Skip to main content

Photoreceptive Proteins and Their Evolution

  • Chapter
  • First Online:
Photobiology

Abstract

This chapter deals with the evolution of several unrelated groups of proteins that serve as receptors for light signals. Some of these groups have representatives in all three domains of life: Eubacteria, Archaea, and Eukaryota. Each group contains members whose function is to record light and send a signal along a signal chain. But each group also contains members with other functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afonso CL, Tulman ER, Lu Z, Oma E, Kutish GF, Rock DL (1999) The Genome of Melanoplus sanguinipes Entomopoxvirus. J Virol 73:533–552

    CAS  PubMed Central  PubMed  Google Scholar 

  • Afonso CL, Tulman ER, Lu Z, Zsak L, Kutish GF, Rock D (2000) The genome of fowlpox virus. J Virol 74:3815–3831

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Alvarez CE (2008) On the origins of arrestin and rhodopsin. BMC Evol Biol 8:222. doi:10.1186/1471-2148-8-222, 2008

    Article  PubMed Central  PubMed  Google Scholar 

  • Anantharaman V, Koonin EV, Aravind L (2001) Regulatory potential, phyletic distribution and evolution of ancient, intracellular small-molecule binding domains. J Mol Biol 307:1271–1292

    Article  CAS  PubMed  Google Scholar 

  • Aravind L, Ponting CP (1997) The GAF domain: an evolutionary link between diverse phototransducing proteins. Trends Biochem Sci 22(12):458–459. doi:10.1016/S0968-0004(97)01148-1

    Article  CAS  PubMed  Google Scholar 

  • Arndt NT, Nisbet EG (2012) Processes on the young earth and the habitats of early life. Annu Rev Earth Planet Sci 40:521–549

    Article  CAS  Google Scholar 

  • Asimgil H, Kavakli IH (2012) Purification and characterization of five members of photolyase/cryptochrome family from Cyanidioschyzon merolae. Plant Sci 185–186:190–198

    Article  PubMed  Google Scholar 

  • Auldridge ME, Forest KT (2011) Bacterial phytochromes: more than meets the light. Crit Revs Biochem Molec Biol 46:67–88

    Article  CAS  Google Scholar 

  • Banerjee R, Schleicher E, Meier S, Muñoz Viana R, Pokorny R, Ahmad M, Bittl R, Batschauer A (2007) The signaling state of Arabidopsis cryptochrome 2 contains flavin semiquinone. J Biol Chem 282:14916–14922

    Article  CAS  PubMed  Google Scholar 

  • Bayram Ö, Biesemann C, Krappmann S, Galland P, Braus GH (2008) More than a repair enzyme: Aspergillus nidulans photolyase-like CryA is a regulator of sexual development. Molec Biol Cell 19:3254–3262

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Beel B, Prager K, Spexard M, Sasso S, Weiss D, Müller N, Heinnickel M, Dewez D, Ikoma D, Grossman AR, Kottke T, Mittag M (2012) A flavin binding cryptochrome photoreceptor responds to both blue and red light in Chlamydomonas reinhardtii W. Plant Cell 24:2992–3008

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Berrocal-Tito GM, Rosales-Saavedra T, Herrera-Estrella A, Horwitz BA (2000) Characterization of blue-light and developmental regulation of the photolyase gene phr1 in Trichoderma harzianum. Photochem Photobiol 71:662–668

    Article  CAS  PubMed  Google Scholar 

  • Biernat MA, Ros VID, Vlak JM, van Oers MM (2011) Baculovirus cyclobutane pyrimidine dimer photolyases show a close relationship with lepidopteran host homologues. Insect Mol Biol 20:457–464

    Article  CAS  PubMed  Google Scholar 

  • Bouly J-P, Schleicher E, Dionisio-Sese M, Vandenbussche F, Van Der Straeten D, Bakrim N, Meier S, Batschauer A, Galland P, Bittl R, Ahmad M (2007) Cryptochrome blue light photoreceptors are activated through interconversion of flavin redox states. J Biol Chem 282:9383–9391

