling attention to a dorsolateral region of the suprachiasmatic nucleus and the medial division of the lateral habenula. J Biol Rhythms 20:419–429

    PubMed Central  PubMed  Google Scholar 

  • Teng C, Akerman D, Cordas T, Kasper S, Vieira A (1995) Seasonal affective disorder in a tropical country: a case report. Psychiatry Res 56:11–15

    CAS  PubMed  Google Scholar 

  • Terman M (2007) Evolving applications of light therapy. Sleep Med Rev 11:497–507

    PubMed  Google Scholar 

  • Terman J, Terman M (1999) Photopic and scotopic light detection in patients with seasonal affective disorder and control subjects. Biol Psychiatry 46:1642–1648

    CAS  PubMed  Google Scholar 

  • Terman M, Amira L, Terman J, Ross D (1996) Predictors of response and nonresponse to light treatment for winter depression. Am J Psychiatry 153:1423–1429

    CAS  PubMed  Google Scholar 

  • Thaler K, Delivuk M, Chapman A, Gaynes BN, Kaminski A, Gartlehner G (2011) Second-generation antidepressants for seasonal affective disorder. Cochrane Database Syst Rev 12:CD008591

    PubMed  Google Scholar 

  • Thommen Q, Pfeuty B, Morant P-E, Corellou F, Bouget F-Y, Lefranc M (2010) Robustness of circadian clocks to daylight fluctuations: hints from the picoeucaryote Ostreococcus tauri. PLoS Comput Biol 6:e1000990

    PubMed Central  PubMed  Google Scholar 

  • Thommen Q, Pfeuty B, Corellou F, Bouget F-Y, Lefranc M (2012) Robust and flexible response of the Ostreococcus tauri circadian clock to light/dark cycles of varying photoperiod. FEBS J 279:3432–3448

    CAS  PubMed  Google Scholar 

  • Thompson CL, Rickman CB, Shaw SJ, Ebright JN, Kelly U, Sancar A, Rickman DW (2003) Expression of the blue-light receptor cryptochrome in the human retina. Invest Ophthalmol Vis Sci 44:4515–4521

    PubMed  Google Scholar 

  • Thorpy MJ (2011) Understanding and diagnosing shift work disorder. Postgrad Med 123:96–105

    PubMed  Google Scholar 

  • Tigges M, Marquez-Lago TT, Stelling J, Fussenegger M (2009) A tunable synthetic mammalian oscillator. Nature 457:309–312

    CAS  PubMed  Google Scholar 

  • Timonen M, Nissilä J, Liettu A, Jokelainen J, Jurvelin H, Aunio A, Räsänen P, Takala T (2012) Can transcranial brain-targeted bright light treatment via ear canals be effective in relieving symptoms in seasonal affective disorder? A pilot study. Med Hypotheses 78:511–515

    PubMed  Google Scholar 

  • Toh KI, Jones R, He Y, Eide EJ, Hinz WA, Virshup DM, Ptácek LJ, Fu YH (2001) An hper2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science 291:1040–1043

    CAS  PubMed  Google Scholar 

  • Tomioka K, Matsumoto A (2010) A comparative view of insect circadian clock systems. Cell Mol Life Sci 67:1397–1406

    CAS  PubMed  Google Scholar 

  • Tomioka K, Uryu O, Kamae Y, Umezaki Y, Yoshii T (2012) Peripheral circadian rhythms and their regulatory mechanism in insects and some other arthropods: a review. J Comp Physiol B 182(6):729–740

    PubMed  Google Scholar 

  • Tonsfeldt KJ, Chappell PE (2012) Clocks on top: the role of the circadian clock in the hypothalamic and pituitary regulation of endocrine physiology. Mol Cell Endocrinol 349:3–12

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tosches MA, Bucher D, Vopalensky P, Arendt D (2014) Melatonin signaling controls circadian swimming behavior in marine zooplankton. Cell 159:46–57

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tosini G, Fukuhara C (2002) The mammalian retina as a clock. Cell Tissue Res 309:119–126

    CAS  PubMed  Google Scholar 

  • Tosini G, Menaker M (1996) Circadian rhythms in cultured mammalian retina. Science 272:419–421

    CAS  PubMed  Google Scholar 

  • Tosini G, Pozdeyev N, Sakamoto K, Iuvone PM (2008) The circadian clock system in the mammalian retina. Bioessays 30:624–633

    CAS  PubMed Central  PubMed  Google Scholar 

  • Toth R, Kevei E, Hall A, Millar AJ, Nagy F, Kozma-Bognar L (2001) Circadian clock-regulated expression of phytochrome and cryptochrome genes in Arabidopsis. Plant Physiol 127:1607–1616

    CAS  PubMed Central  PubMed  Google Scholar 

  • Touitou Y (1998) Biological clocks: mechanisms and applications, Proc Internat Congr Chronobiol Paris 7–11 September 1997. Elsevier, Amsterdam

    Google Scholar 

  • Touitou Y, Bogdan A (2007) Promoting adjustment of the sleep-wake cycle by chronobiotics. Physiol Behav 90:294–300

    CAS  PubMed  Google Scholar 

  • Troein C, Corellou F, Dixon LE, van Ooijen G, O’Neill JS, Bouget F-Y, Millar AJ (2011) Multiple light inputs to a simple clock circuit allow complex biological rhythms. Plant J 66:375–385

    CAS  PubMed Central  PubMed  Google Scholar 

  • Troncoso-Ponce MA, Mas P (2012) Newly described components and regulatory mechanisms of circadian clock function in Arabidopsis thaliana. Mol Plant 5:545–553

    PubMed  Google Scholar 

  • Tseng Y-Y, Hunt SM, Heintzen C, Crosthwaite SK, Schwartz J-M (2012) Comprehensive modelling of the Neurospora circadian clock and its temperature compensation. PLoS Comput Biol 8:e1002437

    CAS  PubMed Central  PubMed  Google Scholar 

  • Turek FW (2005) Role of light in circadian entrainment and treating sleep disorders–and more. Sleep 28:548–549

    PubMed  Google Scholar 

  • Tyson JJ, Albert R, Goldbeter A, Ruoff P, Sible J (2008) Biological switches and clocks. J R Soc Interface 5(Suppl 1):S1–S8

    PubMed Central  PubMed  Google Scholar 

  • Ugolini A, Boddi V, Mercatelli L, Castellini C (2005) Moon orientation in adult and young sandhoppers under artificial light. Proc Biol Sci 272:2189–2194

    PubMed Central  PubMed  Google Scholar 

  • Ugolini A, Somigli S, Pasquali V, Renzi P (2007) Locomotor activity rhythm and sun compass orientation in the sandhopper Talitrus saltator are related. J Comp Physiol A 193:1259–1263

    Google Scholar 

  • Ukai H, Ueda HR (2010) Systems biology of mammalian circadian clocks. Annu Rev Physiol 72:579–603

    CAS  PubMed  Google Scholar 

  • Ukai H, Kobayashi TJ, Nagano M, Masumoto KH, Sujino M, Kondo T, Yagita K, Shigeyoshi Y, Ueda HR (2007) Melanopsin-dependent photo-perturbation reveals desynchronization underlying the singularity of mammalian circadian clocks. Nat Cell Biol 9:1327–1334

    CAS  PubMed  Google Scholar 

  • Ukai-Tadenuma M, Kasukawa T, Ueda HR (2008) Proof-by-synthesis of the transcriptional logic of mammalian circadian clocks. Nat Cell Biol 10:1154–1163

    CAS  PubMed  Google Scholar 

  • Vandewalle G, Hébert M, Beaulieu C, Richard L, Daneault V, Garon M-L, Leblanc J, Grandjean D, Maquet P, Schwartz S, Dumont M, Doyon J, Carrier J (2011) Abnormal hypothalamic response to light in seasonal affective disorder. Biol Psychiatry 70:954–961

    PubMed  Google Scholar 

  • Veleri S, Rieger D, Helfrich-Förster C, Stanewsky R (2007) Hofbauer-Buchner eyelet affects circadian photosensitivity and coordinates TIM and PER expression in Drosophila clock neurons. J Biol Rhythms 22:29–42

    PubMed  Google Scholar 

  • Vijayan V, Zuzow R, O’Shea EK (2009) Oscillations in supercoiling drive circadian gene expression in cyanobacteria. Proc Natl Acad Sci U S A 106:22,564–22,568

    CAS  Google Scholar 

  • Vitalini MW, de Paula RM, Park WD, Bell-Pedersen D (2006) The rhythms of life: circadian output pathways in Neurospora. J Biol Rhythms 21:432–444