    Article  CAS  PubMed  Google Scholar 

  • Braatsch S, Gomelsky M, Kuphal S, Klug G (2002) A single flavoprotein, AppA, integrates both redox and light signals in Rhodobacter sphaeroides. Mol Microbiol 45:827–836

    Article  CAS  PubMed  Google Scholar 

  • Brown LS (2004) Fungal rhodopsins and opsin-related proteins: eukaryotic homologues of bacteriorhodopsin with unknown functions. Photochem Photobiol Sci 3:555–565

    Article  CAS  PubMed  Google Scholar 

  • Brudler R, Hitomi K, Hiromi Daiyasu H, Toh H, Kucho K-i, Masahiro Ishiura M, Kanehisa M, Victoria A, Roberts VA, Todo T, Tainer JA, Getzoff ED (2003) Identification of a new cryptochrome class: structure, function, and evolution. Mol Cell 11:59–67

    Article  CAS  PubMed  Google Scholar 

  • Burgie ES, Walker JM, Phillips GN Jr, Vierstra RD (2013) A photo-labile thioether linkage to phycoviolobilin provides the foundation for the blue/green photocycles in DXCF-cyanobacteriochromes. Structure 21:88–97

    Article  CAS  PubMed  Google Scholar 

  • Burney S, Wenzel R, Kottke T, Roussel T, Hoang N, Bouly J-P, Bittl R, Heberle J, Ahmad M (2012) Single amino acid substitution reveals latent photolyase activity in Arabidopsis cry1. Angew Chem Int Ed 51:9356–9360

    Article  CAS  Google Scholar 

  • Cadetti L, Marroni F, Marangoni R, Kuhlmannc H-W, Gioffré D, Colombetti G (2000) Phototaxis in the ciliated protozoan ophryoglena flava: dose–effect curves and action spectrum determination. J Photochem Photobiol B: Biol 57:41–50

    Article  CAS  Google Scholar 

  • Castrillo M, García-Martínez J, Avalos J (2013) Light-dependent functions of the Fusarium fujikuroi CryD DASH cryptochrome in development and secondary metabolism. Appl Environ Microbiol 79:2777

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chaves I, Pokorny R, Byrdin M, Hoang N, Ritz T, Brettel K, Essen L-O, van der Horst GTJ, Batschauer A, Ahmad M (2011) The cryptochromes: blue light photoreceptors in plants and animals. Annu Rev Plant Biol 62:335–364

    Article  CAS  PubMed  Google Scholar 

  • Christie JM (2007) Phototropin blue-light receptors. Annu Rev Plant Biol 58:21–45

    Article  CAS  PubMed  Google Scholar 

  • Christie JM, Reymond P, Powell GK, Bernasconi P, Raibekas AA, Liscum E, Briggs WR (1998) Arabidopsis NPH1: a flavoprotein with the properties of a photoreceptor for phototropism. Science 282:1698–1701

    Article  CAS  PubMed  Google Scholar 

  • Christie JM, Arvai AS, Baxter KJ, Heilmann M, Pratt AJ, O’Hara A, Kelly SM, Hothorn M, Smith BO, Hitomi K, Jenkins GI, Getzoff ED (2012) Plant UVR8 photoreceptor senses UV-B by tryptophan-mediated disruption of cross-dimer salt bridges. Science 335:1492–1496

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Darwin C, Darwin F (1881) The power of movement in plants. D. Appleton & Co., New York

    Google Scholar 

  • Dasso M (1993) RCC1 in the cell-cycle – the regulator of chromosome condensation takes on new roles. Trends Biochem Sci 18:96–101

    Article  CAS  PubMed  Google Scholar 

  • Dasso M, Nishitani H, Kornbluth S, Nishimoto T, Newport JW (1992) RCC1, a regulator of mitosis, is essential for DNA replication. Mol Cell Biol 12:3337–3345

    CAS  PubMed Central  PubMed  Google Scholar 

  • Devine EL, Oprian DD, Theobald DL (2013) Relocating the active-site lysine in rhodopsin and implications for evolution of retinylidene proteins. Proc Natl Acad Sci U S A 110:13351–13355