    CAS  PubMed  Google Scholar 

  • Vitalini MW, de Paula RM, Goldsmith CS, Jones CA, Borkovich KA, Bell- Pedersen D (2007) Circadian rhythmicity mediated by temporal regulation of the activity of p38 MAPK. Proc Natl Acad Sci U S A 104:18223–18228

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vitalini MW, Dunlap J, Heintzen C, Liu Y, Loros J, Bell-Pedersen D (2010) Circadian rhythms. In: Borkovich KA, Ebbole DJ (eds) Cellular and molecular biology of filamentous fungi. ASM Press, Washington, DC, pp 442–466

    Google Scholar 

  • Vollrath L (2002) Chronoendokrinologia- quo vadis? Ann Anat 184:583–593

    PubMed  Google Scholar 

  • Wagner V, Mittag M (2009) Probing circadian rhythms in Chlamydomonas rheinhardtii by functional proteomics. Methods Mol Biol 479:173–188

    CAS  PubMed  Google Scholar 

  • Wagner V, Gessner G, Mittag M (2005) Functional proteomics: a promising approach to find novel components of the circadian system. Chronobiol Int 22:403–415

    CAS  PubMed  Google Scholar 

  • Walton JC, Weil ZM, Nelson RJ (2011) Influence of photoperiod on hormones, behavior, and immune function. Front Neuroendocrinol 32:303–319

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang W, Barnaby JY, Tada Y, Li H, Tör M, Caldelari D, Lee DU, Fu X-D, Dong X (2011) Timing of plant immune responses by a central circadian regulator. Nature 470:110–114

    CAS  PubMed  Google Scholar 

  • Warman GR, Pawley MDM, Bolton C, Cheeseman JF, Fernando AT, Arendt J, Wirz-Justice A (2011) Circadian-related sleep disorders and sleep medication use in the New Zealand blind population: an observational prevalence survey. PLoS One 6:e22073

    CAS  PubMed Central  PubMed  Google Scholar 

  • Warren E, Allen C, Brown R, Robinson D (2003) Intrinsic light responses of retinal ganglion cells projecting to the circadian system. Eur J Neurosci 17:1727–1735

    PubMed Central  PubMed  Google Scholar 

  • Watanabe T, Kojima M, Tomida S, Nakamura TJ, Yamamura T, Nakao N, Yasuo S, Yoshimura T, Ebihara S (2006) Peripheral clock gene expression in CS mice with bimodal locomotor rhythms. Neurosci Res 54:295–301

    PubMed  Google Scholar 

  • Watanabe T, Naito E, Nakao N, Tei H, Yoshimura T, Ebihara S (2007) Bimodal clock gene expression in mouse suprachiasmatic nucleus and peripheral tissues under a 7-hour light and 5-hour dark schedule. J Biol Rhythms 22:58–68

    CAS  PubMed  Google Scholar 

  • Weber F, Zorn D, Rademacher C, Hung H-C (2011) Post-translational timing mechanisms of the Drosophila circadian clock. FEBS Lett 585:1443–1449

    CAS  PubMed  Google Scholar 

  • Wegener C, Hamasaka Y, Nässel DR (2004) Acetylcholine increases intracellular Ca2+ via nicotinic receptors in cultured pdf-containing clock neurons of drosophila. J Neurophysiol 91:912–923

    CAS  PubMed  Google Scholar 

  • Wehr TA (2001) Photoperiodism in humans and other primates: evidence and implications. J Biol Rhythms 16:348–364

    CAS  PubMed  Google Scholar 

  • Weitzman ED, Czeisler CA, Zimmerman JC, Moore-Ede MC (1981) Biological rhythms in man: relationship of sleep-wake, cortisol, growth hormone, and temperature during temporal isolation. Adv Biochem Psychopharmacol 28:475–499

    CAS  PubMed  Google Scholar 

  • Welsh DK, Takahashi JS, Kay SA (2010) Suprachiasmatic nucleus: cell autonomy and network properties. Annu Rev Physiol 72:551–577

    CAS  PubMed Central  PubMed  Google Scholar 

  • Werner R (2002) Chlamydomonas reinhardtii as a unicellular model for circadian rhythm analysis. Chronobiol Int 19:325–343

    CAS  PubMed  Google Scholar 

  • Westrin A, Lam RW (2007a) Long-term and preventative treatment for seasonal affective disorder. CNS Drugs 21:901–909

    CAS  PubMed  Google Scholar 

  • Westrin A, Lam RW (2007b) Seasonal affective disorder: a clinical update. Ann Clin Psychiatry 19:239–246

    PubMed  Google Scholar 

  • Wever RA (1979) The circadian system of man. Springer, New York

    Google Scholar 

  • Willeit M, Sitte HH, Thierry N, Michalek K, Praschak-Rieder N, Zill P, Winkler D, Brannath W, Fischer MB, Bondy B, Kasper S, Singer EA (2008) Enhanced serotonin transporter function during depression in seasonal affective disorder. Neuropsychopharmacology 33:1503–1513

    CAS  PubMed  Google Scholar 

  • Winfree A (1970) Integrated view of resetting a circadian clock. J Comp Physiol A 28:327–374

    CAS  Google Scholar 

  • Winfree AT (1986) The timing of biological clocks. Scientific American Books, Inc., New York

    Google Scholar 

  • Winkler D, Pjrek E, Iwaki R, Kasper S (2006) Treatment of seasonal affective disorder. Expert Rev Neurother 6:1039–1048

    CAS  PubMed  Google Scholar 

  • Wirz-Justice A, Terman M (2012) Chronotherapeutics (light and wake therapy) as a class of interventions for affective disorders. Handb Clin Neurol 106:697–713

    PubMed  Google Scholar 

  • Woelfle M, Johnson C (2006) No promoter left behind: global circadian gene expression in cyanobacteria. J Biol Rhythms 21:419

    CAS  PubMed Central  PubMed  Google Scholar 

  • Woelfle MA, Ouyang Y, Phanvijhitsiri K, Johnson CH (2004) The adaptive value of circadian clocks: an experimental assessment in Cyanobacteria. Curr Biol 14:1481–1486

    CAS  PubMed  Google Scholar 

  • Wolfson AR, Carskadon MA (2003) Understanding adolescents’ sleep patterns and school performance: a critical appraisal. Sleep Med Rev 7:491–506

    PubMed  Google Scholar 

  • Workman JL, Nelson RJ (2011) Potential animal models of seasonal affective disorder. Neurosci Biobehav Rev 35:669–679

    PubMed  Google Scholar 

  • Wright KP, Hughes RJ, kronauer RE, Dijk DJ, Czeisler CA (2001) Intrinsic near-24-hour pacemaker period determines limits of circadian entrainment to a weak synchronizer in humans. Proc Natl Acad Sci U S A 98:14027–14032

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wülbeck C, Grieshaber E, Helfrich-Förster C (2008) Pigment-dispersing factor (pdf) has different effects on Drosophila’s circadian clocks in the accessory medulla and in the dorsal brain. J Biol Rhythms 23:409–424

    PubMed  Google Scholar 

  • Xu Y, Padiath QS, Shapiro RE, Jones CR, Wu SC, Saigoh N, Saigoh K, Ptacek LJ, Fu YH (2005) Functional consequences of a CKIdelta mutation causing familial advanced sleep phase syndrome. Nature 434:640–644

    CAS  PubMed  Google Scholar 

  • Xu K, DiAngelo JR, Hughes ME, Hogenesch JB, Sehgal A (2011) The circadian clock interacts with metabolic physiology to influence reproductive fitness. Cell Metab 13:639–654

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yakir E, Hilman D, Harir Y, Green RM (2007) Regulation of output from the plant circadian clock. FEBS J 274:335–345

    CAS  PubMed  Google Scholar 

  • Yamada Y, Forger D (2010) Multiscale complexity in the mammalian circadian clock. Curr Opin Genet Dev 20:626–633

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamaguchi S, Isejima H, Matsuo T, Okura R, Yagita K, Kobayashi M, Okamura H (2003) Synchronization of cellular clocks in the suprachiasmatic nucleus. Science 302:1408–1412

    CAS  PubMed  Google Scholar 

  • Yamazaki S, Numano R, Abe M, Hida A, Takahashi R, Ueda M, Block GD, Sakaki Y, Menaker M, Tei H (2000) Resetting central and peripheral circadian oscillators in transgenic rats. Science 288:682–685

    CAS  PubMed  Google Scholar 

  • Yang XP, de Groot EJ (1992) Identification of two clock proteins in Acetabularia cliftonii and construction of cdna libraries from Acetabularia cliftonii and Acetabularia mediterranea. Int J Biochem 24:1141–1150