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Essen L-O (2006) Photolyases and cryptochromes: common mechanisms of DNA repair and light-driven signaling? Curr Opin Struct Biol 16:51–59

    Article  CAS  PubMed  Google Scholar 

  • Fan Y, Solomon P, Oliver RP, Brown LS (2011) Photochemical characterization of a novel fungal rhodopsin from Phaeosphaeria nodorum. Biochim Biophys Acta 1807:1457–1466

    Article  CAS  PubMed  Google Scholar 

  • Feuda R, Hamilton SC, McInerney JO, Pisani D (2012) Metazoan opsin evolution reveals a simple route to animal vision. Proc Natl Acad Sci U S A 109:18868–18872

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fischer MG, Allen MJ, Wilson WH, Suttle CA (2010) Giant virus with a remarkable complement of genes infects marine zooplankton. Proc Natl Acad Sci USA 107:19508–19513

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fitch Q (1970) Distinguishing homologous from analogous proteins. Syst Zool 19:99–113

    Article  CAS  PubMed  Google Scholar 

  • Flament N, Coltice N, Rey PF (2008) A case for late-Archaean continental emergence from thermal evolution models and hypsometry. Earth Planet Sci Lett 275:326–336

    Article  CAS  Google Scholar 

  • Geisselbrecht Y, Frühwirth S, Schroeder C, Pierik AJ, Gabriele Klug G, Essen L-O (2012) CryB from Rhodobacter sphaeroides: a unique class of cryptochromes with new cofactors. EMBO Rep 13:223–229

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gomelsky M, Klug G (2002) BLUF: a novel FAD-binding domain involved in sensory transduction in microorganisms. Trends Biochem Sci 27:497–500

    Article  CAS  PubMed  Google Scholar 

  • Ho Y-SJ, Burden LM, Hurley JH (2000) Structure of the GAF domain, a ubiquitous signaling motif and a new class of cyclic GMP receptor. EMBO J 19:5288–5299

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hoff WD, Matthijs HCP, Schubert H, Crielaard W, Hellingwerf KJ (1995) Rhodopsin(s) in eubacteria. Biophys Chem 56:193–199

    Article  CAS  PubMed  Google Scholar 

  • Huala E, Oeller PW, Liscum E, Han IS, Larsen E, Briggs WR (1997) Arabidopsis NPH1: a protein kinase with a putative redox-sensing domain. Science 278:2120–2123

    Article  CAS  PubMed  Google Scholar 

  • Inoue K, Reissig L, Sakai M, Kobayashi K, Homma M, Fujii M, Kandori H, Sudo Y (2012) Absorption spectra and photochemical reactions in a unique photoactive protein, middle rhodopsin MR. J Phys Chem B 116:5888–5899

    Article  CAS  PubMed  Google Scholar 

  • Iseki M, Matsunaga S, Murakami A, Ohno K, Shiga K, Yoshida K et al (2002) A blue-light-activated adenylyl cyclase mediates photoavoidance in Euglena gracilis. Nature 415:1047–1051

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa M, Takahashi F, Nozaki H, Nagasato C, Motomura T, Kataoka H (2009) Distribution and phylogeny of the blue light receptors aureochromes in eukaryotes. Planta 230:543–552. doi:10.1007/s00425-009-0967-6

    Article  CAS  PubMed  Google Scholar 

  • Ito H, Sumii M, Kawanabe A, Fan Y, Furutani Y, Brown LS, Hideki Kandori H (2012) Comparative FTIR study of a new fungal rhodopsin. J Phys Chem B 116:11881–11889

    Article  CAS  PubMed  Google Scholar 

  • Jiang ZY, Swem LR, Rushing B-G, Devanathan S, Tollinand G, Bauer CE (1999) Bacterial photoreceptor with similarity to photoactive yellow protein and plant phytochromes. Science 285:406–409

    Article  CAS  PubMed  Google Scholar 

  • Jung K-H, Trivedi VD, Spudich JL (2003) Sensory rhodopsin in eubacteria. Mol Microbiol 47:1513–1522

    Article  CAS  PubMed  Google Scholar 

  • Kiontke S, Geisselbrecht Y, Pokorny R, Carell T, Batschauer A, Essen L-A (2011) Crystal structures of an archaeal class II DNA photolyase and its complex with UV-damaged duplex DNA. EMBO J 30:4437–4449

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kondoh M, Shiraishi C, Müller P, Ahmad M, Hitomi K, Getzoff ED, Terazima M (2011) Light-induced conformational changes in full-length Arabidopsis thaliana cryptochrome. J Mol Biol 413:128–137

    Article  CAS  PubMed  Google Scholar 

  • Krauss U, Minh BQ, Losi A, Gärtner W, Eggert T, von Haeseler A, Jaeger K-E (2009) Distribution and phylogeny of light-oxygen-voltage-blue-light-signaling proteins in the three kingdoms of life. J Bacteriol 191:7234–7242

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Krishnan A, Sällman Almén M, Fredriksson R, Schiöth HB (2012) The origin of GPCRs: identification of mammalian like rhodopsin, adhesion, glutamate and frizzled GPCRs in fungi. PLoS ONE 7:e29817, 15 pp

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kumauchi M, Hara MT, Stalcup P, Xie A, Hoff WD (2008) Identification of six new photoactive yellow proteins – diversity and structure-function relationships in a bacterial blue light photoreceptor. Photochem Photobiol 84:956–969

    Article  CAS  PubMed  Google Scholar 

  • Kyndt JA, Fitch JC, Meyer TE, Cusanovich MA (2007) The photoactivated PYP domain of Rhodospirillum centenum Ppr accelerates the recovery of the bacteriophytochrome domain after white light illumination. Biochemistry 46:8256–8262

    Article  CAS  PubMed  Google Scholar 

  • Kyndt JA, Fitch JC, Seibeck S, Borucki B, Heyn MP, Meyer TE, Cusanovich MA (2010) Regulation of the Pprhistidinekinase by light-induced interactions between its photoactive yellow protein and bacteriophytochromedomains. Biochemistry 2010, 1744–1754

    Google Scholar 

  • Liu H, Liu B, Zhao C, Pepper M, Lin C (2011) The action mechanisms of plant cryptochromes. Trends Plant Sci 16:684–691

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Losi A (2004) The bacterial counterparts of plant phototropins. Photochem Photobiol Sci 3:566–574

    Article  CAS  PubMed  Google Scholar 

  • Lucas-Lledó JI, Lynch M (2009) Evolution of mutation rates: phylogenomic analysis of the photolyase/cryptochrome family. Mol Biol Evol 26:1143–1153

    Article  PubMed Central  PubMed  Google Scholar 

  • Mandalari C, Losi A, Gärtner W (2013) Distance-tree analysis, distribution and co-presence of bilin-and flavin-binding prokaryotic photoreceptors for visible light. Photochem Photobiol Sci 12:1144–1157

    Google Scholar 

  • Masuda S, Bauer CE (2002) AppA is a blue light photoreceptor that antirepresses photosynthesis gene expression in Rhodobacter sphaeroides. Cell 110:613–616

    Article  CAS  PubMed  Google Scholar 

  • Matsuoka T, Matsuoka S, Yamaoka Y, Kuriu T, Watanabe Y, Takayanagi M, Kato Y, Taneda K (1992) Action spectra for step-up photophobic response in Blepharisma. J Protozool 39:498–502

    Article  Google Scholar 

  • Matsuoka T, Watanabe Y, Sagara Y, Takayanagi M, Kato Y (1995) Additional evidence for blepharismin photoreceptor pigment mediating step-up photophobic response of unicellular organism Blepharisma. Photochem Photobiol 62:190–193

    Article  CAS  PubMed  Google Scholar 

  • Meyer T (1985) Isolation and characterization of soluble cytochromes, ferredoxin and other chromophoric proteins from the halophile phototrophic bacterium Ectothiorhodospira halophila. Biochim Biophys Acta 806:175–183