    CAS  PubMed  Google Scholar 

  • Yanovsky MJ, Mazzella MA, Whitelam GC, Casal JJ (2001) Resetting of the circadian clock by phytochromes and cryptochromes in Arabidopsis. J Biol Rhythms 16:523–530

    CAS  PubMed  Google Scholar 

  • Yerushalmi S, Yakir E, Green RM (2011) Circadian clocks and adaptation in Arabidopsis. Mol Ecol 20:1155–1165

    PubMed  Google Scholar 

  • Yoshii T, Funada Y, Ibuki-Ishibashi T, Matsumoto A, Tanimura T, Tomioka K (2004) Drosophila cryb mutation reveals two circadian clocks that drive locomotor rhythm and have different responsiveness to light. J Insect Physiol 50:479–488

    CAS  PubMed  Google Scholar 

  • Yoshii T, Todo T, Wülbeck C, Stanewsky R, Helfrich-Förster C (2008) Cryptochrome is present in the compound eyes and a subset of Drosophila’s clock neurons. J Comp Neurol 508:952–966

    CAS  PubMed  Google Scholar 

  • Yoshii T, Wülbeck C, Sehadova H, Veleri S, Bichler D, Stanewsky R, Helfrich-Förster C (2009) The neuropeptide pigment-dispersing factor adjusts period and phase of Drosophila’s clock. J Neurosci 29:2597–2610

    CAS  PubMed  Google Scholar 

  • Yoshii T, Hermann C, Helfrich-Förster C (2010) Cryptochrome-positive and – negative clock neurons in Drosophila entrain differentially to light and temperature. J Biol Rhythms 25:387–398

    PubMed  Google Scholar 

  • Yoshii T, Rieger D, Helfrich-Förster C (2012) Two clocks in the brain: an update of the morning and evening oscillator model in Drosophila. Prog Brain Res 199:59–82

    CAS  PubMed  Google Scholar 

  • Young R (1976) Visual cells and the concept of renewal. Invest Ophthalmol Vis Sci 15:700–725

    CAS  PubMed  Google Scholar 

  • Zamanian Z, Kakooei H, Ayattollahi SMT, Dehghani M (2010) Effect of bright light on shift work nurses in hospitals. Pak J Biol Sci 13:431–436

    CAS  PubMed  Google Scholar 

  • van Zanten M, Tessadori F, Peeters AJM, Fransz P (2012) Shedding light on large scale chromatin reorganization in Arabidopsis thaliana. Mol Plant 5:583–590

    PubMed  Google Scholar 

  • Zee PC, Goldstein CA (2010) Treatment of shift work disorder and jet lag. Curr Treat Options Neurol 12:396–411

    PubMed  Google Scholar 

  • Zee PC, Vitiello MV (2009) Circadian rhythm sleep disorder: irregular sleep wake rhythm type. Sleep Med Clin 4:213–218

    PubMed Central  PubMed  Google Scholar 

  • Zhdanova I, Reebs S (2006) Circadian rhythms in fish. In: Sloman K, Wilson R, Balshine S (eds) Behavior and physiology of fish, vol 24, Fish physiology. Elsevier, Amsterdam, pp 197–238

    Google Scholar 

  • Zinser ER, Lindell D, Johnson ZI, Futschik ME, Steglich C, Coleman ML, Wright MA, Rector T, Steen R, McNulty N, Thompson LR, Chisholm SW (2009) Choreography of the transcriptome, photophysiology, and cell cycle of a minimal photoautotroph, Prochlorococcus. PLoS One 4:e5135

    PubMed Central  PubMed  Google Scholar 

  • Ziv C, Yarden O (2010) Gene silencing for functional analysis: assessing RNAi as a tool for manipulation of gene expression. Methods Mol Biol 638:77–100

    CAS  PubMed  Google Scholar 

  • Zoltowski BD, Schwerdtfeger C, Widom J, Loros JJ, Bilwes AM, Dunlap JC, Crane BR (2007) Conformational switching in the fungal light sensor Vivid. Science 316:1054–1057

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Engelmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Johnsson, A., Helfrich-Förster, C., Engelmann, W. (2015). How Light Resets Circadian Clocks. In: Björn, L. (eds) Photobiology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1468-5_18

Download citation

Publish with us

Policies and ethics