    Article  CAS  PubMed  Google Scholar 

  • Meyer TA, Kyndt JA, Memmi S, Moser T, Colón-Acevedo B, Devreese B, Van Beeumen JJ (2012) The growing family of photoactive yellow proteins and their presumed functional roles. Photochem Photobiol Sci 11:1495–1514

    Article  CAS  PubMed  Google Scholar 

  • Meyer TE, Yakali E, Cusanovich MA, Tollin G (1987) Properties of a water-soluble, yellow protein isolated from a halophilic phototrophic bacterium that has photochemical activity analogous to sensory rhodopsin. Biochemistry 26:418–423

    Article  CAS  PubMed  Google Scholar 

  • Möglich AA, Ayers R, Moffat K (2009) Structure and signaling mechanism of Per-ARNT-Sim domains. Structure 17:1282–1294

    Article  PubMed Central  PubMed  Google Scholar 

  • Mukherjee P, Fulton DB, Halder M, Han X, Armstrong DW, Petrich JW, Lobban CS (2006) Maristentorin, a novel pigment from the positively phototactic marine ciliate Maristentor dinoferus, is structurally related to hypericin and stentorin. J Phys Chem B 2006(110):6359–6364

    Article  Google Scholar 

  • Müller M, Carell T (2009) Structural biology of DNA photolyases and cryptochromes. Curr Opin Struct Biol 19:277–285

    Article  PubMed  Google Scholar 

  • Nalcacioglu R, Dizman YA, Vlak JM, Demirbag Z, van Oers MM (2010) Amsacta moorei entomopoxvirus encodes a functional DNA photolyase (AMV025). J Invertebr Pathol 105:363–365

    Article  CAS  PubMed  Google Scholar 

  • Narikawa R, Kohchib T, Ikeuchia M (2008) Characterization of the photoactive GAF domain of the CikA homolog (SyCikA, Slr 1969) of the cyanobacterium Synechocystis sp. PCC 6803. Photochem Photobiol Sci 7:1253–1259

    Article  CAS  PubMed  Google Scholar 

  • Novikov GV, Sivozhelezov VS, Shebanova AS, Shaitan KV (2012) Classification of rhodopsin structures by modern methods of structural bioinformatics. Biochemistry (Mosc) 77:435–443 (Biokhimiya 77: 544–554)

    Article  CAS  Google Scholar 

  • Oberpichler I, Pierik AJ, Wesslowski J, Pokorny R, Rosen R, Vugman M, Zhang F, Neubauer O, Ron EZ, Batschauer A, Lamparter T (2011) A photolyase-like protein from Agrobacterium tumefaciens with an iron-sulfur cluster. PLoS ONE 6:e26775. doi:10.1371/journal.pone.0026775

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Osigus H-J, Eitel M, Schierwater B (2013) Chasing the urmetazoon: striking a blow for quality data? Mol Phylogenet Evol 66:551–557

    Article  PubMed  Google Scholar 

  • Öztürk N, Kao Y-T, Selby CP, Kavakl IH, Partch CL, Zhong D, Sancar A (2008) Purification and characterization of a type III photolyase from Caulobacter crescentus. Biochemistry 47:10255–10261

    Google Scholar 

  • Parker A (2004) In the blink of an eye: how vision kick-started the big bang of evolution. Simon & Schuster, London. ISBN 0-7432-5733-2

    Google Scholar 

  • Parker AR (2011) On the origin of optics. Optics & Laser Technol. 43, 323–329

    Google Scholar 

  • Porter ML, Blasic JR, Bok MJ, Cameron EG, Pringle T, Cronin TW, Robinson PR (2012) Shedding new light on opsin evolution. Proc R Soc B 279:3–14

    Article  PubMed Central  PubMed  Google Scholar 

  • Rivera AS, Ozturk N, Fahey B, Plachetzki DC, Degnan BM, Aziz Sancar A, Oakley TH (2012) Blue-light-receptive cryptochrome is expressed in a sponge eye lacking neurons and opsin. J Exp Biol 215:1278–1286

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ruiz-González RX, Marin M (2004) New insights into the evolutionary history of type 1 rhodopsins. J Mol Evol 58:348–358

    Article  PubMed  Google Scholar 

  • Shen L, Chen C, Zheng H, Jin L (2013) The evolutionary relationship between microbial rhodopsins and metazoan rhodopsins. Sci World J Article ID 435651, 10 p

    Google Scholar 

  • Soppa J (1994) Sequence comparison does not support an evolutionary link between halobacterial retinal proteins including bacteriorhodopsin and eukaryotic G-protein-coupled receptors. FEBS Lett 342:7–11

    Article  CAS  PubMed  Google Scholar 

  • Sudo Y, Ihara K, Kobayashi S, Suzuki D, Irieda H, Kikukawa T, Kandori H, Homma MJ (2011) A microbial rhodopsin with a unique retinal composition shows both sensory rhodopsin II and bacteriorhodopsin-like properties. Biol Chem 286:5967–5976

    Article  CAS  Google Scholar 

  • Suetsugo N, Kong S-G, Kasahara M, Wada M (2013) Both LOV1 and LOV2 domains of phototropin2 function as the photosensory domain for hypocotyl phototropic responses in Arabidopsis thaliana (Brassicaceae). Am J Bot 100:60–69

    Article  Google Scholar 

  • Taylor EW, Agarwal A (1993) Sequence homology between bacteriorhodopsin and G-protein coupled receptors: exon shuffling or evolution by duplication? FEBS Lett 325:161–166

    Article  CAS  PubMed  Google Scholar 

  • Terakita A (2005) The opsins. Genome Biol 6:213 (9 p)

    Article  PubMed Central  PubMed  Google Scholar 

  • van Oers MM, Herniou EA, Usmany M, Messelink GJ, Vlak JM (2004) Identification and characterization of a DNA photolyase containing baculovirus from Chrysodeixis chalcites. Virology 330:460–470

    Article  PubMed  Google Scholar 

  • Wada M, Suetsugu N (2013) Evolution of three LOV blue light receptor families in green plants and photosynthetic stramenopiles: phototropin, ZTL/FKF1/LKP2 and aureochrome. Plant Cell Physiol 54:8–23. doi:10.1093/pcp/pcs165

    Article  PubMed  Google Scholar 

  • Wang Y, Maruhnich SA, Mageroy MH, Justice JR, Folta KM (2013) Phototropin 1 and cryptochrome action in response to green light in combination with other wavelengths. Planta 237:225–237

    Article  CAS  PubMed  Google Scholar 

  • Waschuk SA, Bezerra AG Jr, Shi L, Brown LS (2005) Leptosphaeria rhodopsin: bacteriorhodopsin-like proton pump from a eukaryote. Proc Natl Acad Sci USA 102:6879–6883

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wood DC (1976) Action spectrum and electrophysiological responses correlated with the photophobic response of Stentor coeruleus. Photochem Photobiol 24:261–266

    Article  CAS  PubMed  Google Scholar 

  • Wu D, Hu Q, Yan Z, Chen W, Yan C, Huang X, Zhang J, Yang P, Deng H, Wang J, Deng XW, Shi Y (2012) Structural basis of ultraviolet-B perception by UVR8. Nature 484:215–220

    Google Scholar 

  • Yutin N, Koonin EV (2013) Proteorhodopsin genes in giant viruses. Biol Direct 7:34, 2012

    Article  Google Scholar 

  • Zhang F, Vierock J, Yizhar O, Fenno LE, Tsunoda S, Kianianmomeni A, Prigge M, Berndt A, Cushman J, Polle J, Magnuson J, Hegemann P, Deisseroth K (2011) The microbial opsin family of optogenetic tools. Cell 147:1446–1457

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zuo ZC, Meng Y-Y, Yu X-H, Zhang Z-L, Feng D-S, Sun S-F, Liua B, Lin C-T (2012) A study of the blue-light-dependent phosphorylation, degradation, and photobody formation of Arabidopsis CRY2. Mol Plant 5:726–733

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Olof Björn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Björn, L.O. (2015). Photoreceptive Proteins and Their Evolution. In: Björn, L. (eds) Photobiology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1468-5_13

Download citation

Publish with us

Policies and ethics